植物生态学报 ›› 2016, Vol. 40 ›› Issue (2): 140-150.DOI: 10.17521/cjpe.2015.1107
张江红1, 彭福田1,,A;*(), 蒋晓梅1, 李民吉1, 王中堂2
出版日期:
2016-02-10
发布日期:
2016-03-08
通讯作者:
彭福田
基金资助:
Jiang-Hong ZHANG1, Fu-Tian PENG1,*(), Xiao-Mei JIANG1, Min-Ji LI1, Zhong-Tang WANG2
Online:
2016-02-10
Published:
2016-03-08
Contact:
Fu-Tian PENG
摘要:
以一年生盆栽'春美/毛桃'(Amygdalus persica "Chunmei/Maotao")为试材, 研究了桃树枝条还田对土壤酚酸类物质,苦杏仁苷,微生物,酶活性和桃幼树生长的影响, 以期为桃树枝条还田可行性提供依据.试验进行了以下处理: 1.5 g·kg-1枝条剪碎还田处理,22.5 g·kg-1枝条剪碎还田处理,1.5 g·kg-1枝条浸提液还田处理,22.5 g·kg-1枝条浸提液还田处理, 以无枝条添加为对照.运用固相萃取,高效液相色谱,生物高通量测序测定土壤自毒物质和微生物群落结构.结果表明: 加量枝条(每1 kg土壤中枝条含量为22.5 g, 相当于15倍的正常修剪量)还田剪碎处理和浸提液处理土壤中酚酸类物质和苦杏仁苷含量显著增加; 土壤微生物群落结构改变, 伞菌纲,毛筒腔菌属(Tubeufia)和银耳亚纲Cystofilobasidiaceae增多, 真菌比例升高, 细菌比例降低; 土壤蔗糖酶活性始终显著高于对照, 过氧化氢酶和脲酶活性处理前期显著高于对照, 处理后期显著低于对照, 加量枝条浸提液处理前期对土壤酶活性变化的影响大于加量枝条剪碎处理; 桃幼树叶绿素含量,地径(苗木距离地面5 cm处的直径)生长量和净光合速率均显著低于对照, 新梢停长期提前.常规还田量枝条(1.5 g·kg-1)处理对土壤酚酸类物质和土壤酶活性变化有影响, 但对桃幼树生长无显著影响.由此可见, 加量枝条还田会使土壤苦杏仁苷和酚酸类物质大量积累可能对桃树根系造成直接毒害, 同时还改变了土壤微生物群落结构和土壤酶活性, 间接抑制桃幼树的生长.
张江红, 彭福田, 蒋晓梅, 李民吉, 王中堂. 桃树枝条还田对土壤自毒物质,微生物及植株生长的影响. 植物生态学报, 2016, 40(2): 140-150. DOI: 10.17521/cjpe.2015.1107
Jiang-Hong ZHANG, Fu-Tian PENG, Xiao-Mei JIANG, Min-Ji LI, Zhong-Tang WANG. Effects of peach branches returning on autotoxins and microbes in soil and tree growth of peaches. Chinese Journal of Plant Ecology, 2016, 40(2): 140-150. DOI: 10.17521/cjpe.2015.1107
物质种类 Material types | 平均含量 Mean content |
---|---|
没食子酸 Gallic acid (ng·g-1) | 110.46 |
儿茶素 Catechins (ng·g-1) | 2 359.61 |
丁香酸 Syringic acid (ng·g-1) | 5 084.21 |
绿原酸 Chlorogenic acid (ng·g-1) | 505.01 |
苯甲酸 Benzoic acid (ng·g-1) | 3 707.04 |
对羟基苯甲酸 p-Hydroxybenzoic acid (ng·g-1) | 964.72 |
香豆素 Coumarin (ng·g-1) | 21.63 |
阿魏酸 Ferulic acid (ng·g-1) | 96.89 |
肉桂酸 Cinnamic acid (ng·g-1) | 142.94 |
香草醛 Vanillin (ng·g-1) | 1 274.60 |
香豆酸 Cumaric acid (ng·g-1) | 1 217.56 |
苦杏仁苷 Amygdalin (mg·g-1) | 17.24 |
表1 桃树枝条中酚酸和苦杏仁苷的平均含量
Table 1 Phenolic acid and amygdalin content of peach tree branches
物质种类 Material types | 平均含量 Mean content |
---|---|
没食子酸 Gallic acid (ng·g-1) | 110.46 |
儿茶素 Catechins (ng·g-1) | 2 359.61 |
丁香酸 Syringic acid (ng·g-1) | 5 084.21 |
绿原酸 Chlorogenic acid (ng·g-1) | 505.01 |
苯甲酸 Benzoic acid (ng·g-1) | 3 707.04 |
对羟基苯甲酸 p-Hydroxybenzoic acid (ng·g-1) | 964.72 |
香豆素 Coumarin (ng·g-1) | 21.63 |
阿魏酸 Ferulic acid (ng·g-1) | 96.89 |
肉桂酸 Cinnamic acid (ng·g-1) | 142.94 |
香草醛 Vanillin (ng·g-1) | 1 274.60 |
香豆酸 Cumaric acid (ng·g-1) | 1 217.56 |
苦杏仁苷 Amygdalin (mg·g-1) | 17.24 |
酚酸种类 Phenolic acids species (ng·g-1) | CK | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|
没食子酸 Gallic acid | 960.28 ± 44.59c | 1 016.93 ± 1.43bc | 1 123.53 ± 7.01a | 1 083.38 ± 11.349ab | 1 160.95 ± 60.26a |
儿茶素 Catechins | 228.41 ± 18.42c | 298.88 ± 5.63b | 391.84 ± 21.52a | 258.61 ± 32.43bc | 352.44 ± 23.83a |
丁香酸 Syringic acid | 10.71 ± 1.60d | 17.13 ± 3.54c | 53.52 ± 3.12a | 13.85 ± 1.30cd | 32.62 ± 2.29b |
绿原酸 Syringic acid | 32.55 ± 3.36d | 37.35 ± 0.94c | 53.07 ± 1.26a | 34.02 ± 0.38cd | 45.03 ± 3.99b |
苯甲酸 Benzoic acid | 17.48 ± 0.91c | 20.54 ± 2.91bc | 29.56 ± 3.97a | 16.21 ± 3.12c | 24.44 ± 1.58b |
对羟基苯甲酸 p-Hydroxybenzoic acid | 13.62 ± 2.60ab | 13.93 ± 3.36ab | 10.68 ± 0.58b | 18.43 ± 2.02ab | 15.39 ± 4.84ab |
香豆素 Coumarin | 15.98 ± 1.71c | 24.60 ± 5.27b | 33.41 ± 3.31a | 16.38 ± 4.13c | 32.36 ± 3.77a |
阿魏酸 Ferulic acid | 15.40 ± 0.89a | 17.49 ± 1.63a | 16.30 ± 1.74a | 17.59 ± 1.58a | 16.29 ± 2.33a |
肉桂酸 Cinnamic acid | 4.88 ± 0.44b | 4.81 ± 0.70b | 5.83 ± 0.36a | 5.65 ± 0.58ab | 5.94 ± 0.18a |
香草醛 Vanillin | 14.04 ± 1.48c | 16.92 ± 0.71ab | 17.56 ± 0.66a | 15.78 ± 0.31b | 16.76 ± 0.64ab |
香豆酸 Cumaric acid | 8.17 ± 0.77a | 9.75 ± 1.00a | 9.30 ± 1.02a | 8.92 ± 0.87a | 8.10 ± 0.84a |
酚酸总量 Phenolic acid | 1 321.51 ± 58.43a | 1 478.30 ± 7.07b | 1 744.60 ± 94.27c | 1 492.68 ± 30.72b | 1 710.32 ± 50.30c |
表2 枝条还田对桃树土壤酚酸含量的影响(平均值±标准偏差)
Table 2 Effects of branch returning on the content of soil phenolic acids under peach tree (means ± SD)
酚酸种类 Phenolic acids species (ng·g-1) | CK | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|
没食子酸 Gallic acid | 960.28 ± 44.59c | 1 016.93 ± 1.43bc | 1 123.53 ± 7.01a | 1 083.38 ± 11.349ab | 1 160.95 ± 60.26a |
儿茶素 Catechins | 228.41 ± 18.42c | 298.88 ± 5.63b | 391.84 ± 21.52a | 258.61 ± 32.43bc | 352.44 ± 23.83a |
丁香酸 Syringic acid | 10.71 ± 1.60d | 17.13 ± 3.54c | 53.52 ± 3.12a | 13.85 ± 1.30cd | 32.62 ± 2.29b |
绿原酸 Syringic acid | 32.55 ± 3.36d | 37.35 ± 0.94c | 53.07 ± 1.26a | 34.02 ± 0.38cd | 45.03 ± 3.99b |
苯甲酸 Benzoic acid | 17.48 ± 0.91c | 20.54 ± 2.91bc | 29.56 ± 3.97a | 16.21 ± 3.12c | 24.44 ± 1.58b |
对羟基苯甲酸 p-Hydroxybenzoic acid | 13.62 ± 2.60ab | 13.93 ± 3.36ab | 10.68 ± 0.58b | 18.43 ± 2.02ab | 15.39 ± 4.84ab |
香豆素 Coumarin | 15.98 ± 1.71c | 24.60 ± 5.27b | 33.41 ± 3.31a | 16.38 ± 4.13c | 32.36 ± 3.77a |
阿魏酸 Ferulic acid | 15.40 ± 0.89a | 17.49 ± 1.63a | 16.30 ± 1.74a | 17.59 ± 1.58a | 16.29 ± 2.33a |
肉桂酸 Cinnamic acid | 4.88 ± 0.44b | 4.81 ± 0.70b | 5.83 ± 0.36a | 5.65 ± 0.58ab | 5.94 ± 0.18a |
香草醛 Vanillin | 14.04 ± 1.48c | 16.92 ± 0.71ab | 17.56 ± 0.66a | 15.78 ± 0.31b | 16.76 ± 0.64ab |
香豆酸 Cumaric acid | 8.17 ± 0.77a | 9.75 ± 1.00a | 9.30 ± 1.02a | 8.92 ± 0.87a | 8.10 ± 0.84a |
酚酸总量 Phenolic acid | 1 321.51 ± 58.43a | 1 478.30 ± 7.07b | 1 744.60 ± 94.27c | 1 492.68 ± 30.72b | 1 710.32 ± 50.30c |
图1 枝条还田对桃树土壤苦杏仁苷含量的影响(平均值±标准偏差).CK, 无枝条添加对照; T1,T2,T3,T4分别代表1.5 g·kg-1枝条剪碎还田处理,22.5 g·kg-1枝条剪碎还田处理,1.5 g·kg-1枝条浸提液还田处理,22.5 g·kg-1枝条浸提液还田处理.图中不同字母表示处理间显著性差异达5%显著水平.
Fig. 1 Effects of branch returning on the amygdalin content of soils under peach tree (means ± SD). CK, no branch addition as control; T1, T2, T3 and T4 represent treatment of coverage by fragmented peach tree branches in 1.5 g·kg-1 and 22.5 g·kg-1, and treatment of peach tree branch leachate application of 1.5 g·kg-1 and 22.5 g·kg-1, respectively. Different letters in the figure denote significant difference at a level of p < 0.05.
图2 加量枝条还田对土壤真菌(A),细菌(B)以及两者比例(C)的影响.CK, 无枝条添加对照; T2,T4分别代表22.5 g·kg-1枝条剪碎还田处理和22.5 g·kg-1枝条浸提液还田处理.
Fig. 2 Effects of high-quantity returning treatment on soil fungi (A), bacteria (B) and the fungi:bacteria ratio (C). CK, no branches addition as control; T2 and T4 represent branch fragment application and branch leachate application in 22.5 g·kg-1, respectively.
图3 枝条还田对桃树土壤蔗糖酶(A),过氧化氢酶(B),脲酶(C)活性的影响(平均值±标准偏差).CK, 无枝条添加对照; T1,T2,T3,T4分别代表1.5 g·kg-1枝条剪碎还田处理,22.5 g·kg-1枝条剪碎还田处理,1.5 g·kg-1枝条浸提液还田处理,22.5 g·kg-1枝条浸提液还田处理.不同字母表示处理间显著性差异达5%显著水平.
Fig. 3 Effects of branch returning on the soil invertase (A), catalase (B) and urease (C) activity (means ± SD). CK, no branches addition as control; T1, T2, T3 and T4 represent treatment of coverage by fragmented peach tree branches in 1.5 g·kg-1 and 22.5 g·kg-1, and treatment of peach tree branch leachate application of 1.5 g·kg-1 and 22.5 g·kg-1, respectively. Different letters in the figure denote significant difference at a level of p < 0.05.
图4 枝条还田对桃树叶片净光合速率的影响(平均值±标准偏差).CK, 无枝条添加对照; T1,T2,T3,T4分别代表1.5 g·kg-1枝条剪碎还田处理,22.5 g·kg-1枝条剪碎还田处理,1.5 g·kg-1枝条浸提液还田处理,22.5 g·kg-1枝条浸提液还田处理.图中不同字母表示处理间显著性差异达5%显著水平.
Fig. 4 Effects of branch returning on the net photosynthesis rate of peach trees (means ± SD). CK, no branches addition as control; T1, T2, T3 and T4 represent treatment of coverage by fragmented peach tree branches in 1.5 g·kg-1 and 22.5 g·kg-1, and treatment of peach tree branch leachate application of 1.5 g·kg-1 and 22.5 g·kg-1, respectively. Different letters in the figure denote significant difference at a level of p < 0.05.
处理 Treatment | 新梢生长量 Fresh treetop growth (cm) | 地径 Ground diameter (mm) | ||||
---|---|---|---|---|---|---|
2013/06/22 | 2013/07/07 | 2013/07/23 | 2013/08/08 | 2013/06/18 | 2014/06/15 | |
CK | 8.33 ± 1.76a | 4.67 ± 0.58a | 5.17 ± 1.04a | 2.5 ± 0.87a | 11.50 ± 1.62a | 17.70 ± 0.69a |
T1 | 8.83 ± 1.04a | 3.67 ± 1.53a | 4.50 ± 1.50a | 1.67 ± 0.58abc | 11.24 ± 0.12a | 17.40 ± 0.74a |
T2 | 9.33 ± 0.58a | 1.67 ± 0.76c | 1.00 ± 1.00b | 0.33 ± 0.29c | 11.86 ± 1.06a | 15.86 ± 0.66b |
T3 | 9.17 ± 1.04a | 4.00 ± 1.00a | 4.50 ± 1.32a | 2.00 ± 1.00abc | 11.40 ± 0.23a | 17.18 ± 0.57ab |
T4 | 9.00 ± 1.50a | 1.67 ± 1.53bc | 1.83 ± 0.76b | 0.83 ± 1.04bc | 11.29 ± 0.60a | 15.98 ± 0.88b |
表3 枝条还田对桃树新梢生长量和地径的影响(平均值±标准偏差)
Table 3 Effects of branch returning on the fresh treetop growth and ground diameter of peach tree (mean ± SD)
处理 Treatment | 新梢生长量 Fresh treetop growth (cm) | 地径 Ground diameter (mm) | ||||
---|---|---|---|---|---|---|
2013/06/22 | 2013/07/07 | 2013/07/23 | 2013/08/08 | 2013/06/18 | 2014/06/15 | |
CK | 8.33 ± 1.76a | 4.67 ± 0.58a | 5.17 ± 1.04a | 2.5 ± 0.87a | 11.50 ± 1.62a | 17.70 ± 0.69a |
T1 | 8.83 ± 1.04a | 3.67 ± 1.53a | 4.50 ± 1.50a | 1.67 ± 0.58abc | 11.24 ± 0.12a | 17.40 ± 0.74a |
T2 | 9.33 ± 0.58a | 1.67 ± 0.76c | 1.00 ± 1.00b | 0.33 ± 0.29c | 11.86 ± 1.06a | 15.86 ± 0.66b |
T3 | 9.17 ± 1.04a | 4.00 ± 1.00a | 4.50 ± 1.32a | 2.00 ± 1.00abc | 11.40 ± 0.23a | 17.18 ± 0.57ab |
T4 | 9.00 ± 1.50a | 1.67 ± 1.53bc | 1.83 ± 0.76b | 0.83 ± 1.04bc | 11.29 ± 0.60a | 15.98 ± 0.88b |
处理 Treatment | 叶片SPAD值 Chlorophyll meter readings | ||||
---|---|---|---|---|---|
2013/06/22 | 2013/07/22 | 2013/08/22 | 2014/05/15 | 2014/06/15 | |
CK | 40.37 ± 0.15b | 41.63 ± 0.50ab | 41.90 ± 2.17a | 40.40 ± 0.76a | 41.20 ± 0.89a |
T1 | 40.10 ± 1.32b | 42.27 ± 1.31a | 42.60 ± 1.31a | 39.97 ± 1.93ab | 41.77 ± 1.26a |
T2 | 39.53 ± 0.61b | 40.17 ± 0.35b | 41.27 ± 1.19a | 36.97 ± 0.21c | 37.87 ± 0.35c |
T3 | 40.37 ± 1.30b | 41.27 ± 0.40ab | 40.43 ± 1.88a | 41.13 ± 1.29a | 40.53 ± 1.12ab |
T4 | 42.47 ± 0.95a | 42.73 ± 1.05a | 41.83 ± 1.02a | 38.00 ± 0.36bc | 39.00 ± 1.09bc |
表4 枝条还田对桃树叶片SPAD值的影响(平均值±标准偏差)
Table 4 Effects of branch returning on the Chlorophyll meter readings of peach tree (mean ± SD)
处理 Treatment | 叶片SPAD值 Chlorophyll meter readings | ||||
---|---|---|---|---|---|
2013/06/22 | 2013/07/22 | 2013/08/22 | 2014/05/15 | 2014/06/15 | |
CK | 40.37 ± 0.15b | 41.63 ± 0.50ab | 41.90 ± 2.17a | 40.40 ± 0.76a | 41.20 ± 0.89a |
T1 | 40.10 ± 1.32b | 42.27 ± 1.31a | 42.60 ± 1.31a | 39.97 ± 1.93ab | 41.77 ± 1.26a |
T2 | 39.53 ± 0.61b | 40.17 ± 0.35b | 41.27 ± 1.19a | 36.97 ± 0.21c | 37.87 ± 0.35c |
T3 | 40.37 ± 1.30b | 41.27 ± 0.40ab | 40.43 ± 1.88a | 41.13 ± 1.29a | 40.53 ± 1.12ab |
T4 | 42.47 ± 0.95a | 42.73 ± 1.05a | 41.83 ± 1.02a | 38.00 ± 0.36bc | 39.00 ± 1.09bc |
[1] | Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, Leigh SR (2013). Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes.International Society for Microbial Ecology, 7, 1344-1353. |
[2] | Baziramakenga R, Leroux GD, Simard RR (1995). Effects of benzoic and cinnamic acids on membrane permeability of soybean roots.Journal of Chemical Ecology, 21, 1271-1285. |
[3] | Börner H (1960). Liberation of organic substances from higher plants and their role in the soil sickness problem.Botanical Review, 26, 393-424. |
[4] | Cao GQ, Lin SZ, Du L, Lin GL, Liu Y (2003). The bioassay of ferulic acid and cinnamic acid allelopathic to Chinese fir.Chinese Journal of Eco-Agriculture, 11(2), 8-10.(in Chinese with English abstract)[曹光球, 林思祖, 杜玲, 林桂莲, 刘雁 (2003). 阿魏酸与肉桂酸对杉木化感作用的生物评价. 中国生态农业学报,11(2)8-10.] |
[5] | Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl. 1), 4516-4522. |
[6] | Chen H, Hao HR, Xiong J, Qi XH, Zhang ZY, Lin WX (2007). Effects of successive cropping Rehmannia glutinosa on rhizosphere soil microbial flora and enzyme activities.Chinese Journal of Applied Ecology, 18, 2755-2759.(in Chinese with English abstract)[陈慧, 郝慧荣, 熊君, 齐晓辉, 张重义, 林文雄 (2007). 地黄连作对根际微生物区系及土壤酶活性的影响 . 应用生态学报,18, 2755-2759.] |
[7] | Chen XH, Li CH, He SJ (2002). Preliminary study on phenolic acids movement in Soil-Chinese fir seedlings system.Journal of Huazhong Agricultural University, 21, 235-237.(in Chinese with English abstract)[陈秀华, 李传涵, 何绍江 (2002). 酚酸在土壤--杉木苗间运移的初步探讨 . 华中农业大学学报,21, 235-237.] |
[8] | Desmond RL, Daniele B (2008). The Peach: Botany, Production and Uses. CABI Publishing Press, London. 4-6. |
[9] | Guan SY (1986). Soil Enzyme and Its Methodology.Agriculture Press , Beijing. 260-360.(in Chinese)[关松荫 (1986). 土壤酶及其研究法. 中国农业出版社, 北京. 260-360.] |
[10] | Han XZ, Zhu LQ, Yang MF, Yu Q, Bian XM (2012). Effects of different amount of wheat straw returning on rice growth, soil microbial biomass and enzyme activity.Journal of Agro-Environment Science, 31, 2129-2199.(in Chinese with English abstract)[韩新忠, 朱利群, 杨敏芳, 俞琦, 卞新民 (2012). 不同小麦秸秆还田量对水稻生长,土壤微生物生物量及酶活性的影响. 农业环境科学学报, 31, 2129-2199.] |
[11] | Hu XJ, Zheng HH, Jia JY, Wu E, Xing JJ, Zhang KY (2011). Temporal change of the phenolic acids in soil with returning wheat residues and their effects on the seedling growth and the yield of summer corn.Chinese Journal of Ecology, 20(3), 9-11.(in Chinese with English abstract)[胡晓军, 郑皓皓, 贾敬业, 吴萼, 邢建军, 张克银 (2011). 麦秸还田耕层酚酸的时间变化及其对夏玉米幼苗生长和产量的影响. 生态学杂志, 20(3), 9-11.] |
[12] | Larkin RP (2003). Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles.Soil Biology and Biochemistry, 35, 1451-1466. |
[13] | Li JP, Li MQ, Hui NN, Wang L, Ma YQ, Qi YH (2013). Population dynamics of main fungal pathogens in soil of continuously cropped potato.Acta Prataculturae Sinica, 22(4), 147-152.(in Chinese with English abstract)[李继平, 李敏权, 惠娜娜, 王立, 马永强, 漆永红 (2013). 马铃薯连作田土壤中主要病原真菌的种群动态变化规律 . 草业学报,22(4), 147-152.] |
[14] | Li PD, Wang XX, Li YL, Wang HW, Liang FY, Dai CC (2010). The contents of phenolic acids in continuous cropping peanut and their allelopathy.Acta Ecologica Sinica, 20, 2128-2134.(in Chinese with English abstract)[李培栋, 王兴祥, 李奕林, 王宏伟, 梁飞燕, 戴传超 (2010). 连作花生土壤中酚酸类物质的检测及其对花生的化感作用. 生态学报,20, 2128-2134.] |
[15] | Li XR, Li L (2013). Review of the advances on plant allelochemicals and soil microorganisms.Guangdong Agricultural Sciences, 40, 178-181.(in Chinese with English abstract)[李小蓉, 李蕾 (2013). 植物化感物质与土壤微生物的研究进展. 广东农业科学, 40, 178-181.] |
[16] | Lin MZ, Wang HB, Lin HF (2012). Effects of Pseudostellariae heterophylla continuous cropping on rhizosphere soil microorganisms.Chinese Journal of Ecology, 31, 106-111.(in Chinese with English abstract)[林茂兹, 王海斌, 林辉锋 (2012). 太子参连作对根际土壤微生物的影响 . 生态学杂志,31, 106-111.] |
[17] | Liu JB, Zhang ZY, Liu ZJ (2006). Peach continuous cropping disease and its prevention and control technology.The Journal of Hebei Forestry Science and Technology, (2), 67.(in Chinese)[刘嘉彬, 张泽勇, 刘振京 (2006). 桃树重茬病及其防治技术 . 河北林业科技,(2), 67.] |
[18] | Liu JG, Bian XM, Li YB, Zhang W, Li S (2008). Effects of long-term continuous cropping of cotton and returning cotton stalk into field on soil biological activities.Chinese Journal of Applied Ecology, 19, 1027-1032.(in Chinese with English abstract)[刘建国, 卞新民, 李彦斌, 张伟, 李崧 (2008). 长期连作和秸秆还田对棉田土壤生物活性的影响. 应用生态学报, (19), 1027-1032.] |
[19] | Liu SH, Liu SQ, Zhang ZK, Wei H, Qi JJ, Duan JF (2010). Influence of garlic continuous cropping on rhizosphere soil microorganisms and enzyme activities.Scientia Agricultura Sinica, 43, 1000-1006.(in Chinese with English abstract)[刘素慧, 刘世琦, 张自坤, 尉辉, 齐建建, 段吉锋 (2010). 大蒜连作对其根际土壤微生物和酶活性的影响. 中国农业科学, 43, 1000-1006.] |
[20] | Lü WG, Shen QR, Yu TY, Zhu HT (2006). The effect of added phenolic acids on soil enzyme activities and nutrients.Plant Nutrition and Fertilizer Science, 12, 845-849.(in Chinese with English abstract)[吕卫光, 沈其荣, 余廷园, 诸海涛 (2006). 酚酸化合物对土壤酶活性和土壤养分的影响. 植物营养与肥料学报, 12, 845-849.] |
[21] | Lu WT, Jia ZK, Zhang P, Wang W, Hou XQ, Yang BP, Li YP (2011). Effects of straw returning on soil labile organic carbon and enzyme activity in semi-arid areas of southern Ningxia, China.Journal of Agro-Environment Science, 30, 522-528.(in Chinese with English abstract)[路文涛, 贾志宽, 张鹏, 王维, 侯贤清, 杨保平, 李永平 (2011). 秸秆还田对宁南旱作农田土壤活性有机碳及酶活性的影响. 农业环境科学学报, 30, 522-528.] |
[22] | Ma K, Zhang L, Du Q, Song NL (2010). Effect of potato continuous cropping on soil microorganism community structure and function.Journal of Soil and Water Conservation, 24, 229-233.[马琨, 张丽, 杜茜, 宋乃平 (2010). 马铃薯连作栽培对土壤微生物群落的影响 . 水土保持学报,24, 229-233.] |
[23] | Ma YH, Wang XF, Wei M, Qi YF, Li TL (2005). Accumulation of phenolic acids in continuously cropped cucumber soil and their effects on soil microbes and enzyme activities. Chinese Journal of Applied Ecology, 16, 2149-2153.[马云华, 王秀峰, 魏珉, 亓延凤, 李天来 (2005). 黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响. 应用生态学报, 16, 2149-2153.] |
[24] | Mu P, Zhang EH, Wang HN, Fang YF (2012). Effects of continuous straw return to soil on maize growth and soil chemical and physical characteristics.Chinese Journal of Eco-Agriculture, 20, 291-296.(in Chinese with English abstract) [慕平, 张恩和, 王汉宁, 方永丰 (2012). 不同年限全量玉米秸秆还田对玉米生长发育及土壤理化性状的影响. 中国生态农业学报, 20, 291-296.] |
[25] | Patrick ZA (1955). The peach replant problem in Ontario: II Toxic substances from microbial decomposition products of peach root residues.Canadian Journal of Botany, 33, 461-486. |
[26] | Patrick ZA (1971). Phytotoxic substances associated with the decomposition in soil of plant residues.Soil Science, 111, 13-18. |
[27] | Qiao PL, Zhou XG, Wu FZ (2014). T-RFLP analysis of cucumber rhizosphere microbial communities in different cropping seasons.Chinese Journal of Ecology, 33, 2640-2649.(in Chinese with English abstract)[乔蓬蕾, 周新刚, 吴凤芝 (2014). 不同连作茬次黄瓜根际土壤微生物群落的T-RFLP分析 . 生态学杂志, 33, 2640-2649.] |
[28] | Tang CS, Young CC (1982). Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima). Plant Physiology, 69, 155-160. |
[29] | Wang QQ (2012). Variations of Phenolic Acids in Soil of Apple Orchards and the Effect of Phloridzin on the Tricarboxylic Acid Cycle. Master degree dissertation, Shandong Agricultural University, Taian.(in Chinese with English abstract)[王青青 (2012). 苹果园土壤酚酸类物质变化及根皮苷对TCA循环影响的研究. 硕士学位论文, 山东农业大学, 泰安.] |
[30] | Wang SL, Chen LC, Liao LP, Huang ZQ (2002). Effects of three kinds of allelochemicals on growth of Chinese fir seedlings.Chinese Journal of Applied & Environmental Biology, 8, 588-591.(in Chinese with English abstract)[汪思龙, 陈龙池, 廖利平, 黄志群 (2002). 几种化感物质对杉木幼苗生长的影响. 应用与环境生物学报, 8, 588-591.] |
[31] | Wang YP, Wang HT, Xu T, Ni GP, Jiang YZ (2013). Effects of exogenous phenolic acid on soil nutrient availability and enzyme activities in a poplar plantation.Chinese Journal of Applied Ecology, 24, 667-674.(in Chinese with English abstract)[王延平, 王华田, 许坛, 倪桂萍, 姜岳忠 (2013). 酚酸对杨树人工林土壤养分有效性及酶活性的影响. 应用生态学报, 24, 667-674.] |
[32] | Xiao H (2004). Effect of Soil Pasteurization and Rotation on Apple Replant Problem. Master degree dissertation, Shandong Agricultural University, Taian.(in Chinese)[肖宏 (2004). 土壤消毒和轮作对克服苹果连作障碍效果的研究. 硕士学位论文, 山东农业大学, 泰安.] |
[33] | Yang XH, Luo XS (1991). The research progress of fruit tree problem of replantation.Journal of Fruit Science, 8, 239-244.(in Chinese)[杨兴洪, 罗新书 (1991). 果树再植问题研究进展. 果树科学, 8, 239-244.] |
[34] | Ye JJ (2011). Determination of amygdal in Prunus persical (L.) Batsch produced in different areas by HPLC.Chinese Archives of Traditional Chinese Medicine, 29, 206-207.(in Chinese with English abstract)[叶晶晶 (2011). HPLC法测定不同产地桃仁中苦杏仁苷的含量. 中华中医药学刊, 29, 206-207.] |
[35] | Yin CM, Wang GS, Li YY, Che JS, Shen X, Chen XS, Mao ZQ, Wu SJ (2013). A new method for analysis of phenolic acids in the soil--Soil from replanted apple orchards was investigated.Scientia Agricultura Sinica, 46, 4612-4619.(in Chinese with English abstract) [尹承苗, 王功帅, 李园园, 车金水, 沈向, 陈学森, 毛志泉, 吴树敬 (2013). 一种分析土壤中酚酸类物质含量的新方法--以连作苹果园土壤为试材. 中国农业科学,46, 4612-4619.] |
[36] | Zhang BB, Ma RJ, Cai ZX, Song HF, Shen JH (2012). Effect of continuous cultivation on growth and leaf traits of replanted peach seedling. Southwest China Journal of Agricultural Sciences, 25, 1388-1392.(in Chinese with English abstract)[张斌斌, 马瑞娟, 蔡志翔, 宋宏峰, 沈江海 (2012). 连作对再植桃树幼苗生长及叶片性状的影响. 西南农业学报, 25, 1388-1392.] |
[37] | Zhao YY, Cheng LQ, Shang B (2006). Studies on yearly change of amygdalin content in peach. Journal of Yangtze University (Natural Science Edition), 3, 137-138, 141.(in Chinese with English abstract)[赵宇瑛, 程丽琴, 尚冰 (2006). 桃树体内苦杏仁甙含量年变化研究. 长江大学学报(自然版), 3, 137-138, 141.] |
[38] | Zhen LS, Gu J, Gao H, Qin QJ, Chen QL (2012). Effect of straws, manure and chemical fertilizer on soil properties and crop yields.Acta Botanica Boreali-Occidentalia Sinica, 32, 1811-1818.(in Chinese with English abstract)[甄丽莎, 谷洁, 高华, 秦清军, 陈强龙 (2012). 秸秆还田与施肥对土壤酶活性和作物产量的影响 . 西北植物学报, 32,1811-1818.] |
[39] | Zheng HH, Hu XJ, Jia JY, Wu E, Xing JJ (2001). Changes of the phenolic acid in plough layer and its effects on the growth and yield of summer corn with returning wheat straw. Eco-Agriculture Research, 9(4), 79-81.(in Chinese with English abstract) [郑皓皓, 胡晓军, 贾敬业, 吴萼, 邢建军 (2001). 麦秸还田耕层酚酸变化及其对夏玉米生长的影响 . 中国生态农业学报,9(4), 79-81.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 白雪, 李玉靖, 景秀清, 赵晓东, 畅莎莎, 荆韬羽, 刘晋汝, 赵鹏宇. 谷子及其根际土壤微生物群落对铬胁迫的响应机制[J]. 植物生态学报, 2023, 47(3): 418-433. |
[3] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[4] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
[5] | 裴广廷, 孙建飞, 贺同鑫, 胡宝清. 长期人为干扰对桂西北喀斯特草地土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2021, 45(1): 74-84. |
[6] | 罗林, 黄艳, 梁进, 汪恩涛, 胡君, 贺合亮, 赵春章. 西南亚高山针叶林主要树种互作及增温对根区土壤微生物群落的影响[J]. 植物生态学报, 2020, 44(8): 875-884. |
[7] | 王军, 王冠钦, 李飞, 彭云峰, 杨贵彪, 郁建春, 周国英, 杨元合. 短期增温对紫花针茅草原土壤微生物群落的影响[J]. 植物生态学报, 2018, 42(1): 116-125. |
[8] | 石国玺, 王文颖, 蒋胜竞, 成岗, 姚步青, 冯虎元, 周华坤. 黄帚橐吾种群扩张对土壤理化特性与微生物功能多样性的影响[J]. 植物生态学报, 2018, 42(1): 126-132. |
[9] | 梁儒彪, 梁进, 乔明锋, 徐振锋, 刘庆, 尹华军. 模拟根系分泌物C:N化学计量特征对川西亚高山森林土壤碳动态和微生物群落结构的影响[J]. 植物生态学报, 2015, 39(5): 466-476. |
[10] | 周勇, 郑璐雨, 朱敏杰, 李夏, 任安芝, 高玉葆. 内生真菌感染对禾草宿主生境土壤特性和微生物群落的影响[J]. 植物生态学报, 2014, 38(1): 54-61. |
[11] | 时鹏, 王淑平, 贾书刚, 高强, 孙晓强. 三种种植方式对土壤微生物群落组成的影响[J]. 植物生态学报, 2011, 35(9): 965-972. |
[12] | 张崇邦, 王江, 柯世省, 金则新. 五节芒定居对尾矿砂重金属形态、微生物群落功能及多样性的影响[J]. 植物生态学报, 2009, 33(4): 629-637. |
[13] | 张乃莉, 郭继勋, 王晓宇, 马克平. 土壤微生物对气候变暖和大气N沉降的响应[J]. 植物生态学报, 2007, 31(2): 252-261. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19