植物生态学报 ›› 2018, Vol. 42 ›› Issue (1): 116-125.DOI: 10.17521/cjpe.2017.0297
所属专题: 全球变化与生态系统; 青藏高原植物生态学:植物-土壤-微生物; 微生物生态学
王军1,2,王冠钦1,2,李飞1,2,彭云峰1,杨贵彪1,2,郁建春1,2,周国英3,杨元合1,2,*()
出版日期:
2018-01-20
发布日期:
2018-03-08
通讯作者:
杨元合
基金资助:
WANG Jun1,2,WANG Guan-Qin1,2,LI Fei1,2,PENG Yun-Feng1,YANG Gui-Biao1,2,YU Jian-Chun1,2,ZHOU Guo-Ying3,YANG Yuan-He1,2,*()
Online:
2018-01-20
Published:
2018-03-08
Contact:
Yuan-He YANG
Supported by:
摘要:
土壤微生物是生态系统碳循环的重要参与者和调控者。全球变暖可能对土壤微生物群落产生影响, 加速陆地生态系统向大气中释放碳, 进而引起陆地碳循环对气候变暖的正反馈。然而, 目前学术界对土壤微生物群落如何响应气候变暖等问题认识不足, 尤其是缺乏低温干旱条件下土壤微生物对增温响应的实验证据。为此, 该文依托青藏高原紫花针茅(Stipa purpurea)草原建立的增温实验平台, 基于磷脂脂肪酸(PLFA)方法测定了2015和2016年生长季表层(0-10 cm)土壤微生物各类群的生物量, 在此基础上揭示气候变暖对紫花针茅草原土壤微生物群落结构的影响。结果显示, 短期增温处理导致2015和2016年生长季(5-10月)的表层土壤温度均显著提高1.6 ℃, 同时也导致土壤含水量显著下降了3.4%和2.4% (体积分数), 但并没有显著改变土壤化学性质及归一化植被指数。增温处理下, 两年生长季旺期(8月)的微生物生物量碳(MBC)含量分别为749.0和844.3 mg·kg -1, 微生物生物量氮(MBN)含量为43.1和102.1 mg·kg -1, 微生物生物量碳氮比分别为17.9和8.4, 但实验期间MBC、MBN和微生物生物量碳氮比与对照没有差异。PLFA分析的结果显示细菌在微生物群落中占主导, 而丛枝菌根真菌含量最少, 增温处理并没有改变不同类群的微生物生物量以及群落结构。进一步的分析显示, 土壤温度和含水量是调控土壤微生物群落变异的主要因子, 并且增温导致的微生物生物量碳的变化量分别与土壤温度和含水量的变化量呈显著正相关关系。以上结果表明, 由于受水分的限制, 短期增温对紫花针茅草原土壤微生物群落没有显著影响。
王军, 王冠钦, 李飞, 彭云峰, 杨贵彪, 郁建春, 周国英, 杨元合. 短期增温对紫花针茅草原土壤微生物群落的影响. 植物生态学报, 2018, 42(1): 116-125. DOI: 10.17521/cjpe.2017.0297
WANG Jun, WANG Guan-Qin, LI Fei, PENG Yun-Feng, YANG Gui-Biao, YU Jian-Chun, ZHOU Guo-Ying, YANG Yuan-He. Effects of short-term experimental warming on soil microbes in a typical alpine steppe. Chinese Journal of Plant Ecology, 2018, 42(1): 116-125. DOI: 10.17521/cjpe.2017.0297
土壤因子 Soil factors | 2015年 | 2016年 | |||
---|---|---|---|---|---|
对照 Control | 增温 Warming | 对照 Control | 增温 Warming | ||
土壤温度 Soil temperature (℃) | 12.80 ± 0.30 | 14.40 ± 0.20** | 13.90 ± 0.20 | 15.40 ± 0.30** | |
土壤含水量(体积分数) Soil moisture (volume fraction) | 13.20 ± 1.80 | 9.80 ± 1.10** | 15.60 ± 1.80 | 13.30 ± 1.20* | |
有机碳含量 Soil organic carbon content (%) | 3.20 ± 0.20 | 3.20 ± 0.20 | 3.30 ± 0.10 | 3.32 ± 0.10 | |
总碳含量 Total carbon content (%) | 4.50 ± 0.20 | 4.40 ± 0.20 | 4.20 ± 0.10 | 4.50 ± 0.10 | |
全氮含量 Total nitrogen content (%) | 0.38 ± 0.02 | 0.38 ± 0.02 | 0.38 ± 0.01 | 0.38 ± 0.01 | |
碳氮比 | 8.50 ± 0.20 | 8.60 ± 0.20 | 8.70 ± 0.20 | 8.80 ± 0.20 | |
归一化植被指数 Normalized difference vegetation index | 0.27 ± 0.01 | 0.26 ± 0.01 | 0.18 ± 0.02 | 0.19 ± 0.02 |
表1 短期增温对土壤理化性质及地上植被的影响
Table 1 Short-term warming effects on soil physicochemical properties and standing vegetation
土壤因子 Soil factors | 2015年 | 2016年 | |||
---|---|---|---|---|---|
对照 Control | 增温 Warming | 对照 Control | 增温 Warming | ||
土壤温度 Soil temperature (℃) | 12.80 ± 0.30 | 14.40 ± 0.20** | 13.90 ± 0.20 | 15.40 ± 0.30** | |
土壤含水量(体积分数) Soil moisture (volume fraction) | 13.20 ± 1.80 | 9.80 ± 1.10** | 15.60 ± 1.80 | 13.30 ± 1.20* | |
有机碳含量 Soil organic carbon content (%) | 3.20 ± 0.20 | 3.20 ± 0.20 | 3.30 ± 0.10 | 3.32 ± 0.10 | |
总碳含量 Total carbon content (%) | 4.50 ± 0.20 | 4.40 ± 0.20 | 4.20 ± 0.10 | 4.50 ± 0.10 | |
全氮含量 Total nitrogen content (%) | 0.38 ± 0.02 | 0.38 ± 0.02 | 0.38 ± 0.01 | 0.38 ± 0.01 | |
碳氮比 | 8.50 ± 0.20 | 8.60 ± 0.20 | 8.70 ± 0.20 | 8.80 ± 0.20 | |
归一化植被指数 Normalized difference vegetation index | 0.27 ± 0.01 | 0.26 ± 0.01 | 0.18 ± 0.02 | 0.19 ± 0.02 |
图1 2015(A)和2016年(B)生长季(8月)对照与增温处理下的土壤微生物生物量碳(MBC)、氮(MBN)、微生物生物量碳氮比(C:N)及MBC与MBN之间的关系(平均值±标准误差)。灰色柱条和圆圈为增温处理; 白色柱条和圆圈为对照处理。
Fig. 1 Microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial biomass C:N under control and warming treatment during the growing season (August) in 2015 (A) and 2016 (B), as well as the relationships between MBC and MBN (mean ± SD). The gray bars and cycles represent warming treatments. The white bars and cycles represent control treatments.
图2 短期增温对不同土壤微生物类群的影响(平均值±标准误差)。A, 2015年。B, 2016年。Actinomycetes, 放线菌; AMF, 丛枝菌根真菌; Bacteria, 细菌; Fungi, 真菌; G+, 革兰氏阳性菌; G-, 革兰氏阴性菌; F/B, 真菌与细菌比值; G+/G-, 革兰氏阳性菌与阴性菌比值; S/M, 饱和脂肪酸与不饱和脂肪酸比值。
Fig. 2 Effects of short-term experimental warming on different soil microbial groups (mean ± SD). A, In 2015. B, In 2016. AMF, arbuscular mycorrhizal fungi; G+, gram-positive bacteria; G-, gram-negative bacteria; F/B, ratio of fungi and bacteria; G+/G-, ratio of gram-positive bacteria and gram-negative bacteria; S/M, ratio of saturated PLFAs and monosaturated PLFAs.
微生物群落 Microbial community | T | W | W × T |
---|---|---|---|
细菌 Bacteria | 159.90** | 0.11 | 4.30* |
革兰氏阳性菌 Gram-positive bacteria | 173.66** | 0.93 | 2.56 |
革兰氏阴性菌 Gram-negative bacteria | 67.70** | 0.00 | 2.50 |
丛枝菌根真菌 Arbuscular mycorrhizal fungi | 7.20* | 8.49* | 0.03 |
真菌 Fungi | 2.12 | 0.18 | 2.13 |
放线菌 Actinomycetes | 24.28** | 5.37* | 0.02 |
真菌细菌比 Fungi/Bacteria | 123.85** | 0.15 | 0.01 |
G+/G- Gram-positive bacteria/Gram-negative bacteria | 0.27 | 0.45 | 0.28 |
饱和与不饱和脂肪酸比 Saturated PLFAs / Monosaturated PLFAs | 7.13* | 2.24 | 0.86 |
磷脂脂肪酸总量 Total phospholipid fatty acids | 157.39** | 1.67 | 1.08 |
表2 基于双因素方差分析得到的短期增温(W)、取样时间(T)及其交互作用(W × T)对微生物群落的影响(F值)
Table 2 Results (F values) of two-way ANOVA on the effects of short-term warming (W), sampling date (T), and their interactions (W × T) on microbial community
微生物群落 Microbial community | T | W | W × T |
---|---|---|---|
细菌 Bacteria | 159.90** | 0.11 | 4.30* |
革兰氏阳性菌 Gram-positive bacteria | 173.66** | 0.93 | 2.56 |
革兰氏阴性菌 Gram-negative bacteria | 67.70** | 0.00 | 2.50 |
丛枝菌根真菌 Arbuscular mycorrhizal fungi | 7.20* | 8.49* | 0.03 |
真菌 Fungi | 2.12 | 0.18 | 2.13 |
放线菌 Actinomycetes | 24.28** | 5.37* | 0.02 |
真菌细菌比 Fungi/Bacteria | 123.85** | 0.15 | 0.01 |
G+/G- Gram-positive bacteria/Gram-negative bacteria | 0.27 | 0.45 | 0.28 |
饱和与不饱和脂肪酸比 Saturated PLFAs / Monosaturated PLFAs | 7.13* | 2.24 | 0.86 |
磷脂脂肪酸总量 Total phospholipid fatty acids | 157.39** | 1.67 | 1.08 |
图3 短期增温对土壤微生物群落结构的影响(平均值±标准误差)。A, 2015年。B, 2016年。
Fig. 3 Effects of short-term experimental warming on soil microbial community structure (mean ± SE). A, In 2015. B, In 2016.
图4 基于冗余分析得到的2015和2016年微生物群落与环境因子之间的关系。Actinomycetes, 放线菌; AMF, 丛枝菌根真菌; Bacteria, 细菌; Fungi, 真菌; G+, 革兰氏阳性菌; G-, 革兰氏阴性菌; F/B, 真菌与细菌比值; G+/G-, 革兰氏阳性菌与阴性菌比值; SM, 土壤含水量; ST, 土壤温度; TN, 全氮含量。
Fig. 4 Redundancy analysis of soil microbial community to soil environmental parameters. AMF, arbuscular mycorrhizal fungi; G+, gram-positive bacteria; G-, gram-negative bacteria; F/B, ratio of fungi and bacteria; G+/G-, ratio of gram-positive bacteria and gram-negative bacteria; SM, soil moisture; ST, soil temperature; TN, total nitrogen content.
图5 土壤微生物生物量碳变化量(增温-对照)与土壤温度的变化量(增温-对照, A)、土壤水分的变化量(增温-对照, B)之间的关系及短期增温对土壤温度和土壤含水量的影响。
Fig. 5 Relationships among warming-induced changes (warming-control) in microbial biomass carbon, soil temperature (A) and soil moisture (B), and the effects of short-term warming on soil temperature and moisture.
[1] |
Birgander J, Rousk J, Olsson PA ( 2017). Warmer winters increase the rhizosphere carbon flow to mycorrhizal fungi more than to other microorganisms in a temperate grassland. Global Change Biology, 23, 5372-5382.
DOI URL PMID |
[2] |
Bossio DA, Scow KM, Gunapala N, Graham KJ ( 1998). Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial Ecology, 36, 1-12.
DOI URL PMID |
[3] |
Brockett BFT, Prescott CE, Grayston SJ ( 2012). Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogelimatic zones in western Canada. Soil Biology & Biochemistry, 44, 9-20.
DOI URL |
[4] |
Brookes PC, Landman A, Pruden G, Jenkinson DS ( 1985). Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837-842.
DOI URL |
[5] |
Chen H, Zhu Q, Peng CH, Wu N, Wang YF, Fang XQ, Gao YH, Zhu D, Yang G, Tian JQ, Kang XM, Piao SL, Ouyang H, Xiang WH, Luo ZB, Jiang H, Song XZ, Zhang Y, Yu GR, Zhao XQ, Gong P, Yao TD, Wu JH ( 2013). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 19, 2940-2955.
DOI URL PMID |
[6] |
Chen YL, Ding JZ, Peng YF, Li F, Yang GB, Liu L, Qin SQ, Fang K, Yang YH ( 2016). Patterns and drivers of soil microbial communities in Tibetan alpine and global terrestrial ecosystems. Journal of Biogeography, 43, 2027-2039.
DOI URL |
[7] |
Cheng L, Zhang NF, Yuan MT, Xiao J, Qin YJ, Deng Y, Tu QC, Xue K, Van Nostrand JD, Wu LY, He ZL, Zhou XH, Leigh MB, Konstantinidis KT, Schuur EA, Luo YQ, Tiedje JM, Zhou JZ ( 2017). Warming enhances old organic carbon decomposition through altering functional microbial communities. The ISME Journal, 11, 1825-1835.
DOI URL PMID |
[8] |
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK ( 2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541. DOI: 10.1038/ncomms10541.
DOI URL PMID |
[9] |
Ding JZ, Li F, Yang GB, Chen LY, Zhang B, Liu L, Fang K, Qin SQ, Chen YL, Peng YF, Ji C, He H, Smith P, Yang YH ( 2016). The permafrost carbon inventory on the Tibetan Plateau: A new evaluation using deep sediment cores. Global Change Biology, 22, 2688-2701.
DOI URL PMID |
[10] | Duan MJ, Gao QZ, Wan YF, Li Y, Guo YQ, Danjiu LB, Luosang JS ( 2010). Effect of grazing on community characteristics and species diversity of Stipa purpurea alpine grassland in Northern Tibet. Acta Ecologica Sinica, 30, 3892-3900. |
[ 段敏杰, 高清竹, 万运帆, 李玉娥, 郭亚奇, 旦久罗布, 洛桑加措 ( 2010). 放牧对藏北紫花针茅高寒草原植物群落特征的影响. 生态学报, 30, 3892-3900.] | |
[11] |
Friedlingstein P ( 2015). Carbon cycle feedbacks and future climate change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, DOI: 10.1098/rsta.2014.0421.
DOI URL PMID |
[12] |
Frosteg?rd A, B??th E ( 1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology & Fertility of Soils, 22, 59-65.
DOI |
[13] |
Frosteg?rd A, B??th E, Tunlio A ( 1993). Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology & Biochemistry, 25, 723-730.
DOI URL |
[14] |
Frosteg?rd A, Tunlid A, B??th E ( 2011). Use and misuse of PLFA measurements in soils. Soil Biology & Biochemistry, 43, 1621-1625.
DOI URL |
[15] |
Griffiths BS, Philippot L ( 2013). Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews, 37, 112-129.
DOI URL PMID |
[16] |
He JZ, Li J, Zheng YM ( 2013). Thoughts on the microbial diversity-stability relationship in soil ecosystems. Biodiversity Science, 21, 411-420.
DOI URL |
[ 贺纪正, 李晶, 郑袁明 ( 2013). 土壤生态系统微生物多样性-稳定性关系的思考. 生物多样性, 21, 411-420.]
DOI URL |
|
[17] |
Hicks PCE, Castanha C, Porras R, Torn MS ( 2017). The whole-soil carbon flux in response to warming. Science, 355, 1420-1423.
DOI URL PMID |
[18] |
Hopkins FM, Filley TR, Gleixner G, Lange M, Top SM, Trumbore SE ( 2014). Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses. Soil Biology & Biochemistry, 76, 57-69.
DOI URL |
[19] | IPCC (Intergovernmental Panel on Climate Change) ( 2013). Climate Change 2013: the Scientific Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[20] | Kroppenstedt RM ( 1985). Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin D eds. Chemical Methods in Bacterial Systematics. Academic Press, London, UK. |
[21] |
Lehmann J, Kleber M ( 2015). The contentious nature of soil organic matter. Nature, 528, 60.
DOI URL PMID |
[22] | Li SQ, Ren SJ, Li SX ( 2004). Seasonal change of soil microbial biomass and the relationship between soil microbial biomass and soil moisture and temperature. Plant Nutrition and Fertilizer Science, 10, 18-23. |
[ 李世清, 任书杰, 李生秀 ( 2004). 土壤微生物体氮的季节性变化及其与土壤水分和温度的关系. 植物营养与肥料学报, 10, 18-23.] | |
[23] |
Liu XD, Chen BD ( 2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20, 1729-1742.
DOI URL |
[24] |
Luo YQ, Sherry R, Zhou XH, Wan SQ ( 2009). Terrestrial carbon-cycle feedback to climate warming: Experimental evidence on plant regulation and impacts of biofuel feedstock harvest. GCB Bioenergy, 1, 62-74.
DOI URL |
[25] |
Margesin R, Jud M, Tscherko D, Schinner F ( 2009). Microbial communities and activities in alpine and subalpine soils. FEMS Microbiology Ecology, 67, 208-218.
DOI URL PMID |
[26] | Miller DJ ( 2005). The Tibetan Steppe. In: Suttie JM, Reynolds SG, Batello C eds. Grasslands of the World. UN Food and Agriculture Organization, Rome. |
[27] |
Moore-Kucera J, Dick RP ( 2008). PLFA profiling of microbial community structure and seasonal shifts in soils of a douglas-fir chronosequence. Microbial Ecology, 55, 500-511.
DOI URL |
[28] |
Nazaries L, Tottey W, Robinson L, Khachane A, Abu Al-Soud W, Sorensen S, Singh BK ( 2015). Shifts in the microbial community structure explain the response of soil respiration to land-use change but not to climate warming. Soil Biology & Biochemistry, 89, 123-134.
DOI URL |
[29] |
Olsson PA ( 1999). Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiology Ecology, 29, 303-310.
DOI URL |
[30] |
Pailler A, Vennetier M, Torre F, Ripert C, Guiral D ( 2014). Forest soil microbial functional patterns and response to a drought and warming event: Key role of climate-plant-soil interactions at a regional scale. Soil Biology & Biochemistry, 70, 1-4.
DOI URL |
[31] |
Peng YF, Li F, Zhou GY, Fang K, Zhang DY, Li CB, Yang GB, Wang GQ, Wang J, Yang YH ( 2017). Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe. Global Change Biology, 23, 5249-5259.
DOI URL PMID |
[32] |
Rinnan R, Michelsen A, Baath E, Jonasson S ( 2007). Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Global Change Biology, 13, 28-39.
DOI URL |
[33] |
Romero-Olivares AL, Allison SD, Treseder KK ( 2017). Soil microbes and their response to experimental warming over time: A meta-analysis of field studies. Soil Biology & Biochemistry, 107, 32-40.
DOI URL |
[34] |
Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE ( 2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56.
DOI URL PMID |
[35] |
Sheik CS, Beasley WH, Elshahed MS, Zhou XH, Luo YQ, Krumholz LR ( 2011). Effect of warming and drought on grassland microbial communities. The ISME Journal, 5, 1692-1700.
DOI URL PMID |
[36] | Shen JP, He JZ ( 2011). Responses of microbes-mediated carbon and nitrogen cycles to global climate change. Acta Ecologica Sinica, 31, 2957-2967. |
[ 沈菊培, 贺纪正 ( 2011). 微生物介导的碳氮循环过程对全球气候变化的响应. 生态学报, 31, 2957-2967.] | |
[37] |
Smith P, Fang C ( 2010). Carbon cycle: A warm response by soils. Nature, 464, 499-500.
DOI URL PMID |
[38] |
Tischer A, Potthast K, Hamer U ( 2014). Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia, 175, 375-393.
DOI URL PMID |
[39] |
Vance ED, Brookes PC, Jenkinson DS ( 1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707.
DOI URL |
[40] |
Wang WL, Kong WD, Zeng H ( 2015). A meta-analysis of responses of soil microbes to warming. Journal of Agro-Environment Science, 34, 2169-2175.
DOI URL |
[ 王文立, 孔维栋, 曾辉 ( 2015). 土壤微生物对增温响应的Meta分析. 农业环境科学学报, 34, 2169-2175.]
DOI URL |
|
[41] |
Weedon JT, Kowalchuk GA, Aerts R, Hal VJ, Logtestijn VR, Ta? N, R?ling WFM, Bodegom VPM ( 2012). Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Global Change Biology, 18, 138-150.
DOI URL |
[42] |
Wolf S, Keenan TF, Fisher JB, Baldocchi DD, Desai AR, Richardson AD, Scott RL, Law BE, Litvak ME, Brunsell NA ( 2016). Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proceedings of the National Academy of Sciences of the United States of America, 113, 5880-5885.
DOI URL PMID |
[43] | Wu JS, Lin QM, Huang QY, Xiao HA ( 2006). Soil Microbial Biomass—Methods and Application. China Meteorological Press, Beijing. |
[ 吴金水, 林启美, 黄巧云, 肖和艾 ( 2006). 土壤微生物生物量测定方法及其应用. 气象出版社, 北京.] | |
[44] |
Xue K, Yuan MT, Shi ZJ, Qin YJ, Deng Y, Cheng L, Wu LY, He ZL, Van Nostrand JD, Bracho R, Natali S, Schuur EAG, Luo CW, Konstantinidis KT, Wang Q, Cole JR, Tiedje JM, Luo YQ, Zhou JZ ( 2016 a). Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nature Climate Change, 6, 595-600.
DOI URL |
[45] |
Xue K, Yuan MT, Xie JP, Li DJ, Qin YJ, Hale L, Wu LY, Deng Y, He ZL, Van Nostrand JD ( 2016 b). Annual removal of aboveground plant biomass alters soil microbial responses to warming. mBio, 7. e00976-16, DOI: 10.1128/ mBio.00976-16.
DOI URL PMID |
[46] | Yang L, Chen YM, He RL, Deng CC, Liu JW, Liu Y ( 2016). Responses of soil microbial community structure and function to simulated warming in alpine forest. Chinese Journal of Applied Ecology, 27, 2855-2863. |
[ 杨林, 陈亚梅, 和润莲, 邓长春, 刘军伟, 刘洋 ( 2016). 高山森林土壤微生物群落结构和功能对模拟增温的响应. 应用生态学报, 27, 2855-2863.] | |
[47] |
Yang YQ, Li XL, Kong XX, Ma L, Hu XY, Yang YP ( 2015). Transcriptome analysis reveals diversified adaptation of Stipa purpurea along a drought gradient on the Tibetan Plateau. Functional & Integrative Genomics, 15, 295-307.
DOI URL PMID |
[48] |
Zeglin LH, Bottomley PJ, Jumpponen A, Rice CW, Arango M, Lindsley A, Mcgowan A, Mfombep P, Myrold DD ( 2013). Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales. Ecology, 94, 2334.
DOI URL PMID |
[49] |
Zhang NL, Wan SQ, Guo JX, Han GD, Gutknecht J, Schmid B, Yu L, Liu WX, Bi J, Wang Z, Ma KP ( 2015 a). Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands. Soil Biology & Biochemistry, 89, 12-23.
DOI URL |
[50] |
Zhang XZ, Shen ZX, Fu G ( 2015 b). A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Applied Soil Ecology, 87, 32-38.
DOI URL |
[51] |
Zhou JZ, Xue K, Xie JP, Deng Y, Wu LY, Cheng XL, Fei SF, Deng SP, He ZL, van Nostrand JD, Luo YQ ( 2011). Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change, 2, 106-110.
DOI URL |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[3] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[4] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[5] | 白雪, 李玉靖, 景秀清, 赵晓东, 畅莎莎, 荆韬羽, 刘晋汝, 赵鹏宇. 谷子及其根际土壤微生物群落对铬胁迫的响应机制[J]. 植物生态学报, 2023, 47(3): 418-433. |
[6] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[7] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[8] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[9] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[10] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[11] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[12] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[13] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[14] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[15] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19