植物生态学报 ›› 2018, Vol. 42 ›› Issue (1): 126-132.DOI: 10.17521/cjpe.2017.0111
所属专题: 青藏高原植物生态学:植物-土壤-微生物; 微生物生态学; 生物多样性
石国玺1,2,王文颖1,蒋胜竞3,成岗3,姚步青2,冯虎元3,*(),周华坤2,*(
)
出版日期:
2018-01-20
发布日期:
2018-01-18
通讯作者:
冯虎元,周华坤
基金资助:
SHI Guo-Xi1,2,WANG Wen-Ying1,JIANG Sheng-Jing3,CHENG Gang3,YAO Bu-Qing2,FENG Hu-Yuan3,*(),ZHOU Hua-Kun2,*(
)
Online:
2018-01-20
Published:
2018-01-18
Contact:
Hu-Yuan FENG,Hua-Kun ZHOU
Supported by:
摘要:
黄帚橐吾(Ligularia virgaurea)是高寒草甸退化的指示物种, 其种群扩张已严重影响了草地生态系统的经济服务功能, 但目前仍不明确土壤微生物是否参与了黄帚橐吾的种群扩张。该研究依托兰州大学高寒草甸试验站, 选择了4个不同密度的黄帚橐吾斑块, 分析了黄帚橐吾种群扩张对该草甸土壤微生物功能多样性的影响。结果显示: 黄帚橐吾种群扩张虽然提高了土壤微生物活性, 但降低了土壤速效氮浓度。各斑块间土壤微生物Shannon指数、碳源利用种类、均一度指数均无显著差异, 但高密度斑块的土壤微生物碳源利用结构与对照斑块有显著差异。表明黄帚橐吾分布地土壤微生物功能多样性的改变所引起的土壤氮素限制是黄帚橐吾种群数量急剧增加的机制之一。
石国玺, 王文颖, 蒋胜竞, 成岗, 姚步青, 冯虎元, 周华坤. 黄帚橐吾种群扩张对土壤理化特性与微生物功能多样性的影响. 植物生态学报, 2018, 42(1): 126-132. DOI: 10.17521/cjpe.2017.0111
SHI Guo-Xi, WANG Wen-Ying, JIANG Sheng-Jing, CHENG Gang, YAO Bu-Qing, FENG Hu-Yuan, ZHOU Hua-Kun. Effects of the spreading of Ligularia virgaurea on soil physicochemical property and microbial functional diversity. Chinese Journal of Plant Ecology, 2018, 42(1): 126-132. DOI: 10.17521/cjpe.2017.0111
斑块 Patch | 黄帚橐吾密度 Ligularia vigaurea density (Ind.·0.25 m-2) | 物种丰富度 Species richness | 总生物量 Total biomass (g·0.25 m-2) | 植物生物量比例 Proportion of plant biomass (%) | |||
---|---|---|---|---|---|---|---|
莎草类 Sedge | 豆科 Legume | 禾草类 Grass | 杂草类 Forbs | ||||
对照斑块 Control | 0 | 22.0 ± 1.1a | 72.2 ± 11.9b | 27.6 ± 2.9a | 0.2 ± 0.1 | 29.3 ± 6.3a | 42.8 ± 4.2b |
低密度斑块 LD | 8.8 ± 2.7c | 22.0 ± 1.2a | 86.7 ± 7.3b | 11.7 ± 5.2ab | 0.3 ± 0.1 | 17.9 ± 6.8b | 70.1 ± 5.2ab |
中密度斑块 MD | 26.2 ± 1.4b | 21.6 ± 1.3a | 120.9 ± 11.3ab | 10.5 ± 1.9b | 0.5 ± 0.1 | 15.1 ± 2.9b | 73.9 ± 6.9 a |
高密度斑块 HD | 49.0 ± 2.2a | 16.4 ± 0.9b | 146.7 ± 23.7a | 15.4 ± 3.7ab | 0.2 ± 0.1 | 2.6 ± 1.7b | 81.8 ± 8.1 a |
表1 不同斑块的植物特征的变化(平均值±标准误差, n = 5)
Table 1 Plant properties in different patches (mean ± SE, n = 5)
斑块 Patch | 黄帚橐吾密度 Ligularia vigaurea density (Ind.·0.25 m-2) | 物种丰富度 Species richness | 总生物量 Total biomass (g·0.25 m-2) | 植物生物量比例 Proportion of plant biomass (%) | |||
---|---|---|---|---|---|---|---|
莎草类 Sedge | 豆科 Legume | 禾草类 Grass | 杂草类 Forbs | ||||
对照斑块 Control | 0 | 22.0 ± 1.1a | 72.2 ± 11.9b | 27.6 ± 2.9a | 0.2 ± 0.1 | 29.3 ± 6.3a | 42.8 ± 4.2b |
低密度斑块 LD | 8.8 ± 2.7c | 22.0 ± 1.2a | 86.7 ± 7.3b | 11.7 ± 5.2ab | 0.3 ± 0.1 | 17.9 ± 6.8b | 70.1 ± 5.2ab |
中密度斑块 MD | 26.2 ± 1.4b | 21.6 ± 1.3a | 120.9 ± 11.3ab | 10.5 ± 1.9b | 0.5 ± 0.1 | 15.1 ± 2.9b | 73.9 ± 6.9 a |
高密度斑块 HD | 49.0 ± 2.2a | 16.4 ± 0.9b | 146.7 ± 23.7a | 15.4 ± 3.7ab | 0.2 ± 0.1 | 2.6 ± 1.7b | 81.8 ± 8.1 a |
斑块 Patch | 含水量 Soil moisture (%) | pH值 pH value | 含沙量 Sand content (%) | 速效氮 Available nitrogen (mg·kg-1) | 速效磷 Available Phosphorus (mg·kg-1) | 速效氮磷比 Available N/P | 总氮 Total nitrogen (%) | 有机碳 Organic carbon (%) |
---|---|---|---|---|---|---|---|---|
对照斑块 Control | 35.5 ± 2.1 | 6.3 ± 0.2 | 20.1 ± 1.1 | 25.6 ± 3.1ab | 4.3 ± 0.9 | 6.9 ± 1.52ab | 0.5 ± 0.1 | 3.3 ± 0.4 |
低密度斑块 LD | 39.2 ± 1.9 | 6.3 ± 0.2 | 19.1 ± 1.4 | 23.8 ± 1.2ab | 2.8 ± 0.1 | 8.7 ± 0.71ab | 0.5 ± 0.1 | 3.2 ± 0.1 |
中密度斑块 MD | 36.1 ± 1.2 | 6.1 ± 0.2 | 17.8 ± 1.0 | 34.7 ± 4.4a | 3.2 ± 0.4 | 11.2 ± 1.04a | 0.6 ± 0.1 | 3.7 ± 0.4 |
高密度斑块 HD | 41.3 ± 2.5 | 6.0 ± 0.2 | 17.5 ± 2.6 | 22.2 ± 1.6b | 3.9 ± 0.6 | 6.2 ± 1.11b | 0.6 ± 0.1 | 4.2 ± 0.5 |
表2 不同斑块的土壤理化性质(平均值±标准误差, n = 5)
Table 2 Soil characteristics in different patches (mean ± SE, n = 5)
斑块 Patch | 含水量 Soil moisture (%) | pH值 pH value | 含沙量 Sand content (%) | 速效氮 Available nitrogen (mg·kg-1) | 速效磷 Available Phosphorus (mg·kg-1) | 速效氮磷比 Available N/P | 总氮 Total nitrogen (%) | 有机碳 Organic carbon (%) |
---|---|---|---|---|---|---|---|---|
对照斑块 Control | 35.5 ± 2.1 | 6.3 ± 0.2 | 20.1 ± 1.1 | 25.6 ± 3.1ab | 4.3 ± 0.9 | 6.9 ± 1.52ab | 0.5 ± 0.1 | 3.3 ± 0.4 |
低密度斑块 LD | 39.2 ± 1.9 | 6.3 ± 0.2 | 19.1 ± 1.4 | 23.8 ± 1.2ab | 2.8 ± 0.1 | 8.7 ± 0.71ab | 0.5 ± 0.1 | 3.2 ± 0.1 |
中密度斑块 MD | 36.1 ± 1.2 | 6.1 ± 0.2 | 17.8 ± 1.0 | 34.7 ± 4.4a | 3.2 ± 0.4 | 11.2 ± 1.04a | 0.6 ± 0.1 | 3.7 ± 0.4 |
高密度斑块 HD | 41.3 ± 2.5 | 6.0 ± 0.2 | 17.5 ± 2.6 | 22.2 ± 1.6b | 3.9 ± 0.6 | 6.2 ± 1.11b | 0.6 ± 0.1 | 4.2 ± 0.5 |
图1 基于Bray-Curtis相异性指数, 黄帚橐吾根围土壤微生物碳源代谢结构的非度量多维尺度排序图(NMDS)。图上仅显示与土壤微生物碳源代谢结构显著相关的变量(p ≤ 0.05)。椭圆代表平行样品间的标准偏差。Control, 对照斑块; LD, 低密度斑块; MD, 中密度斑块; HD, 高密度斑块。AWCD,平均颜色变化率。
Fig. 1 Nonmetric multidimensional scaling (NMDS) ordination patterns of carbon resources utilization of soil microbial community lived in the rhizosphere of Ligularia virgaurea based on Bray-Curtis dissimilarity. Only some significant vectors (r2-values and p-values were shown on the right panels) at the 95% confidence level were displayed onto the NMDS ordination plots. Ellipses represent standard deviation among parallel samples. Control, control patch; LD, low density patch; MD, moderate density patch; HD, high density patch. AWCD, average well color development.
图2 黄帚橐吾密度、植物物种组成、植物生物量组成对土壤微生物碳源代谢结构变异的独立与组合效应。图中数据源于方差分解分析, 代表相应解释变量的解释力。
Fig. 2 Pure and shared effects of density of Ligularia virgaurea, plant species composition and plant biomass composition on the carbon resources utilization of soil microbial community. Numbers are derived from the variation partitioning analyses, and indicate the proportion of explained variations.
图3 黄帚橐吾密度与土壤微生物群落平均颜色变化率(AWCD) (A)、Shannon指数(H) (B)、碳源利用数(C)间的线性回归。
Fig. 3 Linear regression of density of Ligularia virgaurea versus average well color development (AWCD) (A), Shannon index (H) (B) and utilization number of carbon resources (C) of soil microbial community.
图4 植物物种组成对植物生物量组成, 黄帚橐吾密度、土壤碳氮比与土壤微生物平均颜色变化率(AWCD)的直接和间接影响。箭头上的数值表示路径系数(λ ≥ 0.05表示路径具有显著性)。GFI,拟合优度指数。
Fig. 4 Direct and indirect effects of plant species composition on density of Ligularia virgaurea, plant biomass composition, soil C/N ratio and average well color development (AWCD) of soil microbial community. The numbers above the arrows indicate path coefficients (λ ≥ 0.05 indicates significant pathway). GFI, goodness of fitted index.
[1] |
Callaway RM, Cipollini D, Barto K, Thelen GC, Hallett SG, Prati D, Stinson K, Klironomos J ( 2008). Novel weapons: Invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology, 89, 1043.
DOI URL |
[2] | Garland JL, Mills AL ( 1991). Classification and characterization of heterotrophicmicrobial communities on the basis of patterns of community-level sole carbon source utilization. Applied and Environmental Microbiology, 57, 2351-2359. |
[3] |
He YL, Wang MT, Du GZ ( 2007). Seed size effect on seedling growth under different light conditions in the clonal herb Ligularia virgaurea in Qinghai Tibet Plateau. Acta Ecologica Sinica, 27, 3091-3098.
DOI URL |
[ 何彦龙, 王满堂, 杜国祯 ( 2007). 不同光照处理下青藏高原克隆植物黄帚橐吾(Ligularia virgaurea)种子大小对其幼苗生长的影响. 生态学报, 27, 3091-3098.]
DOI URL |
|
[4] |
Konopka A, Oliver L, Turco RF ( 1998). The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microbial Ecology, 35, 103-115.
DOI URL PMID |
[5] |
Liu MX, Zhu KJ ( 2013). Characteristics of nitrogen and phosphorus stoichiometry of plants in different functional groups on alpine meadow in the eastern edge of Tibetan Plateau. Chinese Journal of Grassland, 35(2), 52-58.
DOI |
[ 刘旻霞, 朱柯嘉 ( 2013). 青藏高原东缘高寒草甸不同功能群植物氮磷化学计量特征研究. 中国草地学报, 35(2), 52-58.]
DOI |
|
[6] | Liu ZJ, Du GZ, Chen JK ( 2002). Size-dependent reproductive allocation of Ligularia virgaurea in different habitats. Acta Phytoecologica Sinica, 26, 44-50. |
[ 刘左军, 杜国祯, 陈家宽 ( 2002). 不同生境下黄帚橐吾(Ligularia virgaurea)个体大小依赖的繁殖分配. 植物生态学报, 26, 44-50.] | |
[7] |
Lu JZ, Qiu W, Chen JK, Li B ( 2005). Impact of invasive species on soil properties: Canadian goldenrod (Solidago canadensis) as a case study. Biodiversity Science, 13, 347-356.
DOI URL |
[ 陆建忠, 裘伟, 陈家宽, 李博 ( 2005). 入侵种加拿大一枝黄花对土壤特性的影响. 生物多样性, 13, 347-356.]
DOI URL |
|
[8] |
Mehlich A ( 1984). Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409-1416.
DOI URL |
[9] | Niu HB, Liu WX, Wan FH ( 2007). Invasive effects of Ageratina adenophora(Asteraceae) on soil microbial comm.unity and physical and chemical properties. Acta Ecologica Sinica, 27, 3051-3060. |
[ 牛红榜, 刘万学, 万方浩 ( 2007). 紫茎泽兰(Ageratina adenophora)入侵对土壤微生物群落和理化性质的影响. 生态学报, 27, 3051-3060.] | |
[10] | Oksanen J, Blanchet FG, Kindt R ( 2017). Vegan: Community ecology package. R Package Version 2.2-1. . Cite: 2017-07-17. |
[11] |
Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH ( 2013). Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11, 789-799.
DOI URL PMID |
[12] |
Quan GM, Dai TT, Zhang JE, Xu JL ( 2016). Impacts of Praxelis clematidea invasion on soil nutrient and microbiological characteristics. Chinese Journal of Ecology, 35, 2883-2889.
DOI URL |
[ 全国明, 代亭亭, 章家恩, 徐嘉琳 ( 2016). 假臭草入侵对土壤养分与微生物群落功能多样性的影响. 生态学杂志, 35, 2883-2889.]
DOI URL |
|
[13] | Shan BQ, Du GZ, Liu ZH ( 2000). Clonal growth of Ligularia virgaurea: Morphological response to nutrient variation. Acta Phytoecologica Sinica, 24, 46-51. |
[ 单宝庆, 杜国祯, 刘振恒 ( 2000). 不同养分条件下和不同生境类型中根茎草本黄帚橐吾的克隆生长. 植物生态学报, 24, 46-51.] | |
[14] |
Shi XM, Li XG, Wu RM, Yang YH, Long RJ ( 2011). Changes in soil biochemical properties associated with Ligularia virgaurea spreading in grazed alpine meadows. Plant and Soil, 347, 65-78.
DOI URL |
[15] | Sun B, Li JD, Wang GJ, Zhong RT, Li S ( 2016). Effects of exotic Ambrosia trifida L. on plant-soil microbial feedback in its invaded ecosystem. Ecology and Environmental Sciences, 25, 1174-1180. |
[ 孙备, 李建东, 王国骄, 钟日亭, 李姝 ( 2016). 三裂叶豚草对其入侵地植物-土壤微生物反馈作用的影响. 生态环境学报, 25, 1174-1180.] | |
[16] | Tai FJ, Zhu XZ, Han CX, Zhang C, Shao H ( 2016). Effects of aqueous extract of the invasive plant Xanthium italicum Moretti on soil microbial community, soil enzyme activity and soil nutrient. Ecological Science, 35, 71-78. |
[ 邰凤姣, 朱珣之, 韩彩霞, 张弛, 邵华 ( 2016). 外来入侵植物意大利苍耳对土壤微生物群落、土壤酶活性和土壤养分的影响. 生态科学, 35, 71-78.] | |
[17] |
Wan X, Huang Z, He Z, Yu M, Wang M, Davis MR, Yang YS ( 2015). Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant and Soil, 387, 103-116.
DOI URL |
[18] | Wang MT, Zhao ZG, Du GZ, He YL ( 2008). Effects of light on the growth and clonal reproduction of Ligularia virgaurea. Journal of Integrative Plant Biology, 50, 1015-1023. |
[19] |
Wu GL, Hu TM, Liu ZH ( 2010). Trade-off of sexual and asexual recruitment in a dominant weed Ligularia virgaurea Maxim. in alpine grasslands (China). Polish Journal of Ecology, 58, 81-86.
DOI |
[20] | Wu GL, Ren GH, Shi ZH ( 2011). Phytotoxic effects of a dominant weed Ligularia virgaurea on seed germination of Bromus inermis in an alpine meadow community. Plant Ecology and Evolution, 44, 275-280. |
[21] |
Xie TP, Du GZ, Zhang GF, Zhao ZG ( 2010). Effects of inflorescence position on seed production and seedling establishment in Ligularia virgaurea. Chinese Journal of Plant Ecology, 34, 418-426.
DOI URL |
[ 谢田朋, 杜国祯, 张格非, 赵志刚 ( 2010). 黄帚橐吾种子生产的花序位置效应及其对幼苗建植的影响. 植物生态学报, 34, 418-426.]
DOI URL |
|
[22] | Yang JM, Chen XL, Zhang MH, Dong P, Wen FX ( 2010). Morphological differentiation of seeds of the clonal herb Ligularia virgaurea in the eastern Qinghai-Tibet Plateau. Journal of Northwest A & F University (Natural Science Edition), 38(1), 60-65. |
[ 杨建美, 陈学林, 张慕华, 董平, 温发昕 ( 2010). 青藏高原东缘黄帚橐吾种子的形态分化研究. 西北农林科技大学学报(自然科学版), 38(1), 60-65.] | |
[23] | Yu XJ, Yu D, Lu ZJ, Ma KP ( 2005). A possible mechanism of plant invasion: Invasive plant influence the growth of indigenous species through changing soil microbial community of invasive land. Chinese Science Bulletin, 50, 896-903. |
[ 于兴军, 于丹, 卢志军, 马克平 ( 2005). 一个可能的植物入侵机制: 入侵种通过改变入侵地土壤微生物群落影响本地种的生长. 科学通报, 50, 896-903.] | |
[24] |
Zhou H, Zhao X, Tang Y, Gu S, Zhou L ( 2005). Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China. Grassland Science, 51, 191-203.
DOI URL |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[3] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[4] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[5] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[6] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[7] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[8] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[9] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[10] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[11] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[12] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[13] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[14] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[15] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19