植物生态学报 ›› 2009, Vol. 33 ›› Issue (4): 629-637.DOI: 10.3773/j.issn.1005-264x.2009.04.001
所属专题: 生物多样性
• 研究论文 • 下一篇
收稿日期:
2008-09-01
修回日期:
2009-01-13
出版日期:
2009-09-01
发布日期:
2009-07-30
通讯作者:
张崇邦
作者简介:
*(llhzcb@163.com)基金资助:
ZHANG Chong-Bang(), WANG Jiang, KE Shi-Xing, JIN Ze-Xin
Received:
2008-09-01
Revised:
2009-01-13
Online:
2009-09-01
Published:
2009-07-30
Contact:
ZHANG Chong-Bang
摘要:
选择尾矿砂裸地和4个五节芒(Miscanthus floridulus)定居地(RI、RII、RIII和RIV)为样地, 分别研究了五节芒定居对尾矿砂重金属形态转化和微生物功能参数的影响。结果表明: 五节芒自然定居显著地提高了尾矿砂碳酸盐结合态和硫化物-有机物结合态重金属比例(p<0.05), 降低了尾矿砂残渣态重金属的比例(p<0.05)。土壤微生物群落的纤维素分解作用、酚转化作用、固氮作用、氨化作用、硝化作用、有机磷转化作用、功能多样性、4类不同碳源(碳水化合(CH)、聚合物(PL)、胺类化合物(AM)和杂合物(ML))均随着五节芒自然定居显著提高(p<0.05)。而氨基酸(AA)的利用强度却显著下降(p<0.05)。典范相关分析(CCA)表明: 土壤微生物功能参数的总体变化与土壤碳酸盐结合态和硫化物-有机物结合态重金属的含量呈显著正相关, 与残渣态重金属含量呈显著负相关。该研究结果表明, 五节芒定居不仅促进了尾矿砂重金属朝着沉淀态和螯合态方面转化, 而且还显著地改善了尾矿砂微生物群落的功能发挥。因而, 五节芒在重金属矿业废弃地恢复实践中具有较大的应用潜力。
张崇邦, 王江, 柯世省, 金则新. 五节芒定居对尾矿砂重金属形态、微生物群落功能及多样性的影响. 植物生态学报, 2009, 33(4): 629-637. DOI: 10.3773/j.issn.1005-264x.2009.04.001
ZHANG Chong-Bang, WANG Jiang, KE Shi-Xing, JIN Ze-Xin. EFFECTS OF NATURAL INHABITATION BY MISCANTHUS FLORIDULUS ON HEAVY METAL SPECIATIONS AND FUNCTION AND DIVERSITY OF MICROBIAL COMMUNITY IN MINE TAILING SAND. Chinese Journal of Plant Ecology, 2009, 33(4): 629-637. DOI: 10.3773/j.issn.1005-264x.2009.04.001
理化特性 Physico-chemical properties | BG | RI | RII | RIII | RIV |
---|---|---|---|---|---|
有机碳 Organic carbon (g·kg-1 dw) | 8.18±0.12e | 12.85±0.03d | 18.67±0.05c | 24.57±0.43b | 45.52±0.32a |
全氮 Total nitrogen (g·kg-1 dw) | 0.08±0.01d | 0.11±0.03d | 0.14±0.04c | 0.26±0.09b | 0.50±0.04a |
全磷 Total phosphorus (g ·kg-1 dw) | 0.16±0.01d | 0.32±0.04c | 0.57±0.16b | 0.56±0.06b | 0.94±0.03a |
pH | 7.26±0.12a | 7.20±0.34a | 7.14±0.32a | 7.03±0.21a | 7.08±0.16a |
表1 土壤理化特性在5个样地中的变化(平均值±标准差, n = 3)
Table 1 Changes in soil physico-chemical properties across five sampling sites (mean±SD, n = 3)
理化特性 Physico-chemical properties | BG | RI | RII | RIII | RIV |
---|---|---|---|---|---|
有机碳 Organic carbon (g·kg-1 dw) | 8.18±0.12e | 12.85±0.03d | 18.67±0.05c | 24.57±0.43b | 45.52±0.32a |
全氮 Total nitrogen (g·kg-1 dw) | 0.08±0.01d | 0.11±0.03d | 0.14±0.04c | 0.26±0.09b | 0.50±0.04a |
全磷 Total phosphorus (g ·kg-1 dw) | 0.16±0.01d | 0.32±0.04c | 0.57±0.16b | 0.56±0.06b | 0.94±0.03a |
pH | 7.26±0.12a | 7.20±0.34a | 7.14±0.32a | 7.03±0.21a | 7.08±0.16a |
重金属 Heavy metals | BG | RI | RII | RIII | RIV |
---|---|---|---|---|---|
总Pb Total Pb | 2630.2±2.34a | 870.1±2.11b | 320.7±5.64c | 170.6±3.21d | 158.9±3.42e |
总Zn Total Zn | 4637.2±2.45a | 1366.2±4.51b | 1088.6±2.83c | 708.1±4.21d | 599.8±6.12e |
总Cu Total Cu | 91.3±5.34a | 37.3±5.21b | 30. 1±4.65c | 28.9±5.72d | 21.9±4.33e |
总Cd Total Cd | 31.7±4.23a | 9.1±3.89b | 6.5±1.01c | 5.06±0.98c | 3.4±0.69d |
表2 5个研究样地中的总重金属含量
Table 2 The total heavy metal contents in the five sampling sites (mg·kg-1 dw, n = 3)
重金属 Heavy metals | BG | RI | RII | RIII | RIV |
---|---|---|---|---|---|
总Pb Total Pb | 2630.2±2.34a | 870.1±2.11b | 320.7±5.64c | 170.6±3.21d | 158.9±3.42e |
总Zn Total Zn | 4637.2±2.45a | 1366.2±4.51b | 1088.6±2.83c | 708.1±4.21d | 599.8±6.12e |
总Cu Total Cu | 91.3±5.34a | 37.3±5.21b | 30. 1±4.65c | 28.9±5.72d | 21.9±4.33e |
总Cd Total Cd | 31.7±4.23a | 9.1±3.89b | 6.5±1.01c | 5.06±0.98c | 3.4±0.69d |
样地 Sampling sites | 纤维素分解作用 Cellulose decomposition (%) | 酚分解作用 Phenol decomposition (%) | 固氮作用 Nitrogen fixation (mg nitrogen·g-1dw) | 氨化作用 Ammonification (%) | 硝化作用 Nitrification (%) | 磷转化作用 Phosphorus decomposition (%) |
---|---|---|---|---|---|---|
BG | 0.03±0.003c | 1.21±0.11c | 0.06±0.00c | 6.26±2.87d | 2.87±2.03c | 10.39±2.12d |
RI | 0.04±0.05c | 1.79±0.24bc | 0.07±0.03c | 12.38±3.13c | 20.41±5.71b | 18.33±1.44c |
RII | 0.05±0.004b | 1.87±0.10b | 0.07±0.03c | 17.95±0.65b | 21.69±0.80b | 21.20±4.32bc |
RIII | 0.05±0.005ab | 1.97±0.21b | 0.19±0.12b | 17.71±4.38b | 24.13±4.22b | 25.39±3.92b |
RIV | 0.06±0.008a | 2.27±0.24a | 0.37±0.17a | 25.84±3.19a | 38.68±3.07a | 33.08±8.12a |
表3 土壤微生物群落的矿化作用在5个样地梯度中的变化(平均值±标准差, n = 3)
Table 3 Changes in mineralization of soil microbial community along five sampling sites (mean±SD, n = 3)
样地 Sampling sites | 纤维素分解作用 Cellulose decomposition (%) | 酚分解作用 Phenol decomposition (%) | 固氮作用 Nitrogen fixation (mg nitrogen·g-1dw) | 氨化作用 Ammonification (%) | 硝化作用 Nitrification (%) | 磷转化作用 Phosphorus decomposition (%) |
---|---|---|---|---|---|---|
BG | 0.03±0.003c | 1.21±0.11c | 0.06±0.00c | 6.26±2.87d | 2.87±2.03c | 10.39±2.12d |
RI | 0.04±0.05c | 1.79±0.24bc | 0.07±0.03c | 12.38±3.13c | 20.41±5.71b | 18.33±1.44c |
RII | 0.05±0.004b | 1.87±0.10b | 0.07±0.03c | 17.95±0.65b | 21.69±0.80b | 21.20±4.32bc |
RIII | 0.05±0.005ab | 1.97±0.21b | 0.19±0.12b | 17.71±4.38b | 24.13±4.22b | 25.39±3.92b |
RIV | 0.06±0.008a | 2.27±0.24a | 0.37±0.17a | 25.84±3.19a | 38.68±3.07a | 33.08±8.12a |
图2 5个样地中的土壤微生物群落对碳基质的平均利用强度(AWCD) (n = 3) BG、RI、RII、RIII、RIV: 见表1 See Table 1
Fig. 2 Average utilization (AWCD) of carbon substrates by soil-microbial communities in five sampling sites
图3 土壤微生物群落对6类碳源的平均利用在5个样地梯度中的变化(n = 3) CH: 碳水化合物Carbohydrates; CA: 羧酸Carboxylic acid; PL: 聚合物Polymers; AM: 胺类化合物Amines/amides; AA: 氨基酸Amino acid; ML: 杂合物Miscellaneous; BG、RI、RII、RIII、RIV: 同表1 See Table 1
Fig. 3 The average utilization of six carbon substrate groups by soil-microbial community across five sampling gradients (n = 3)
图4 土壤微生物群落功能多样性在5个样地梯度中的 变化(n = 3) 图注同表1 Notes see Table 1
Fig. 4 Changes in the functional diversity of soil-microbial community across five sampling sites (n = 3)
重金属形态 Heavy metal speciations | 微生物功能参数总体变化 Total changes of microbial functional parameters | |||
---|---|---|---|---|
R2 | Wilk’s λ | F | p | |
阳离子交换态 Positive ion exchangeable | 0.848 3 | 0.004 0 | 2.047 7 | 0.068 4 |
铁-锰氧化物结合态 Bound to Fe-Mn oxides | 0.858 0 | 0.032 8 | 0.894 4 | 0.614 3 |
碳酸盐结合态 Bound to carbonates | 0.986 6 | 0.001 5 | 6.128 9 | 0.000 4* |
硫化物-有机物结合态 Bound to OM and sulfide | 0.922 2 | 0.000 3 | 4.988 0 | 0.000 8* |
残渣态 Residual | 0.735 1 | 0.001 1 | 3.185 2 | 0.009 3* |
表4 土壤微生物功能参数与重金属形态的典范相关分析
Table 4 The canonical correlation analysis between soil microbial functional parameters and heavy metal speciations
重金属形态 Heavy metal speciations | 微生物功能参数总体变化 Total changes of microbial functional parameters | |||
---|---|---|---|---|
R2 | Wilk’s λ | F | p | |
阳离子交换态 Positive ion exchangeable | 0.848 3 | 0.004 0 | 2.047 7 | 0.068 4 |
铁-锰氧化物结合态 Bound to Fe-Mn oxides | 0.858 0 | 0.032 8 | 0.894 4 | 0.614 3 |
碳酸盐结合态 Bound to carbonates | 0.986 6 | 0.001 5 | 6.128 9 | 0.000 4* |
硫化物-有机物结合态 Bound to OM and sulfide | 0.922 2 | 0.000 3 | 4.988 0 | 0.000 8* |
残渣态 Residual | 0.735 1 | 0.001 1 | 3.185 2 | 0.009 3* |
[1] |
Abollino O, Aceto M, Malandrino M, Mentasti E, Sarzanini C, Petrella F (2002). Heavy metals in agricultural soil from Piedmont, Italy. Distribution, speciation and chemometric data treatment. Chemosphere, 49, 545-557.
DOI URL PMID |
[2] |
Anderson TH, Domsch KH (1989). Ratios of microbial biomass carbon to total carbon in arable soil. Soil Biology and Biochemistry, 21, 471-479.
DOI URL |
[3] | Baudoin E, Benizri E, Guckert A (2002). Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Applied Soil Ecology, 19, 135-145. |
[4] |
Boularbah A, Schwartz C, Bitton G, Aboudrar W, Ouhammou A, Morel JL (2006). Heavy metal contamination from mining sites in South Morocco. 2. Assessment of metal accumulation and toxicity in plants. Chemosphere, 63, 811-817.
DOI URL PMID |
[5] | Cao QH (曹秋华), Pu SP (普绍苹), Xu WH (徐卫红), Xiong ZT (熊治廷) (2006). Progress in research on speciation and bioavailability of heavy metals in rhizosphere. Guangzhou Environmental Sciences (广州环境科学), 21(3),1-4. (in Chinese with English abstract) |
[6] | Chen SL (陈守莉), Sun B (孙波), Wang PZ (王平祖), Zong LG (宗良纲) (2007). Chemical form distribution of heavy metals in polluted paddy soils and its influening factors. Soil (土壤), 39, 375-380. (in Chinese with English abstract) |
[7] | Ernst WHO (1996). Bilavailability of heavy melals and deconrarniation of soils by plants. Applied Geochemistry, 11, 163-167. |
[8] |
García G, Zanuzzi AL, Faz A (2005). Evaluation of heavy metal availability prior to an in situ soil phytoremediation program. Biodegradation, 16, 187-194.
DOI URL PMID |
[9] |
Garland JL, Mills AL (1991). Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon- source utilization. Applied and Environmental Microbiology, 57, 2351-2359.
DOI URL PMID |
[10] |
Hofman J, Dušek L, Klánová J, Bezchlebová J, Holoubek I (2004). Monitoring microbial biomass and respiration in different soils from the Czech Republic—A summary of results. Environment International, 30, 19-30.
DOI URL PMID |
[11] | Jenkinson DS (1988). The determination of microbial biomass carbon and nitrogen in soil. In: Wilson JR ed. Advances in Nitrogen Cycling in Agricultural Ecosystems. CAB International, Wallingford, UK, 368-386. |
[12] | Kao WY, Tsai TT, Chen WH (1998). A comparative study of Miscanthus foridulus (Labill) Warb and M. Transmorrisonensis Hayata: photosynthetic gas exchange, leaf characteristics and growth in controlled environments. Annual Botany, 81, 295-299. |
[13] | Kelly JJ, Häggblom MM, Tate RL (2003). Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biology and Fertility of Soils, 38, 65-71. |
[14] | Krupadam RJ, Sarin R, Anjaneyulu Y (2003). Distribution of trace metals and organic matter in the sediment of the Godavari estuary, East Coast of India. Water, Air and Soil Pollution, 150, 299-318. |
[15] | Krupadam RJ, Wate ASR (2007). Heavy metal binding fractions in the sediments of the Godavari estuary, East Coast of India. Environmental Model Assessment, 12, 145-155. |
[16] | Lindsay WL, Norvell WA (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of American Journal, 42, 421-428. |
[17] | Mummey DL, Stahl PD, Buyer JS (2002). Microbial biomarkers as an indicator of ecosystem recovery following surface mine reclamation. Applied Soil Ecology, 21, 251-259. |
[18] | Navas A, Lindhorfer H (2003). Geochemical speciation of heavy metals in semiarid soils of the central Ebro Valley (Spain). Environmental International, 29, 61-68. |
[19] | Peng KV, Li XD, Luo CL, Shen ZG (2006). Vegetation composition and heavy metal uptake by wild plants at three contaminated sites in Xiangxi Area, China. Journal of Environmental Science and Health Part A, 40, 65-76. |
[20] | Pennanen T (2001). Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH: a summary of the use of phospholipid fatty acids, Biolog® and3H-thymidine incorporation methods in field studies. Geoderma, 100, 91-126. |
[21] | Ren LM (任立民), Liu P (刘鹏), Zheng QE (郑启恩), Zhang XC (张新成), Cheng ZX (程正新) (2006). A survey of heavy-metal content of plants growing on the soil polluted by manganese mine in Daxin County, Guangxi. Subtropical Plant Sciences (亚热带植物科学), 35(3), 5-8. (in Chinese with English abstract) |
[22] | Scebba F, Arduini I, Ercoli L, Sebastianai L (2006). Cadmium effects on growth and antioxidant enzymes activites in Miscanthus sinensis. Bidogy of Plantarum, 50, 688-692. |
[23] | Shu WS (束文圣), Ye ZH (叶志鸿), Zhang ZQ (张志权), Huang MH (黄铭洪), Lan CY (蓝崇钰) (2003). Restoration of lead and zinc mine tailings in South China. Acta Ecologica Sinica (生态学报), 23, 1629-1639. (in Chinese with English abstract) |
[24] | Sun J (孙健), Tie BQ (铁柏清), Qin PF (秦普丰), Qing SX (青山勋), Luo R (罗荣) (2006). Investigation of contaminated soil and plants by heavy metals in Pb/Zn mining area. Journal of Plant and Resouces (植物资源与环境学报), 15(2), 63-67. (in Chinese with English abstract) |
[25] | Tessier A, Campbell PGC, Bisson M (1979). Sequential extraction procedure for speciation of particulate trace metals. Analytical Chemistry, 5, 844-851. |
[26] | Tian SN (田胜尼), Sun QY (孙庆业), Wang ZF (王铮峰), Peng SL (彭少鳞), Xia HP (夏汉平) (2005). Plant colonization on copper tailings and the change of the physio-chemistry properties of substrate in Tongling city, Anhui Province. Resources and Environment in the Yangtze Basin (长江流域资源与环境), 14(1), 88-93. (in Chinese with English abstract) |
[27] | Waldrop M, Balser T, Firestone M (2000). Linking microbial community composition to function in a tropical soil. Soil Biology and Biochemistry, 32, 1837-1846. |
[28] | Xian X (冼喜), Shao XH (邵孝侯) (1991). Effects of pH on chemical forms and plant availability of Cd, Zn, Pb in contaminated soil. Advances in Soil Science (土壤学进展), 19(3), 34-37. (in Chinese with English abstract) |
[29] | Xu GH (许光辉), Zheng HY (郑洪元) (1986). Handbook of Soil Microbiology Analysis Method (土壤微生物分析方法手册). Agricultural Press, Beijing, 234. (in Chinese) |
[30] | Ye ZH, Cheung KC, Wong MH (2001). Copper uptake in Typha latifolia as affected by iron and manganese plaque on the root surface. Canadian Journal of Botany, 79, 314-320. |
[31] | Yi DQ (衣德强), You LY (尤六亿), Fan QX (范庆霞) (2006). Comprehensive utilization of Meishan iron tailings. Mining and Metallurgical Engineering (矿冶工程), 26(2), 45-47. (in Chinese with English abstract) |
[32] | Zak JC, Willig MR, Moorhead DL, Wildman HG (1994). Functional diversity of microbial communities: a quantitative approach. Soil Biology and Biochemistry, 26, 1101-1108. |
[33] | Zhang CB (张崇邦), Yang JC (杨靖春), Guan ZJ (管致锦), Zu YG (祖元刚) (1995). Study on the action of multi- cological factors on microbial growth in the Leymus chinensis grassland in Northeast China and the IRM model. Acta Ecologica Sinica (生态学报), 15, 207-213. (in Chinese with English abstract) |
[34] | Zhou X (周兴), Song SQ (宋书巧), Wu H (吴欢) (2003). An investigation of plants on the tailings of abandoned Nonferrous mines in the Diaojiang basin of Guangxi. Tropical Geography (热带地理), 23, 226-230. (in Chinese with English abstract) |
[1] | 周婧, 李巧云, 肖亮, 蒋建雄, 易自力. 芒和五节芒在中国的潜在分布[J]. 植物生态学报, 2012, 36(6): 504-510. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19