植物生态学报 ›› 2009, Vol. 33 ›› Issue (4): 638-645.DOI: 10.3773/j.issn.1005-264x.2009.04.002
梁胜伟3, 胡新文2, 段瑞军1, 符少萍1, 郭建春1,*()
收稿日期:
2008-11-27
修回日期:
2009-03-16
出版日期:
2009-11-27
发布日期:
2009-07-30
通讯作者:
郭建春
作者简介:
*(jianchunguoh@163.com)基金资助:
LIANG Sheng-Wei3, HU Xin-Wen2, DUAN Rui-Jun1, FU Shao-Ping1, GUO Jian-Chun1,*()
Received:
2008-11-27
Revised:
2009-03-16
Online:
2009-11-27
Published:
2009-07-30
Contact:
GUO Jian-Chun
摘要:
报道了海马齿(Sesuvium portulacastrum)对重金属汞的耐性和吸附特性。 在10 μmol·L-1汞胁迫时, 海马齿中脯氨酸含量明显低于对照; 丙二醛(MDA)含量、根的电解质外渗率(Electrolyte leakage rate, ELR)无明显变化; 叶绿素含量增加; 植物生长良好, 形态、生长速率、鲜重和根的长度与对照无区别, 且有新的须根形成。结果表明: 低浓度汞对海马齿的生长发育起着促进作用。海马齿能大量吸附积累汞离子, 主要积累在根组织中。当培养液中汞浓度为50 μmol·L-1时, 海马齿根中汞含量最高可达到33.9 μg·g-1DW, 是相同处理下地上部分的70倍。培养液中汞浓度为10 μmol·L-1时, 植物并未受到伤害, 且能快速生长, 此时根部的汞含量可达到12.02 μg·g-1 DW。由此可见, 海马齿植物表现为很强的耐汞和吸收汞特性。
梁胜伟, 胡新文, 段瑞军, 符少萍, 郭建春. 海马齿对无机汞的耐性和吸附积累. 植物生态学报, 2009, 33(4): 638-645. DOI: 10.3773/j.issn.1005-264x.2009.04.002
LIANG Sheng-Wei, HU Xin-Wen, DUAN Rui-Jun, FU Shao-Ping, GUO Jian-Chun. MERCURY TOLERANCE AND ACCUMULATION IN THE HALOPHYTE SESUVIUM PORTULACASTRUM. Chinese Journal of Plant Ecology, 2009, 33(4): 638-645. DOI: 10.3773/j.issn.1005-264x.2009.04.002
图1 不同汞浓度对海马齿植株相对生长的影响 A: 植物茎段在不同汞浓度胁迫下的生长状态。1、2、3、4和5分别为植物生长在0、5、10、15、25和50 μmol·L-1汞离子的1/10 Hoagland营养液中的状态 The phenotypes of S. portulacastrum seedlings when cultured under Hg2+ stress. 1, 2, 3, 4 and 5 indicate the seedlings cultured at 0, 5, 10, 25 and 50 μmol·L-1 Hg2+, respectively B: 海马齿植物相对生长速率(3个重复实验的平均值) Related growth rate of S. portulacastrum plants (data are the means of three replicates) 相同字母表示处理间差异不显著(p<0.05) Means with the same letter are not significantly different at p<0.05
Fig. 1 The effect of Hg2+ stress on growth of Sesuvium portulacastrum
Hg2+ (μmol·L-1) | 鲜重 FW (g) | 干重 DW (g) | 根长 RL (cm) |
---|---|---|---|
0 | 2.62±0.48a | 0.21±0.02a | 10.2±0.2a |
5 | 2.61±0.32a | 0.21±0.02a | 9.5±0.4a |
10 | 2.39±0.24a | 0.21±0.02a | 8.6±2.2a |
25 | 2.34±0.24a | 0.24±0.03a | 8.4±0.6a |
50 | 2.38±0.63a | 0.23±0.06a | 8.2±1.2a |
表1 汞胁迫对海马齿生长的影响(平均值±标准误差)
Table 1 The effects of Hg2+ on growth of Sesuvium portulacastrum (mean±SE)
Hg2+ (μmol·L-1) | 鲜重 FW (g) | 干重 DW (g) | 根长 RL (cm) |
---|---|---|---|
0 | 2.62±0.48a | 0.21±0.02a | 10.2±0.2a |
5 | 2.61±0.32a | 0.21±0.02a | 9.5±0.4a |
10 | 2.39±0.24a | 0.21±0.02a | 8.6±2.2a |
25 | 2.34±0.24a | 0.24±0.03a | 8.4±0.6a |
50 | 2.38±0.63a | 0.23±0.06a | 8.2±1.2a |
图2 汞胁迫下海马齿植物叶片中叶绿素和脯氨酸的含量 相同字母表示处理间差异不显著(p<0.05)(3个重复实验的平均值) Means with the same letters are not significantly different at p<0.05 (data are the means of three replicates)
Fig. 2 Chlorophyll and proline contents in the leaves of Sesuvium portulacastrum under Hg2+ stress
图3 汞胁迫下海马齿植物根中电解质外渗率和丙二醛含量分析 注释同图2 Notes see Fig. 2
Fig. 3 The effects of Hg2+ stress on electrolyte leakage rate and malondialdehyde (MDA) content in Sesuvium portulacastrum roots
图4 汞胁迫对海马齿植物Hg2+、Na+、K+和Ca2+含量的影响 注释同图2 Notes see Fig. 2
Fig. 4 The effects of Hg2+ stress on the contents of Hg2+, Na+, K+, and Ca2+ in Sesuvium portulacastrum
[1] | Arnon DI, Hoagland DR (1940). Crop production in artificial solutions and in soils with special reference to factors affecting yields and absorption of inorganic nutrients. Soil Science, 50, 463-468. |
[2] |
Beauford W, Barber J, Barringer AR (1977). Uptake and distribution of mercury within higher plants. Physiologia Plantarum, 39, 261-265.
DOI URL |
[3] |
Bizily SP, Rugh H, Summers AO (1999). Phytoremediation of methylmercury pollution:merB expression in Ababidopsis thaliana confers resistance to organo- mercurials. Proceedings of the National Academy of Sciences of the United States of America, 96, 6808-6813.
DOI URL PMID |
[4] |
Browne CL, Fang SC (1983). Differential uptake of mercury vapor by gramineous C3 and C4 plants. Plant Physiology, 72, 1040-1042.
DOI URL PMID |
[5] |
Coquery M, Welbourn PM (1995). The relationship between metal concentration and organic matter in sediments and metal concentration in the aquatic macrophyte Eriocaulon septangulare. Water Research, 29, 2094-2102.
DOI URL |
[6] |
Ellis RW, Eslick L (1997). Variation and range of mercury uptake into plants at mercury-contaminated abandoned mine site. Environmental Contamination and Toxicology, 59, 763-769.
DOI URL |
[7] |
Ghnaya T, Nouairi I, Slama I, Messedi D, Grignon C, Abdelly C, Ghorbel MH (2005). Cadmium effects on growth and mineral nutrition of two halophytes:Sesuvium portulacastrum and Mesmbryanthemum crystallinum. Journal of Plant Physiology, 162, 1133-1140.
DOI URL PMID |
[8] |
Ghnaya T, Nouairi I, Slama I, Messedi D, Grignon C, Ghorbel MH, Abdelly C (2007). Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesmbryanthemum crystallinum: consequences on grwoth. Journal of Chemosphere, 67, 72-79.
DOI URL PMID |
[9] |
Godbold DL, Huttermann A (1988). Inhibition of photosynjournal and transpiration in relation to mercury-induced root damage in spruce seedlings. Physiologia Plantarum, 74, 270-275.
DOI URL |
[10] |
Hanson AD, Nelsen CE, Everson EH (1977). Evalution of free proline accumulation as an index of drought resistance using two contrasting barley cultivars. Crop Science, 17, 720-734.
DOI URL |
[11] | Heath SM, Southworth D, Dallura JA (1997). Localization of nickel in epidermal subsidiary cells of leaves of Thlaspi montanum var. siskiyouense (Brassicaceae) using enery-dispersive X-ray microanalysis. International Journal of Plant Sciences, 158, 184-188. |
[12] | Huang CG (黄长干), Qiu YX (邱业先) (2003). Research progress in phytoremediation of polluted environment by heavy metal. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition) (江西农业大学学报(自然科学版)), 25, 676-680. (in Chinese with English abstract) |
[13] |
Iglesia-Turino S, Febrero A, Jauregui O, Caldelas C, Araus JL, Bort J (2006). Detection and quantification of unbound phytochelatin 2 in plant extracts of Brassica napus grown with different levels of mercury. Plant Physiology, 142, 742-749.
DOI URL PMID |
[14] |
Lasat MM (2002). Phytoextraction of toxic metal: a review of biological mechanisms. Journal of Environmental Quality, 31, 109-120.
URL PMID |
[15] | Lin QF (林栖凤) (2004). Research on Halophyte (耐盐植物研究) 1st edn. Higher Education Press, Beijing, 27. (in Chinese) |
[16] | Mu B (母波), Han SH (韩善华), Zhang YH (张英慧), Zou Q (邹琴) (2007). Effect of Hg2+ on the function and celluar structure. Chinese Journal of Microecology (中国微生态学杂志), 19(1), 112-113. (in Chinese) |
[17] |
Schwesig D, Krebs O (2003). The role of ground vegetation in the uptake of mercury and methylmercury in a forest ecosystem. Plant and Soil, 253, 445-455.
DOI URL |
[18] | Shi Y (史宇), He YK (何玉科) (2003). Molecular mechanism for phytoremediation of heavy metal polluted environment. Journal of Plant Physiology and Molecular Biology (植物生理与分子生物学学报), 29, 267-274. (in Chinese with English abstract) |
[19] | Singh BR, Jeng AS (1993). Uptake of zinc, cadmium, mercury, lead, chromium and nickel by ryegrass grown in a sandy soil. Norwegian Journal of Agricultural Sciences (Norway), 7, 147-157. |
[20] |
Wang YD, Greger M (2004). Clonal differences in mercury tolerance, accumulation, and distribution in willow. Journal of Environmental Quality, 33, 1779-1785.
DOI URL PMID |
[21] |
Xiao Z, Sommar J, Lindqvist O, Gionleka E (1998). Atmopheric mercury deposition to grass in South Sweden. Science of Total Environment, 213, 85-94.
DOI URL |
[22] | Yang BH (杨保华), Guan CY (官春云), Chen JH (陈剑红) (2004). Study on concentration and tolerance of Callitriche palustris L. and Potamogeton pectinatus L. for Hg2+. Hunan Nonferrous Metals (湖南有色金属), 20(2), 36-39. (in Chinese with English abstract) |
[23] | Zang L (臧琳), Jiang DD (姜登东) (1999). Harm of mercury to human body and its prevention and cure. China Personal Protection Equipment(中国个体防护装备), 32(1), 36-37. (in Chinese) |
[24] | Zhang XL (张小兰), Shi GX (施国新), Xu N (徐楠), Zeng XM (曾晓敏), Zhou HW (周红卫 ) (2002). Effects of mercury and cadmium on some of physiological indicators of Chara. Journal of Nanjing Normal University (Natural Sciences Edition)(南京师大学报(自然科学版)), 25, 38-43. (in Chinese with English abstract) |
[25] | Zheng BS (郑炳松) (2006). Research Technique of Modern Plant Physiology and Biochemistry(现代植物生理生化研究技术) 1st edn. China Meteorological Press,Beijing.(in Chinese) |
[1] | 许泽海 赵燕东. 生长季五角枫茎干水分含量序列特征及其影响因素解译[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[4] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[5] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[6] | 汪晶晶, 王嘉浩, 黄致云, Vanessa Chiamaka OKECHUKW, 胡蝶, 祁珊珊, 戴志聪, 杜道林. 不同氮水平下内生固氮菌对入侵植物南美蟛蜞菊生长策略的影响[J]. 植物生态学报, 2023, 47(2): 195-205. |
[7] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[8] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[9] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[10] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[11] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[12] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[13] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[14] | 魏龙鑫, 耿燕, 崔可达, 乔雪涛, 岳庆敏, 范春雨, 张春雨, 赵秀海. 阔叶红松林不同林层和生长阶段树木生长对采伐强度的响应[J]. 植物生态学报, 2022, 46(6): 642-655. |
[15] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19