植物生态学报 ›› 2011, Vol. 35 ›› Issue (1): 91-99.DOI: 10.3724/SP.J.1258.2011.00091
收稿日期:
2010-06-17
接受日期:
2010-08-02
出版日期:
2011-06-17
发布日期:
2011-01-24
通讯作者:
尹春英
作者简介:
*E-mail: yincy@cib.ac.cnJIAO Juan-Yu1,2, YIN Chun-Ying2,*(), CHEN Ke1
Received:
2010-06-17
Accepted:
2010-08-02
Online:
2011-06-17
Published:
2011-01-24
Contact:
YIN Chun-Ying
摘要:
在盆栽半控制试验中, 采用两因素的随机区组设计, 在3个土壤水分梯度(分别为80%、50%和30%的田间持水量(FC))下研究了施氮肥和不施氮肥处理麻疯树(Jatropha curcas)幼苗的光合特性。比较了不同水分和氮素供应条件下麻疯树幼苗的光合-光响应和CO2响应曲线、PSII的最大光化学效率(Fv/Fm)、氮含量和光合色素含量之间的差异。结果表明: 1)施氮肥处理中, 随着土壤水分含量的增加, 叶片表观量子效率(AQY)、光补偿点、最大净光合速率、羧化效率、光呼吸速率、暗呼吸速率和叶片氮含量均呈现增加的趋势, 而且均在80% FC下最高。2)不施氮肥处理中, 随着土壤水分含量的增加, 麻疯树各光合参数均与施氮肥处理呈现相反的变化趋势。3)在30% FC下, 施氮肥处理和不施氮肥处理相比, 氮含量显著增加, AQY、Fv/Fm、光合色素含量无显著的变化, 其他各项指标均显著降低。这些结果表明, 水氮耦合效应对麻疯树光合特性有显著影响, 尤其是在80% FC下增施氮肥的效果最为明显。因此, 在土壤氮素含量不高的情况下, 麻疯树更适宜在较低的土壤水分下生长, 土壤水分较高反而不利于麻疯树的光合作用; 而如果增施氮肥, 麻疯树在土壤水分含量较高时生长更好。
焦娟玉, 尹春英, 陈珂. 土壤水、氮供应对麻疯树幼苗光合特性的影响. 植物生态学报, 2011, 35(1): 91-99. DOI: 10.3724/SP.J.1258.2011.00091
JIAO Juan-Yu, YIN Chun-Ying, CHEN Ke. Effects of soil water and nitrogen supply on the photosynthetic characteristics of Jatropha curcas seedlings. Chinese Journal of Plant Ecology, 2011, 35(1): 91-99. DOI: 10.3724/SP.J.1258.2011.00091
图1 土壤不同水、氮供应下麻疯树叶片的光合-光响应曲线。I、II、III分别为80%、50%和30%田间持水量; O、F分别为不施肥、施肥。
Fig. 1 Photosynthetic-light response curve of Jatropha curcas under different soil water and nitrogen supply. I, II, III were 80%, 50% and 30% of field water holding capacity (FC), respectively; O, F were without and with N-fertilization. PAR, photosynthetically available radiation; Pn, net photosynthetic rate.
水、氮处理 Water and nitrogen regime | 表观量子效率 AQY (mol·mol-1) | 光补偿点 LCP (μmol·m-2·s-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) | 最大净光合速率 Pmax (μmol·m-2·s-1) |
---|---|---|---|---|
IO | 0.030 ± 0.000d | 9.40 ± 1.77d | 0.28 ± 0.05e | 12.11 ± 0.28f |
IF | 0.043 ± 0.001a | 45.09 ± 1.30a | 1.94 ± 0.13a | 19.26 ± 0.11a |
IIO | 0.039 ± 0.001c | 11.85 ± 1.05d | 0.46 ± 0.11d | 12.77 ± 0.12e |
IIF | 0.041 ± 0.001ab | 20.54 ± 0.97c | 0.84 ± 0.10c | 14.60 ± 0.08c |
IIIO | 0.041 ± 0.001ab | 27.39 ± 0.62b | 1.12 ± 0.06b | 15.03 ± 0.08b |
IIIF | 0.042 ± 0.001ab | 18.29 ± 0.87c | 0.77 ± 0.09c | 14.09 ± 0.22d |
W | 0.000 | 0.000 | 0.000 | 0.000 |
F | 0.000 | 0.000 | 0.000 | 0.000 |
W × F | 0.000 | 0.000 | 0.000 | 0.000 |
表1 土壤不同水、氮供应对麻疯树叶片表观量子效率、光补偿点、暗呼吸速率和最大净光合速率的影响(平均值±标准偏差, n = 5)
Table 1 Effects of soil water and nitrogen supply on the apparent quantum yields (AQY), light compensation point (LCP), dark respiration rate (Rd) and the maximum net photosynthetic rate (Pmax) in Jatropha curcas (mean ± SD, n = 5)
水、氮处理 Water and nitrogen regime | 表观量子效率 AQY (mol·mol-1) | 光补偿点 LCP (μmol·m-2·s-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) | 最大净光合速率 Pmax (μmol·m-2·s-1) |
---|---|---|---|---|
IO | 0.030 ± 0.000d | 9.40 ± 1.77d | 0.28 ± 0.05e | 12.11 ± 0.28f |
IF | 0.043 ± 0.001a | 45.09 ± 1.30a | 1.94 ± 0.13a | 19.26 ± 0.11a |
IIO | 0.039 ± 0.001c | 11.85 ± 1.05d | 0.46 ± 0.11d | 12.77 ± 0.12e |
IIF | 0.041 ± 0.001ab | 20.54 ± 0.97c | 0.84 ± 0.10c | 14.60 ± 0.08c |
IIIO | 0.041 ± 0.001ab | 27.39 ± 0.62b | 1.12 ± 0.06b | 15.03 ± 0.08b |
IIIF | 0.042 ± 0.001ab | 18.29 ± 0.87c | 0.77 ± 0.09c | 14.09 ± 0.22d |
W | 0.000 | 0.000 | 0.000 | 0.000 |
F | 0.000 | 0.000 | 0.000 | 0.000 |
W × F | 0.000 | 0.000 | 0.000 | 0.000 |
水氮处理 Water and nitrogen regime | 羧化效率 CE (mol·mol-1) | 光呼吸速率 Rp (μmol·m-2·s-1) | CO2补偿点 CCP (μmol ·mol-1) |
---|---|---|---|
IO | 0.007 ± 0.001e | 0.61 ± 0.16c | 87.29 ± 1.57b |
IF | 0.050 ± 0.002a | 3.87 ± 0.21a | 77.46 ± 0.10b |
IIO | 0.011 ± 0.001d | 0.89 ± 0.19c | 80.64 ± 1.88b |
IIF | 0.040 ± 0.001b | 3.94 ± 0.15a | 98.60 ± 1.50a |
IIIO | 0.018 ± 0.001c | 1.84 ± 0.10b | 102.06 ± 0.96a |
IIIF | 0.009 ± 0.000de | 0.72 ± 0.04c | 80.44 ± 0.42b |
W | 0.000 | 0.000 | 0.000 |
F | 0.000 | 0.000 | 0.000 |
W × F | 0.000 | 0.000 | 0.000 |
表2 土壤不同水、氮供应对麻疯树羧化效率、光呼吸速率和CO2补偿点的影响(平均值±标准偏差, n = 5)
Table 2 Effects of different soil water and nitrogen supply on carboxylation efficiency (CE), photorespiration rate (Rp), CO2 compensation point (CCP) in Jatropha curcas (mean ± SD, n = 5)
水氮处理 Water and nitrogen regime | 羧化效率 CE (mol·mol-1) | 光呼吸速率 Rp (μmol·m-2·s-1) | CO2补偿点 CCP (μmol ·mol-1) |
---|---|---|---|
IO | 0.007 ± 0.001e | 0.61 ± 0.16c | 87.29 ± 1.57b |
IF | 0.050 ± 0.002a | 3.87 ± 0.21a | 77.46 ± 0.10b |
IIO | 0.011 ± 0.001d | 0.89 ± 0.19c | 80.64 ± 1.88b |
IIF | 0.040 ± 0.001b | 3.94 ± 0.15a | 98.60 ± 1.50a |
IIIO | 0.018 ± 0.001c | 1.84 ± 0.10b | 102.06 ± 0.96a |
IIIF | 0.009 ± 0.000de | 0.72 ± 0.04c | 80.44 ± 0.42b |
W | 0.000 | 0.000 | 0.000 |
F | 0.000 | 0.000 | 0.000 |
W × F | 0.000 | 0.000 | 0.000 |
图2 土壤不同水、氮供应对麻疯树叶片氮含量(A)和PSII的最大光化学效率(Fv/Fm) (B)的影响(平均值±标准偏差, n = 5)。不同字母表示LSD多重比较差异显著(p < 0.05)。I、II、III、O、F、W和W × F同表1。
Fig. 2 Effects of different soil water and nitrogen supply on leaf nitrogen contents (A) and PSII maximum quantum yield (Fv/Fm) (B) in Jatropha curcas (mean ± SD, n = 5). Values with deferent letter are significant difference at p < 0.05 level according to LSD multiple test. I, II, III, O, F, W and W × F see Table 1.
水氮处理 Water and nitrogen regime | 叶绿素a Chlorophyll a (ng·cm-2) | 叶绿素b Chlorophyll b (ng·cm-2) | 叶绿素a + b Chlorophyll a + b (ng·cm-2) | 类胡萝卜素 Carotenoid (ng·cm-2) |
---|---|---|---|---|
IO | 175.39 ± 14.14c | 40.70 ± 2.16d | 216.09 ± 16.23c | 41.55 ± 2.76c |
IF | 378.88 ± 9.07a | 96.38 ± 5.16b | 475.27 ± 14.07a | 86.27 ± 1.89a |
IIO | 258.24 ± 45.19b | 64.90 ± 12.02cd | 323.14 ± 57.14b | 61.79 ± 10.94b |
IIF | 400.50 ± 7.08a | 118.27 ± 6.35ab | 518.78 ± 13.41a | 92.23 ± 2.04a |
IIIO | 355.33 ± 16.76a | 93.73 ± 8.04bc | 449.06 ± 24.78a | 80.93 ± 4.25a |
IIIF | 400.18 ± 16.15a | 128.99 ± 16.32a | 529.18 ± 32.42a | 91.30 ± 3.64a |
W | 0.002 | 0.003 | 0.002 | 0.004 |
F | 0.000 | 0.000 | 0.000 | 0.000 |
W × F | 0.012 | 0.522 | 0.035 | 0.022 |
表3 土壤中不同水、氮供应对麻疯树叶片光合色素含量的影响(平均值±标准偏差, n = 5)
Table 3 Effects of different soil water and nitrogen supply on the photosynthesis pigments content in Jatropha curcas leaves (mean ± SD, n = 5)
水氮处理 Water and nitrogen regime | 叶绿素a Chlorophyll a (ng·cm-2) | 叶绿素b Chlorophyll b (ng·cm-2) | 叶绿素a + b Chlorophyll a + b (ng·cm-2) | 类胡萝卜素 Carotenoid (ng·cm-2) |
---|---|---|---|---|
IO | 175.39 ± 14.14c | 40.70 ± 2.16d | 216.09 ± 16.23c | 41.55 ± 2.76c |
IF | 378.88 ± 9.07a | 96.38 ± 5.16b | 475.27 ± 14.07a | 86.27 ± 1.89a |
IIO | 258.24 ± 45.19b | 64.90 ± 12.02cd | 323.14 ± 57.14b | 61.79 ± 10.94b |
IIF | 400.50 ± 7.08a | 118.27 ± 6.35ab | 518.78 ± 13.41a | 92.23 ± 2.04a |
IIIO | 355.33 ± 16.76a | 93.73 ± 8.04bc | 449.06 ± 24.78a | 80.93 ± 4.25a |
IIIF | 400.18 ± 16.15a | 128.99 ± 16.32a | 529.18 ± 32.42a | 91.30 ± 3.64a |
W | 0.002 | 0.003 | 0.002 | 0.004 |
F | 0.000 | 0.000 | 0.000 | 0.000 |
W × F | 0.012 | 0.522 | 0.035 | 0.022 |
[1] | Amy K, Veronica C, Neal B, Lena H, Tala A (2006). Ecophysiological responses of Schizachyrium scoparium to water and nitrogen manipulations. Great Plains Research, 16, 29-36. |
[2] | Bao SW (鲍思伟) (2001). Effects of water stress on the photosynthesis and output in Vicia faba L. leaves. Journal of Southwest University for Nationalities (Natural Science Edition) (西南民族学院学报(自然科学版)), 27, 446-449. (in Chinese with English abstract) |
[3] |
Behera SK, Panda RK (2009). Effect of fertilization and irrigation schedule on water and fertilizer solute transport for wheat crop in a sub-humid sub-tropical region. Agriculture, Ecosystems and Environment, 130, 141-155.
DOI URL |
[4] |
Björkman O, Demmig B (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170, 489-504.
URL PMID |
[5] | Cui ZF (崔志峰), Ai XZ (艾希珍), Zhang ZX (张振贤), Xing YX (邢禹贤), Chen LP (陈利平) (2000). Effect of temperature and photon flux density in autumn greenhouse on photosynthetic efficiency of some major vegetable crops. Acta Agriculturae Boreali-Occidentalis Sinica (西北农业学报), 9, 33-35, 62. (in Chinese with English abstract) |
[6] | Demmig-Adams B, Adams III WW, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996). Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum, 98, 253-264. |
[7] | Dordas CA, Sioulas C (2008). Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions. Industrial Crops and Products, 27, 75-85. |
[8] | Fredeen AL, Gamon JA, Field CB (1991). Responses of photosynthesis and carbohydrate-partitioning to limitations in nitrogen and water availability in field-grown sunflower. Plant, Cell & Environment, 14, 963-970. |
[9] |
Gastal F, Lemaire G (2002). N uptake and distribution in crops: an agronomical and ecophysiological perspective. Journal of Experimental Botany, 53, 789-799.
URL PMID |
[10] |
Gomes FP, Olive MA, Mielke MS, de Almeida AAF, Leite HG (2006). Photosynthetic irradiance-response in leaves of dwarf coconut plam ( Cocos nucifera L. ‘nana’, Arecaceae): comparison of three models. Scientia Horticulturae, 109, 101-105.
DOI URL |
[11] |
Hamerlynck EP, Huxman TE, McAuliffe JR, Smith SD (2004). Carbon isotope discrimination and foliar nutrient status of Larrea tridentata (creosote bush) in contrasting Mojave Desert soils. Oecologia, 138, 210-215.
URL PMID |
[12] | Heller J (1996). Physic Nut (Jatropha curcas L.). Promoting the Conservation and Use of Underutilized and Neglected Crops. International Plant Genetic Resources Institute, Rome. 66. |
[13] |
Herrick JD, Thomas RB (1999). Effects of CO2 enrichment on the photosynthetic light response of sun and shade of canopy sweetgum trees ( Liquidambar styraciflua) in a forest ecosystem. Tree Physiology, 19, 779-786.
DOI URL PMID |
[14] | Huang L (黄亮), Wu Y (吴莹), Zhang J (张经), Li W (李伟), Zhou JZ (周菊珍) (2003). Distribution of C, N, P and δ 13C in aquatic plants of some lakes in the middle yangtze valley . Acta Geoscientica Sinica (地球学报), 24, 515-518. (in Chinese with English abstract) |
[15] |
Inskeep WP, Bloom PR (1985). Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiology, 77, 483-485.
URL PMID |
[16] | Iqbal RM, Rao AR, Rasul E, Wahid A (1997). Mathematical models and response functions in photosynthesis: an exponential model. In: Pessarakli M ed. Handbook of Photosynthesis. Marcel Dekker Inc., New York, USA. 803-810. |
[17] | Jiao JY (焦娟玉), Chen K (陈珂), Yin CY (尹春英) (2010). Effects of soil water content on growth, physiological and biochemical characteristics of Jatropha curcas L. Acta Ecologica Sinica (生态学报), 30, 4460-4466. (in Chinese with English abstract) |
[18] | Jie YL (接玉玲), Yang HQ (杨洪强), Cui MG (崔明刚), Luo XS (罗新书) (2001). Relationship between soil water content and water use efficiency of apple leaves. Chinese Journal of Applied Ecology (应用生态学报), 12, 387-390. (in Chinese with English abstract) |
[19] | Karam F, Kabalan R, Breidi J, Rouphael Y, Oweis T (2009). Yield and water-production functions of two durum wheat cultivars grown under different irrigation and nitrogen regimes. Agricultural Water Management, 96, 603-615. |
[20] | Li Y (李扬), Huang JH (黄建辉) (2009). Photosynthetic physiological responses of Glycyrrhiza uralensis under different water and nutrient supplies in Kubuqi desert, China. Chinese Journal of Plant Ecology (植物生态学报), 33, 1112-1124. (in Chinese with English abstract) |
[21] | Luo CW (罗长维), Li K (李昆), Chen Y (陈友), Liu FY (刘方炎), Sun YY (孙永玉) (2008). Biological characteristics of flowering and fruiting of Jatropha curcas in Yuanjiang Savanna Valley. Journal of Northeast Forestry University (东北林业大学学报), 36, 7-10. (in Chinese with English abstract) |
[22] | Maes WH, Achten WMJ, Reubens B, Raes D, Samson R, Muys B (2009). Plant-water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress. Journal of Arid Environments, 73, 877-884. |
[23] |
Prueksakorn K, Gheewala SH, Malakul P, Bonnet S (2010). Energy analysis of Jatropha plantation systems for biodiesel production in Thailand. Energy for Sustainable Development, 14, 1-5.
DOI URL |
[24] |
Richardson AD, Berlyn GP (2002). Spectral reflectance and photosynthetic properties of Betula papyrifera (Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA. American Journal of Botany, 89, 88-94.
DOI URL PMID |
[25] | Sandhu KS, Arora VK, Chand R, Sandhu BS, Khera KL (2000). Optimizing time distribution of water supply and fertilizer nitrogen rates in relation to targeted wheat yields. Experimental Agriculture, 36, 115-125. |
[26] | Shi SB (师生波), Li HM (李惠梅), Wang XY (王学英), Yue XG (岳向国), Xu WH (徐文华), Chen GC (陈桂琛) (2006). Comparative studies of photosynthetic characteristics in typical plants of the Qinghai-Tibet plateau. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30, 40-46. (in Chinese with English abstract) |
[27] |
Silva EN, Ferreira-Silva SL, Fontenele Ade V, Ribeiro RV, Viégas RA, Silveira JA (2010). Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. Journal of Plant Physiology, 167, 1157-1164.
URL PMID |
[28] | Song QA (宋庆安), Tong FP (童方平), Yi AQ (易霭琴), Li G (李贵), Pi B (皮兵) (2008). Studies on physiological characteristics of photosynthetic of Vihurnum opulus L. under light stress. Chinese Agricultural Science Bulletin (中国农学通报), 24(5), 166-170. (in Chinese with English abstract) |
[29] | Tong FP (童方平), Xu YP (徐艳平), Song QA (宋庆安), Long YZ (龙应忠), Yi AQ (易霭琴), Li G (李贵) (2009). The variance rule of character parameters responding to light and CO2 of slash pine’s half-sib. Journal of Nanjing Forestry University (Natural Sciences Edition) (南京林业大学学报(自然科学版)), 33, 54-58. (in Chinese with English abstract) |
[30] | Wang Z (王忠) (2002). Plant Physiology (植物生理学). Chinese Agricultural Press, Beijing. 68. (in Chinese) |
[31] | Wei JQ (韦记青), Jiang SY (蒋水元), Tang H (唐辉), Jiang YS (蒋运生), Qi XX (漆小雪), Wang ML (王满莲) (2006). Photosynthetic and transpiration characteristics of Corydalis saxicola and its response to light intensity and concentration of CO2. Guihaia (广西植物), 26, 317-320. (in Chinese with English abstract) |
[32] |
Wellburn AR (1994). The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307-313.
DOI URL |
[33] |
Ye M, Li CY, Francis G, Makkar HPS (2009). Current situation and prospects of Jatropha curcas as a multipurpose tree in China. Agroforestry Systems, 76, 487-497.
DOI URL |
[34] | Yin CY, Pang XY, Chen K (2009). The effects of water, nutrient availability and their interaction on the growth, morphology and physiology of two poplar species. Environmental and Experimental Botany, 67, 196-203. |
[35] | Zhuang WH (庄文化), Wu PT (吴普特), Feng H (冯浩), Xu FL (徐福利), Li BF (李百凤), Ning RC (宁荣昌) (2008). Effects of super absorbent polyer of sodium polyacrylate used in soil on the growth and yield of winter wheat. Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 24, 37-41. (in Chinese with English abstract) |
[1] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[2] | 冼应男, 张瑛, 李宝珍, 罗沛, 肖润林, 吴金水. 绿狐尾藻光合色素组成及氮磷化学计量学特征对外源铵的响应[J]. 植物生态学报, 2022, 46(4): 451-460. |
[3] | 罗源林, 马文红, 张芯毓, 苏闯, 史亚博, 赵利清. 内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化[J]. 植物生态学报, 2022, 46(11): 1364-1375. |
[4] | 武运涛, 杨森, 王欣, 黄俊胜, 王斌, 刘卫星, 刘玲莉. 草地土壤有机质不同组分氮库对长期氮添加的响应[J]. 植物生态学报, 2021, 45(7): 790-798. |
[5] | 王银柳, 耿倩倩, 黄建辉, 王常慧, 李磊, 哈斯木其尔, 牛国祥. 氮肥和种植密度对达乌里胡枝子的生长与生物固氮的影响[J]. 植物生态学报, 2021, 45(1): 13-22. |
[6] | 于青含, 金光泽, 刘志理. 植株大小、枝龄和环境共同驱动红松枝性状的变异[J]. 植物生态学报, 2020, 44(9): 939-950. |
[7] | 宋小艳, 王根绪, 冉飞, 杨燕, 张莉, 肖瑶. 东北大兴安岭演替初期泰加林灌草层典型植物开花物候与生长对模拟暖干化气候的响应[J]. 植物生态学报, 2018, 42(5): 539-549. |
[8] | 张静, 刘耘华, 盛建东, 柴强, 李瑞霞, 赵丹. 新疆北部草地典型灌木的碳氮特征[J]. 植物生态学报, 2018, 42(3): 307-316. |
[9] | 李晋波, 姚楠, 赵英, 范庭, 张建国, 兰志龙, 易军, 司炳成. 不同放牧条件下锡林郭勒典型草原土壤水分分布特征及降水入渗估算[J]. 植物生态学报, 2018, 42(10): 1033-1042. |
[10] | 字洪标, 陈焱, 胡雷, 王长庭. 氮肥添加对川西北高寒草甸植物群落根系动态的影响[J]. 植物生态学报, 2018, 42(1): 38-49. |
[11] | 徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017, 41(7): 761-769. |
[12] | 颉洪涛, 虞木奎, 成向荣. 光照强度变化对5种耐阴植物氮磷养分含量、分配以及限制状况的影响[J]. 植物生态学报, 2017, 41(5): 559-569. |
[13] | 翟占伟, 龚吉蕊, 罗亲普, 潘琰, 宝音陶格涛, 徐沙, 刘敏, 杨丽丽. 氮添加对内蒙古温带草原羊草光合特性的影响[J]. 植物生态学报, 2017, 41(2): 196-208. |
[14] | 陈敏玲, 张兵伟, 任婷婷, 王姗姗, 陈世苹. 内蒙古半干旱草原土壤水分对降水格局变化的响应[J]. 植物生态学报, 2016, 40(7): 658-668. |
[15] | 司晓林, 王文银, 高小刚, 徐当会. 氮硅添加对高寒草甸垂穗披碱草叶片全氮含量及净光合速率的影响[J]. 植物生态学报, 2016, 40(12): 1238-1244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19