植物生态学报 ›› 2021, Vol. 45 ›› Issue (1): 13-22.DOI: 10.17521/cjpe.2020.0185
王银柳1,2, 耿倩倩1,2, 黄建辉1,2,*(), 王常慧1, 李磊1,2, 哈斯木其尔1,2, 牛国祥1,2
收稿日期:
2020-06-11
接受日期:
2020-11-30
出版日期:
2021-01-20
发布日期:
2021-02-07
通讯作者:
ORCID: 黄建辉: 0000-0002-4880-1208
基金资助:
WANG Yin-Liu1,2, GENG Qian-Qian1,2, HUANG Jian-Hui1,2,*(), WANG Chang-Hui1, LI Lei1,2, HASI Muqier1,2, NIU Guo-Xiang1,2
Received:
2020-06-11
Accepted:
2020-11-30
Online:
2021-01-20
Published:
2021-02-07
Contact:
HUANG Jian-Hui
Supported by:
摘要:
氮供给和种植密度是影响植物生长的两个重要因素。豆科植物因其生物固氮能力而在受到氮限制的生态系统中具有重要作用, 氮含量增加促进植物生长的同时也会抑制豆科植物的生物固氮能力, 种植密度会通过种内竞争影响豆科植物的生长和生物固氮能力, 然而少有研究关注氮肥添加和种植密度对豆科植物生长和生物固氮能力的影响。该研究以达乌里胡枝子(Lespedeza davurica)为研究对象, 通过温室盆栽实验, 探究氮肥和种植密度对其生长和生物固氮的影响。实验设置4个氮添加水平(0、5、10、20 g·m-2·a-1)和3种种植密度(1、3、6 Ind.·pot-1, 约32、96、192 Ind.·m-2)。结果发现: 1)施肥和密度增加均影响了达乌里胡枝子的生长。叶片碳(C)、氮(N)含量、净光合速率随施氮量增加而增加, 氮添加也促进了植物的生长, 当施氮量为10 g·m-2·a-1时植物产量达到最大。叶片C、N含量、净光合速率随种植密度增加而下降, 密度增加可以促进每盆的总生物量, 但对单个植株的生长有负效应。2)氮肥对根瘤形成有抑制作用, 但种植密度增加会缓解氮肥对生物固氮能力带来的“氮阻遏”。该实验条件下, 当施氮量为10 g·m-2·a-1, 种植密度为3 Ind.·pot-1, 或施氮量为5 g·m-2·a-1, 种植密度为6 Ind.·pot-1时, 能最大程度发挥“施氮增产”和种植密度缓解“氮阻遏”的作用。氮添加降低了达乌里胡枝子的根瘤生物量和对根瘤形成的投资(根瘤生物量占总生物量的比例), 从而抑制达乌里胡枝子的生物固氮。种植密度增加导致达乌里胡枝子因种内竞争增加而使资源获取受限, 从而增加对根瘤的投资和根瘤生物量来获得更多来自大气中的氮。3)结构方程结果显示, 氮肥和种植密度通过直接或间接作用, 解释了64%的达乌里胡枝子生物量变化和42%的根瘤生物量变化。上述结果表明合理优化豆科植物的施肥量和种植密度可能对人工草地种植以及退化草地恢复管理具有重要意义。
王银柳, 耿倩倩, 黄建辉, 王常慧, 李磊, 哈斯木其尔, 牛国祥. 氮肥和种植密度对达乌里胡枝子的生长与生物固氮的影响. 植物生态学报, 2021, 45(1): 13-22. DOI: 10.17521/cjpe.2020.0185
WANG Yin-Liu, GENG Qian-Qian, HUANG Jian-Hui, WANG Chang-Hui, LI Lei, HASI Muqier, NIU Guo-Xiang. Effects of nitrogen addition and planting density on the growth and biological nitrogen fixation of Lespedeza davurica. Chinese Journal of Plant Ecology, 2021, 45(1): 13-22. DOI: 10.17521/cjpe.2020.0185
处理 Treatment | 水平 Level | 株高 Height (cm) | 总生物量 Total biomass (g) | 总地上生物量 Total aboveground biomass (g) | 总地下生物量 Total belowground biomass (g) | 平均地上生物量 Average aboveground biomass (g·Ind.-1) | 平均地下生物量 Average belowground biomass (g·Ind.-1) | 根冠比 Root:shoot ratio | 叶片C含量 Leaf C concentration (%) |
---|---|---|---|---|---|---|---|---|---|
施氮 N addition (g·m-2·a-1) | 0 | 58.69 ± 2.14 ns | 11.79 ± 1.02 b | 8.94 ± 0.72 c | 2.84 ± 0.32 b | 3.61 ± 0.47 b | 1.06 ± 0.13 b | 0.31 ± 0.02 b | 45.26 ± 0.34 b |
5 | 58.49 ± 1.90 ns | 15.43 ± 1.02 a | 11.24 ± 0.64 bc | 4.20 ± 0.39 a | 4.93 ± 0.76 a | 1.67 ± 0.22 a | 0.36 ± 0.02 a | 45.99 ± 0.35 a | |
10 | 62.56 ± 2.43 ns | 15.76 ± 1.04 a | 11.99 ± 0.77 a | 3.76 ± 0.32 a | 5.20 ± 0.80 a | 1.60 ± 0.25 a | 0.31 ± 0.02 b | 45.98 ± 0.32 a | |
20 | 63.32 ± 2.61 ns | 15.37 ± 1.02 a | 11.52 ± 0.7 ab | 3.86 ± 0.33 a | 4.91 ± 0.67 a | 1.51 ± 0.17 a | 0.33 ± 0.01 ab | 45.95 ± 0.26 a | |
密度 Planting density (Ind.·pot-1) | 1 | 77.53 ± 4.43 a | 10.01 ± 0.62 b | 7.80 ± 0.45 b | 2.20 ± 0.19 b | 7.81 ± 0.45 a | 2.20 ± 0.19 a | 0.28 ± 0.01 b | 46.29 ± 0.09 a |
3 | 61.56 ± 1.60 b | 16.54 ± 0.62 a | 12.20 ± 0.46 a | 4.34 ± 0.19 a | 4.07 ± 0.15 b | 1.45 ± 0.06 b | 0.36 ± 0.01 a | 46.69 ± 0.24 a | |
6 | 57.53 ± 1.42 b | 17.50 ± 0.55 a | 12.94 ± 0.38 a | 4.56 ± 0.25 a | 2.16 ± 0.06 c | 0.76 ± 0.04 c | 0.35 ± 0.02 a | 44.41 ± 0.13 b | |
N × density | ** | *** | *** | *** | *** | *** | *** | ns |
表1 不同氮肥和种植密度处理下达乌里胡枝子的生长指标(平均值±标准误)
Table 1 Growth indexes of Lespedeza davurica under different levels of nitrogen addition and planting density treatments (mean ± SE)
处理 Treatment | 水平 Level | 株高 Height (cm) | 总生物量 Total biomass (g) | 总地上生物量 Total aboveground biomass (g) | 总地下生物量 Total belowground biomass (g) | 平均地上生物量 Average aboveground biomass (g·Ind.-1) | 平均地下生物量 Average belowground biomass (g·Ind.-1) | 根冠比 Root:shoot ratio | 叶片C含量 Leaf C concentration (%) |
---|---|---|---|---|---|---|---|---|---|
施氮 N addition (g·m-2·a-1) | 0 | 58.69 ± 2.14 ns | 11.79 ± 1.02 b | 8.94 ± 0.72 c | 2.84 ± 0.32 b | 3.61 ± 0.47 b | 1.06 ± 0.13 b | 0.31 ± 0.02 b | 45.26 ± 0.34 b |
5 | 58.49 ± 1.90 ns | 15.43 ± 1.02 a | 11.24 ± 0.64 bc | 4.20 ± 0.39 a | 4.93 ± 0.76 a | 1.67 ± 0.22 a | 0.36 ± 0.02 a | 45.99 ± 0.35 a | |
10 | 62.56 ± 2.43 ns | 15.76 ± 1.04 a | 11.99 ± 0.77 a | 3.76 ± 0.32 a | 5.20 ± 0.80 a | 1.60 ± 0.25 a | 0.31 ± 0.02 b | 45.98 ± 0.32 a | |
20 | 63.32 ± 2.61 ns | 15.37 ± 1.02 a | 11.52 ± 0.7 ab | 3.86 ± 0.33 a | 4.91 ± 0.67 a | 1.51 ± 0.17 a | 0.33 ± 0.01 ab | 45.95 ± 0.26 a | |
密度 Planting density (Ind.·pot-1) | 1 | 77.53 ± 4.43 a | 10.01 ± 0.62 b | 7.80 ± 0.45 b | 2.20 ± 0.19 b | 7.81 ± 0.45 a | 2.20 ± 0.19 a | 0.28 ± 0.01 b | 46.29 ± 0.09 a |
3 | 61.56 ± 1.60 b | 16.54 ± 0.62 a | 12.20 ± 0.46 a | 4.34 ± 0.19 a | 4.07 ± 0.15 b | 1.45 ± 0.06 b | 0.36 ± 0.01 a | 46.69 ± 0.24 a | |
6 | 57.53 ± 1.42 b | 17.50 ± 0.55 a | 12.94 ± 0.38 a | 4.56 ± 0.25 a | 2.16 ± 0.06 c | 0.76 ± 0.04 c | 0.35 ± 0.02 a | 44.41 ± 0.13 b | |
N × density | ** | *** | *** | *** | *** | *** | *** | ns |
图1 不同处理下达乌里胡枝子的叶片N含量(A)和净光合速率(B)的变化(平均值±标准误)。不同小写字母表示同一密度下不同施氮量间差异显著(p < 0.05), 不同大写字母表示不同密度下差异显著(p < 0.05)。ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 1 Changes in leaf nitrogen (N) concentration (A) and net photosynthetic rate (B) of Lespedeza davurica under different treatments (mean ± SE). Different lowercase letters indicate significant difference among N addition treatments under the same density at p < 0.05 level, while different uppercase letters indicate significant difference among density treatments at p < 0.05 level. ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图2 不同处理下达乌里胡枝子的相对邻株效应指数(平均值±标准误)。不同小写字母表示同一施氮量下不同密度下差异显著(p < 0.05)。ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 2 Relative neighbor effect index under different treatments (mean ± SE). Different lowercase letters indicate significant difference among density treatments under the same N addition rate at p < 0.05 level. ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图3 不同处理对根瘤生物量响应比(RR)(A)和根瘤投资(B)的影响(平均值±标准误)。图A中,虚线位置代表RR = 1, 如果误差线没有跨越虚线表示处理与对照存在显著差异(p < 0.05)。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 3 Responses of the nodule biomass response ratio (RR)(A) and investment to nodulation (B) under different treatments (mean ± SE). In Fig. A, response ratio values with error bars not overlapping RR = 1 (horizontal dotted line), indicate significant difference between treatment and control (p < 0.05). *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图4 氮肥和种植密度对达乌里胡枝子根瘤形成或生长的直接和间接效应。图中线条表示作用路径显著(p < 0.05), 线条粗细表示效应大小, 黑色表示正效应, 灰色表示负效应。R 2表示解释率。
Fig. 4 Direct and indirect impacts of N addition rate and planting density on the root nodulation and growth of Lespedeza davurica. Lines indicate a significant effect (p < 0.05). Line thickness indicates relative effect size. Black lines represent positive effects, while gray lines indicate negative effects. R 2 indicates variation that can be explained. Pn, net photosynthetic rate.
[1] |
Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands. Global Change Biology, 16,358-372.
DOI URL |
[2] |
Batterman SA, Wurzburger N, Hedin LO (2013). Nitrogen and phosphorus interact to control tropical symbiotic N 2fixation: a test in Inga punctata. Journal of Ecology, 101,1400-1408.
DOI URL |
[3] | Chen HW (2015). Regulatory Mechanism of Interspecific N Compensatory Utilization by Plant Density in Maize/Soybean Intercropping Systems. PhD dissertation, Gansu Agricultural University, Lanzhou. 40-49. |
[ 陈红卫 (2015). 玉米/大豆间作氮素补偿利用的密度调控机理. 博士学位论文, 甘肃农业大学, 兰州.40-49.] | |
[4] | Chen MJ, Li CL, Qi Y (1997). Studies on biological features of Lespedeza and its nutrient values. Natural Resources, 19(2),74-81. |
[ 陈默君, 李昌林, 祁永 (1997). 胡枝子生物学特性和营养价值研究. 自然资源, 19(2),74-81.] | |
[5] |
Cheng J, Cheng JM, Hu TM (2011). Distribution responses of Lespedeza davurica community on Loess Plateau to climate change. Chinese Journal of Applied Ecology, 22,35-40.
PMID |
[ 程杰, 程积民, 呼天明 (2011). 气候变化对黄土高原达乌里胡枝子种群分布格局的影响. 应用生态学报, 22,35-40.]
PMID |
|
[6] |
Chu CJ, Maestre FT, Xiao S, Weiner J, Wang YS, Duan ZH, Wang G (2008). Balance between facilitation and resource competition determines biomass-density relationships in plant populations. Ecology Letters, 11,1189-1197.
DOI URL |
[7] |
Craine JM, Tilman D, Wedin D, Reich P, Tjoelker M, Knops J (2002). Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Functional Ecology, 16,563-574.
DOI URL |
[8] |
Diao LW, Li P, Liu WX, Xu S, Qiao CL, Zeng H, Liu LL (2018). Response of plant biomass to nitrogen addition and precipitation increasing under different climate conditions and time scales in grassland. Chinese Journal of Plant Ecology, 42,818-830.
DOI URL PMID |
[ 刁励玮, 李平, 刘卫星, 徐姗, 乔春连, 曾辉, 刘玲莉 (2018). 草地生态系统生物量在不同气候及多时间尺度上对氮添加和增雨处理的响应. 植物生态学报, 42,818-830.]
DOI PMID |
|
[9] |
Donald CM (1951). Competition among pasture plants. I. Intraspecific competition among annual pasture plants. Australian Journal of Agricultural Research, 2,355-376.
DOI URL |
[10] | Drake DC (2011). Invasive legumes fix N 2 at high rates in riparian areas of an N-saturated, agricultural catchment. Journal of Ecology, 99,515-523. |
[11] |
Du MK, Gao Z, Li XX, Liao H (2020). Excess nitrate induces nodule greening and reduces transcript and protein expression levels of soybean leghaemoglobins. Annals of Botany, 126,61-72.
DOI URL |
[12] | Du RF (2012). The Response of Antioxidant Protection System of Lespedeza davurica to the Combined Stress of Drought and UV-B Radiation. Master degree dissertation, Northwest Agriculture & Forestry University, Yangling, Shaanxi.13-24. |
[ 杜润峰 (2012). 达乌里胡枝子抗氧化防御系统对干旱、UV-B辐射及复合胁迫的动态响应. 硕士学位论文, 西北农林科技大学, 陕西杨凌.13-24.] | |
[13] | Duan DP, Xu BC, Niu FR, Xu WZ (2012). Effects of water and phosphorus on chlorophyll fluorescence characteristics of different position leaves in Lespedeza daurica. Pratacultural Science, 29,422-428. |
[ 段东平, 徐炳成, 牛富荣, 徐伟洲 (2012). 水分和磷肥对达乌里胡枝子不同叶位叶绿素荧光参数特征的影响. 草业科学, 29,422-428.] | |
[14] |
Elser JJ, Bracken ME, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10,1135-1142.
DOI URL |
[15] |
Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70,153-226.
DOI URL |
[16] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320,889-892.
DOI URL |
[17] | Guan SB (2017). Effect of Fertilization and Planting Density on Seed Yield of Lespedeza davurica. Master degree dissertation, Shanxi Agricultural University, Taigu, Shanxi.10-11. |
[ 关少波 (2017). 施肥和种植密度对达乌里胡枝子种子产量的影响. 硕士学位论文, 山西农业大学, 山西太谷.10-11.] | |
[18] |
Guinet M, Nicolardot B, Revellin C, Durey V, Carlsson G, Voisin AS (2018). Comparative effect of inorganic N on plant growth and N 2 fixation of ten legume crops: towards a better understanding of the differential response among species. Plant and Soil, 432,207-227.
DOI URL |
[19] |
Gutschick VP (1981). Evolved strategies in nitrogen acquisition by plants. The American Naturalist, 118,607-637.
DOI URL |
[20] |
Humbert JY, Dwyer JM, Andrey A, Arlettaz R (2016). Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: a systematic review. Global Change Biology, 22,110-120.
DOI URL |
[21] |
Japhet W, Zhou DW, Zhang HX, Zhang HX, Yu T (2009). Evidence of phenotypic plasticity in the response of Fagopyrum esculentum to population density and sowing date. Journal of Plant Biology, 52,303-311.
DOI URL |
[22] |
Kapustka LA, Wilson KG (1990). The influence of soybean planting density on dinitrogen fixation and yield. Plant and Soil, 129,145-156.
DOI URL |
[23] |
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89,371-379.
PMID |
[24] | Lie ZY, Xu SK, Xue L, Huang WL, Li J (2016). Effect of density on the growth of evergreen Tephrosia candida shrubs. Journal of Southwest Forestry University, 36,69-73. |
[ 列志旸, 许松葵, 薛立, 黄威龙, 李洁 (2016). 密度对山毛豆幼林生长的影响. 西南林业大学学报, 36,69-73.] | |
[25] | Liu WL, Shi SL, Tian FP (2017). Effects of planting density on biomass and photosynthetic characters of alfalfa leaves at different positions. Grassland and Turf, 37,14-19. |
[ 刘文兰, 师尚礼, 田福平 (2017). 种植密度对紫花苜蓿生物量与不同叶位光合特性的影响. 草原与草坪, 37,14-19.] | |
[26] |
Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013). Enhanced nitrogen deposition over China. Nature, 494,459-462.
DOI URL |
[27] | Ma X, Wang LL, Li WJ, Song JP, He Y, Luo M (2013). Effects of different nitrogen levels on nitrogen fixation and seed production of alfalfa inoculated with rhizobia. Acta Prataculturae Sinica, 22,95-102. |
[ 马霞, 王丽丽, 李卫军, 宋江平, 何媛, 罗明 (2013). 不同施氮水平下接种根瘤菌对苜蓿固氮效能及种子生产的影响. 草业学报, 22,95-102.] | |
[28] | Ma YJ, Cao ZZ, Li Y (2010). Advances in basic theroy of Lespedeza spp. Pratacultural Science, 27,128-134. |
[ 马彦军, 曹致中, 李毅 (2010). 胡枝子属植物研究进展. 草业科学, 27,128-134.] | |
[29] |
Malik NS, Calvert HE, Bauer WD (1987). Nitrate induced regulation of nodule formation in soybean. Plant Physiology, 84,266-271.
DOI URL |
[30] |
Menge DNL, Levin SA, Hedin LO (2009). Facultative versus obligate nitrogen fixation strategies and their ecosystem consequences. The American Naturalist, 174,465-477.
DOI URL |
[31] |
Midolo G, Alkemade R, Schipper AM, Benítez-López A, Perring MP, de Vries W (2019). Impacts of nitrogen addition on plant species richness and abundance: a global meta-analysis. Global Ecology and Biogeography, 28,398-413.
DOI URL |
[32] |
Pan QM, Bai YF, Han XG, Yang JC (2005). Effects of nitrogen additions on a Leymus chinensis population in typical steppe of Inner Mongolia. Acta Phytoecologica Sinica, 29,311-317.
PMID |
[ 潘庆民, 白永飞, 韩兴国, 杨景成 (2005). 氮素对内蒙古典型草原羊草种群的影响. 植物生态学报, 29,311-317.]
DOI PMID |
|
[33] | Pardo LH, Fenn ME, Goodale CL, Geiser LH, Driscoll CT, Allen EB, Baron JS, Bobbink R, Bowman WD, Clark CM, Emmett B, Gilliam FS, Greaver TL, Hall SJ, Lilleskov EA, et al. (2011). Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecological Applications, 21,3049-3082. |
[34] |
Regus JU, Wendlandt CE, Bantay RM, Gano-Cohen KA, Gleason NJ, Hollowell AC, O’Neill MR, Shahin KK, Sachs JL (2017). Nitrogen deposition decreases the benefits of symbiosis in a native legume. Plant and Soil, 414,159-170.
DOI URL |
[35] |
Tang ZS, Deng L, An H, Yan WM, Shangguan ZP (2017). The effect of nitrogen addition on community structure and productivity in grasslands: a meta-analysis. Ecological Engineering, 99,31-38.
DOI URL |
[36] | Vitousek P, Howarth R (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13,87-115. |
[37] |
Vitousek PM, Menge DNL, Reed SC, Cleveland CC (2013). Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 368,20130119. DOI: 10.1098/rstb.2013.0119.
DOI URL |
[38] | Wang Y, Duan XY, Zhang SC, Duan XL, Yang HL, Qian BL (2011). Influence of planting density on grass yield and other biological properties of Medicago sativa. Prataultural Science, 28,1400-1402. |
[ 王莹, 段学义, 张胜昌, 段晓丽, 杨慧玲, 钱宝玲 (2011). 紫花苜蓿播种密度对草产量及其他生物学性状的影响. 草业科学, 28,1400-1402.] | |
[39] | Wang Z (2013). Plant Physiology. 2nd ed. China Agriculture Press, Beijing.80-119. |
[ 王忠 (2013). 植物生理学. 二版. 中国农业出版社, 北京.80-119.] | |
[40] |
Weiner J, Stoll P, Muller-Landau H, Jasentuliyana A (2001). The effects of density, spatial pattern, and competitive symmetry on size variation in simulated plant populations. The American Naturalist, 158,438-450.
DOI PMID |
[41] | Xing Y (2019). Effects of Nitrogen Annlication on the Yield, Quauality and Bud Bank of Mixed Planting of Leymus chinensis and Lespedeza daurica. Master degree dissertation, Northeast Normal University, Changchun.13-20. |
[ 邢越 (2019). 施氮对羊草和胡枝子混播种植的产量和品质及芽库的影响. 硕士学位论文, 东北师范大学, 长春.13-20.] | |
[42] | Yan YH, Yang WY, Zhang XQ, Chen XL, Chen ZQ (2011). Effects of different nitrogen levels on photosynthetic characteristics, dry matter accumulation and yield of relay strip intercropping Glycine max after blooming. Acta Prataculturae Sinica, 20,233-238. |
[ 闫艳红, 杨文钰, 张新全, 陈小林, 陈忠群 (2011). 施氮量对套作大豆花后光合特性、干物质积累及产量的影响. 草业学报, 20,233-238.] | |
[43] | Yang JX, Huang SS, Yang ML, Wang JA (2012). Effect of density and fertilizer amount on yield of different branching types of soybeans. Soybean Science, 31,381-384. |
[ 杨继学, 黄珊珊, 杨明亮, 王继安 (2012). 密度和施肥量对不同分枝类型大豆产量的影响. 大豆科学, 31,381-384.] | |
[44] |
Yu GR, Jia YL, He NP, Zhu JX, Chen Z, Wang QF, Piao SL, Liu XJ, He HL, Guo XB, Wen Z, Li P, Ding GA, Goulding K (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12,424-429.
DOI URL |
[45] | Zhang MC, Zhan YC, He SY, Jin XJ, Wang MX, Ren CY, Zhang YX (2018). Effects of different nitrogen fertilizer and density level on dry matter accumulation and yield of adzuki bean. Crops, 34,141-146. |
[ 张明聪, 战英策, 何松榆, 金喜军, 王孟雪, 任春元, 张玉先 (2018). 氮密交互对红小豆干物质积累规律及产量的影响. 作物杂志, 34,141-146.] | |
[46] | Zhang WP, Wang GX (2010). Positive interactions in plant communities. Acta Ecologica Sinica, 30,5371-5380. |
[ 张炜平, 王根轩 (2010). 植物邻体间的正相互作用. 生态学报, 30,5371-5380.] | |
[47] | Zhang XH, Xu BC, Li FM (2007). Effect of planting density on the productivity and WUE of three legumes in highland of Loess Plateau. Acta Agrestia Sinica, 15,593-598. |
[ 张晓红, 徐炳成, 李凤民 (2007). 密度对三种豆科牧草生产力和水分利用率的影响. 草地学报, 15,593-598.] | |
[48] | Zhao HK, Ma Z, Zhang CH, Lei ZL, Yao BQ, Zhou HK (2016). The reproductive allocation of Avena sativa under different planting densities and nitrogen addition treatments. Pratacultural Science, 33,249-258. |
[ 赵宏魁, 马真, 张春辉, 雷占兰, 姚步青, 周华坤 (2016). 种植密度和施氮水平对燕麦生物量分配的影响. 草业科学, 33,249-258.] | |
[49] | Zhao X, Dong KH, Zhang Y, Yang WD, Liang PF (2009). Study on Lamina anatomical structure of Lespedeza daurica (Laxm.) Schindl. from different populations. Acta Agrestia Sinica, 17,445-451. |
[ 赵祥, 董宽虎, 张垚, 杨武德, 梁丕富 (2009). 不同居群达乌里胡枝子叶片解剖结构研究. 草地学报, 17,445-451.] |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[5] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[6] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[7] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[8] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[9] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[10] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[11] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[12] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[13] | 郝晴, 黄昌. 森林地上生物量遥感估算研究综述[J]. 植物生态学报, 2023, 47(10): 1356-1374. |
[14] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
[15] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19