植物生态学报 ›› 2020, Vol. 44 ›› Issue (9): 939-950.DOI: 10.17521/cjpe.2020.0173
所属专题: 植物功能性状
收稿日期:
2020-05-27
接受日期:
2020-08-07
出版日期:
2020-09-20
发布日期:
2020-09-03
通讯作者:
*刘志理 (liuzl2093@126.com)基金资助:
YU Qing-Han, JIN Guang-Ze, LIU Zhi-Li*()
Received:
2020-05-27
Accepted:
2020-08-07
Online:
2020-09-20
Published:
2020-09-03
Contact:
LIU Zhi-Li
Supported by:
摘要:
许多枝性状的变异受植株大小、枝龄或环境的影响, 但少有研究同时评估这些因素对枝性状种内变异的重要性。该研究以红松(Pinus koraiensis)为研究对象, 通过测定69株胸径(DBH) 0.3-100.0 cm范围内植株不同年龄枝的形态性状、化学性状和解剖性状, 探讨植株大小(DBH或树高)、枝龄与环境因素(光照强度、土壤养分及土壤含水率)对枝性状的影响。结果表明: (1) DBH与树高对枝性状的影响存在差异: 木质密度(WD)、木质部面积占比(RXA)、韧皮部面积占比(RPHA)及髓面积占比(RPA)对DBH更敏感, 而树脂道总面积占比(RRC)和枝氮含量(WN)受树高影响更大; (2)枝龄是导致红松枝性状种内变异的最主要因素, 植株大小次之, 而环境因素的影响最小; (3) WD、RPHA与DBH显著正相关, RPA与DBH显著负相关, RRC、WN与树高显著正相关; 除WN外, 其余枝性状与枝龄均显著相关, 且随着树木生长, RRC随枝龄增大而减小的速率加剧, 相反, RPA随枝龄增大而减小的速率减缓。研究结果有助于了解局域尺度上枝性状种内变异的影响因素以及枝条应对环境变异的适应机制。
于青含, 金光泽, 刘志理. 植株大小、枝龄和环境共同驱动红松枝性状的变异. 植物生态学报, 2020, 44(9): 939-950. DOI: 10.17521/cjpe.2020.0173
YU Qing-Han, JIN Guang-Ze, LIU Zhi-Li. Plant size, branch age and environment factors co-drive variations of branch traits of Pinus koraiensis. Chinese Journal of Plant Ecology, 2020, 44(9): 939-950. DOI: 10.17521/cjpe.2020.0173
图1 光学显微镜下不同龄级红松枝解剖结构示意图。A, 当年生枝。B, 二年生枝。C, 三年生枝。D, 四年生枝。
Fig. 1 Schematic diagram of anatomical structure of branches of different ages under an optical microscope for Pinus koraiensis. A, Current-year branch. B, Two-years-old branch. C, Three-years-old branch. D, Four-years-old branch.
性状 Trait | DBH (cm) | 树高 Tree height (m) |
---|---|---|
木质密度 WD (g·cm-3) | -1 025 | -1 022 |
枝氮含量 WN (mg·g-1) | 1 282 | 1 272 |
木质部面积占比 RXA | -327 | -325 |
韧皮部面积占比 RPHA | -1 090 | -1 086 |
髓面积占比 RPA | -1 364 | -1 362 |
树脂道总面积占比 RRC | -1 129 | -1 142 |
表1 红松胸径(DBH)或树高与枝性状回归分析的赤池信息量准则(AIC)值
Table 1 Akaike information criterion (AIC) values in the regressions of diameter at breast height (DBH) or tree height against each branch traits of Pinus koraiensis
性状 Trait | DBH (cm) | 树高 Tree height (m) |
---|---|---|
木质密度 WD (g·cm-3) | -1 025 | -1 022 |
枝氮含量 WN (mg·g-1) | 1 282 | 1 272 |
木质部面积占比 RXA | -327 | -325 |
韧皮部面积占比 RPHA | -1 090 | -1 086 |
髓面积占比 RPA | -1 364 | -1 362 |
树脂道总面积占比 RRC | -1 129 | -1 142 |
性状 Trait | 最大值 Maximum | 最小值 Minimum | 平均值 Mean (标准偏差 SD) | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|
WD (g·cm-3) | 0.548 | 0.272 | 0.39 (0.03) | 8 |
WN (mg·g-1) | 19.080 | 1.067 | 8.99 (3.72) | 41 |
RXA | 0.634 | 0.092 | 0.31 (0.12) | 39 |
RPHA | 0.146 | 0.026 | 0.09 (0.02) | 22 |
RPA | 0.098 | 0.005 | 0.03 (0.01) | 33 |
RRC | 0.136 | 0.000 | 0.07 (0.02) | 29 |
表2 木质密度(WD)、枝氮含量(WN)、木质部面积占比(RXA)、韧皮部面积占比(RPHA)、髓面积占比(RPA)以及树脂道总面积占比(RRC)的统计信息
Table 2 Statistical information of wood density (WD), wood nitrogen content (WN), the xylem area-to-total cross-sectional area ratio (RXA), the phloem area-to-total cross-sectional area ratio (RPHA), the pith area-to-total cross-sectional area ratio (RPA) and the total resin canal area-to-total cross-sectional area ratio (RRC)
性状 Trait | 最大值 Maximum | 最小值 Minimum | 平均值 Mean (标准偏差 SD) | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|
WD (g·cm-3) | 0.548 | 0.272 | 0.39 (0.03) | 8 |
WN (mg·g-1) | 19.080 | 1.067 | 8.99 (3.72) | 41 |
RXA | 0.634 | 0.092 | 0.31 (0.12) | 39 |
RPHA | 0.146 | 0.026 | 0.09 (0.02) | 22 |
RPA | 0.098 | 0.005 | 0.03 (0.01) | 33 |
RRC | 0.136 | 0.000 | 0.07 (0.02) | 29 |
图2 红松当年生和多年生枝性状随植株大小(胸径或树高)的变异。*, p > 0.05; **, p > 0.01; ***, p > 0.001。
Fig. 2 Variations of branch traits in current-year and old branches with plant size (DBH or tree height) for Pinus koraiensis. DBH, diameter at breast height; RPA, pith area-to-total cross-sectional area ratio; RPHA, phloem area-to-total cross-sectional area ratio; RRC, total resin canal area-to-total cross-sectional area ratio; RXA, xylem area-to-total cross-sectional area ratio; WD, wood density; WN, wood nitrogen content. *, p > 0.05; **, p > 0.01; ***, p > 0.001.
性状 Trait | 胸径 DBH (cm) | 树高 Tree height (m) | 枝龄 Branch age (year) | 光照强度 Light intensity (mol·m-2·d-1) | 土壤含水量 Soil water content (g·g-1) | 土壤氮含量 Soil nitrogen content (mg·g-1) | 土壤磷含量 Soil phosphorus content (mg·g-1) | 截距 Intercept |
---|---|---|---|---|---|---|---|---|
木质密度 WD (g·cm-3) | 0.007** | 0.009*** | 0.003 | 0.003 | -0.001 | -0.001 | 0.393*** | |
枝氮含量 WN (mg·g-1) | 1.732*** | -0.373 | 0.121 | -0.062 | 0.302 | -0.224 | 8.881*** | |
木质部面积占比 RXA | -0.006 | 0.090*** | -0.009 | 0.005 | 0.020** | -0.019* | 0.310*** | |
韧皮部面积占比 RPHA | 0.006*** | 0.007*** | -0.005** | 0.005* | -0.001 | -0.003 | 0.087*** | |
髓面积占比 RPA | -0.003*** | -0.008*** | >0.001 | >0.001 | -0.001 | >0.001 | 0.033*** | |
树脂道总面积占比 RRC | 0.011*** | -0.008*** | 0.002 | >0.003 | -0.003 | -0.001 | 0.067*** |
表3 红松枝性状与植株大小、枝龄和环境因素(光照强度、土壤含水量、土壤氮含量和磷含量)之间的广义线性模型(GLM)
Table 3 Generalized linear models (GLM) among branch traits, tree size, branch age and environment factors (light availability, soil water content, soil nitrogen content, soil phosphorus content) for Pinus koraiensis
性状 Trait | 胸径 DBH (cm) | 树高 Tree height (m) | 枝龄 Branch age (year) | 光照强度 Light intensity (mol·m-2·d-1) | 土壤含水量 Soil water content (g·g-1) | 土壤氮含量 Soil nitrogen content (mg·g-1) | 土壤磷含量 Soil phosphorus content (mg·g-1) | 截距 Intercept |
---|---|---|---|---|---|---|---|---|
木质密度 WD (g·cm-3) | 0.007** | 0.009*** | 0.003 | 0.003 | -0.001 | -0.001 | 0.393*** | |
枝氮含量 WN (mg·g-1) | 1.732*** | -0.373 | 0.121 | -0.062 | 0.302 | -0.224 | 8.881*** | |
木质部面积占比 RXA | -0.006 | 0.090*** | -0.009 | 0.005 | 0.020** | -0.019* | 0.310*** | |
韧皮部面积占比 RPHA | 0.006*** | 0.007*** | -0.005** | 0.005* | -0.001 | -0.003 | 0.087*** | |
髓面积占比 RPA | -0.003*** | -0.008*** | >0.001 | >0.001 | -0.001 | >0.001 | 0.033*** | |
树脂道总面积占比 RRC | 0.011*** | -0.008*** | 0.002 | >0.003 | -0.003 | -0.001 | 0.067*** |
图3 不同植株大小(胸径(DBH)或树高)红松枝性状随枝龄的变异。*, p > 0.05; **, p > 0.01; ***, p > 0.001。
Fig. 3 Variations of branch traits of different plant sizes (DBH or tree height) with branch age for Pinus koraiensis. DBH, diameter at breast height; RPA, pith area-to-total cross-sectional area ratio; RPHA, phloem area-to-total cross-sectional area ratio; RRC, total resin canal area-to-total cross-sectional area ratio; RXA, xylem area-to-total cross-sectional area ratio; WD, wood density; WN, wood nitrogen content. *, p > 0.05; **, p > 0.01; ***, p > 0.001.
图4 红松枝性状随枝龄的变化斜率随不同植株大小(DBH或树高)的变异趋势。RPA, 髓面积占比; RPHA, 韧皮部面积占比; RRC, 树脂道总面积占比; RXA, 木质部面积占比; WD, 木质密度。*, p > 0.05; **, p > 0.01。
Fig. 4 Variation trend of the slope of branch traits against branch age with different plant sizes (DBH or tree height) for Pinus koraiensis. DBH, diameter at breast height; RPA, pith area-to-total cross-sectional area ratio; RPHA, phloem area-to-total cross-sectional area ratio; RRC, total resin canal area-to-total cross-sectional area ratio; RXA, xylem area-to-total cross-sectional area ratio; WD, wood density. *, p > 0.05; **, p > 0.01.
[1] | Aerts R, Chapin FS ( 1999). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[2] |
Agustí J, Blázquez MA ( 2020). Plant vascular development: mechanisms and environmental regulation. Cellular and Molecular Life Sciences. DOI: 10.1007/s00018-020- 03496-w.
DOI URL PMID |
[3] |
Bazot S, Fresneau C, Damesin C, Barthes L ( 2016). Contribution of previous year’s leaf N and soil N uptake to current year’s leaf growth in sessile oak. Biogeosciences, 13, 3475-3484.
DOI URL |
[4] |
Bloomfield KJ, Cernusak LA, Eamus D, Ellsworth DS, Prentice IC, Wright IJ, Boer MM, Bradford MG, Cale P, Cleverly J, Egerton JJG, Evans BJ, Hayes LS, Hutchinson MF, Liddell MJ, Macfarlane C, Meyer WS, Prober SM, Togashi HF, Wardlaw T, Zhu L, Atkin OK ( 2018). A continental- scale assessment of variabilityin leaf traits: within species, across sites and between seasons. Functional Ecology, 32, 1492-1506.
DOI URL |
[5] |
Borchert R ( 1994). Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology, 75, 1437-1449.
DOI URL |
[6] | Brodribb TJ, Feild TS ( 2000). Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant, Cell & Environment, 23, 1381-1388. |
[7] |
Cavaleri MA, Oberbauer SF, Clark DB, Clark DA, Ryan MG ( 2010). Height is more important than light in determining leaf morphology in a tropical forest. Ecology, 91, 1730-1739.
DOI URL PMID |
[8] |
Corcuera L, Camarero JJ, Gil-Pelegrín E ( 2004). Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees, 18, 83-92.
DOI URL |
[9] |
Deng CY, Zheng JM, Zhang WC, Guo SZ, Xue QH, Ye LY, Sun JW ( 2015). Ecological wood anatomy of Rhizophora stylosa. Chinese Journal of Plant Ecology, 39, 604-615.
DOI URL |
[ 邓传远, 郑俊鸣, 张万超, 郭素枝, 薛秋华, 叶露莹, 孙建文 ( 2015). 红海榄木材结构的生态解剖. 植物生态学报, 39, 604-615.]
DOI URL |
|
[10] | Domec JC, Lachenbruch B, Meinzer FC, Woodruff DR, Warren JM, McCulloh KA ( 2008). Maximum height in a conifer is associated with conflicting requirements for xylem design. Proceedings of the National Academy of Sciences of the United States of America, 105, 12069-12074. |
[11] | Ewers BE, Oren R, Kim HS, Bohrer G, Lai CT ( 2007). Effects of hydraulic architecture and spatial variation in light on mean stomatal conductance of tree branches and crowns. Plant, Cell & Environment, 30, 483-496. |
[12] |
Falster DS, Westoby M ( 2005). Alternative height strategies among 45 dicot rain forest species from tropical Queensland, Australia. Journal of Ecology, 93, 521-535.
DOI URL PMID |
[13] |
Fang SZ, Sun DY, Shang XL, Fu XX, Yang WX ( 2020). Variation in radial growth and wood density of Cyclocarya paliurus across its natural distribution. New Forests, 51, 453-467.
DOI URL |
[14] |
Gebauer R, Albrechtová P, Plichta R, Volařík D ( 2019). The comparative xylem structure and function of petioles and twigs of mistletoe Loranthus europaeus and its host Quercus pubescence. Trees, 33, 933-942.
DOI URL |
[15] |
Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB, Bhaskar R, Brodribb TJ, Bucci SJ, Cao KF, Cochard H, Delzon S, Domec JC, Fan ZX, Feild TS, Jacobsen AL, Johnson DM, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, McCulloh KA, Mencuccini M, Mitchell PJ, Morris H, Nardini A, Pittermann J, Plavcová L, Schreiber SG, Sperry JS, Wright IJ, Zanne AE ( 2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist, 209, 123-136.
DOI URL |
[16] |
Hacke UG, Sperry JS, Wheeler JK, Castro L ( 2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26, 689-701.
DOI URL PMID |
[17] |
Hajek P, Hertel D, Leuschner C ( 2013). Intraspecific variation in root and leaf traits and leaf-root trait linkages in eight aspen demes (Populus tremula and P. tremuloides). Frontiers in Plant Science, 4, 415. DOI: 10.3389/fpls.2013.00415.
DOI URL PMID |
[18] |
He NP, Liu CC, Piao SL, Sack L, Xu L, Luo YQ, He JS, Han XG, Zhou GS, Zhou XH, Lin Y, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Zhang JH, Yu GR ( 2019). Ecosystem traits linking functional traits to macroecology. Trends in Ecology and Evolution, 34, 200-210.
DOI URL PMID |
[19] | Hikosaka K, Niinemets Ü, Anten NPR ( 2016). Canopy Photosynthesis: from Basics to Applications. Springer, Dordrecht, Netherlands. |
[20] |
Isaac ME, Martin AR, de Melo Virginio Fiho E, Rapidel B, Roupsard O, van den Meersche K ( 2017). Intraspecific trait variation and coordination: root and leaf economics spectra in coffee across environmental gradients. Frontiers in Plant Science, 8, 1196. DOI: 10.3389/fpls.2017.01196.
DOI URL PMID |
[21] |
Kašpar J, Anfodillo T, Treml V ( 2019). Tree size mostly drives the variation of xylem traits at the treeline ecotone. Trees, 33, 1657-1665.
DOI URL |
[22] | Kong GH, Liu SZ, Wu T, Huang J, Lin ZF, Chen ZD, Zhang JZ ( 2006). Differences in photosynthesis and plant growth of 26 woody species at the oil shale waste dump. Journal of Tropical and Subtropical Botany, 14, 467-476. |
[ 孔国辉, 刘世忠, 吴彤, 黄娟, 林植芳, 陈志东, 张进忠 ( 2006). 油页岩废渣场26种木本植物光合作用和生长的差异. 热带亚热带植物学报, 14, 467-476.] | |
[23] |
Lachenbruch B, McCulloh KA ( 2014). Traits, properties, and performance: How woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant? New Phytologist, 204, 747-764.
DOI URL |
[24] | Leyton RBL ( 1972). Reviews: Trees: Structure and Function. New Phytologist, 71, 769-770. |
[25] | Li YN, Yang DM, Sun SC, Gao XM ( 2008). Effects of twig size on biomass allocation within twigs and on Lamina area supporting efficiency in Rhododendron: allometric scaling analyses. Journal of Plant Ecology (Chinese version), 32, 1175-1183. |
[ 李亚男, 杨冬梅, 孙书存, 高贤明 ( 2008). 杜鹃花属植物小枝大小对小枝生物量分配及叶面积支持效率的影响: 异速生长分析. 植物生态学报, 32, 1175-1183.]
DOI URL |
|
[26] |
Lilles EB, Astrup R, Lefrançois ML, David Coates K ( 2014). Sapling leaf trait responses to light, tree height and soil nutrients for three conifer species of contrasting shade tolerance. Tree Physiology, 34, 1334-1347.
URL PMID |
[27] |
Lin JX, Sampson D, Ceulemans R ( 2001). The effect of crown position and tree age on resin-canal density in Scots pine (Pinus sylvestris L.) needles. Canadian Journal of Botany, 79, 1257-1261.
DOI URL |
[28] |
Liu XJ, Ma KP ( 2015). Plant functional traits-concepts, applications, and future directions. Scientia Sinica Vitae, 45, 325-339.
DOI URL |
[ 刘晓娟, 马克平 ( 2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[29] | Liu ZL, Chen JM, Jin GZ, Qi YJ ( 2015). Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forests. Agricultural and Forest Meteorology, 209, 36-48. |
[30] |
Liu ZL, Hikosaka K, Li FR, Jin GZ ( 2020). Variations in leaf economics spectrum traits for an evergreen coniferous species: tree size dominates over environment factors. Functional Ecology, 34, 458-467.
DOI URL |
[31] |
Martínez-Cabrera HI, Jones CS, Espino S, Schenk HJ ( 2009). Wood anatomy and wood density in shrubs: responses to varying aridity along transcontinental transects. American Journal of Botany, 96, 1388-1398.
DOI URL PMID |
[32] |
Martinez-Cabrera HI, Schenk HJ, Cevallos-Ferriz SRS, Jones CS ( 2011). Integration of vessel traits, wood density, and height in angiosperm shrubs and trees. American Journal of Botany, 98, 915-922.
DOI URL |
[33] | Meinzer FC, Lachenbruch B, Dawson TE ( 2011). Size- and Age-related Changes in Tree Structure and Function. Springer, Dordrecht, Netherlands. |
[34] |
Millard P, Grelet GA ( 2010). Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiology, 30, 1083-1095.
URL PMID |
[35] |
Miyata R, Kubo T, Nabeshima E, Kohyama TS ( 2011). Common allometric response of open-grown leader shoots to tree height in co-occurring deciduous broadleaved trees. Annals of Botany, 108, 1279-1286.
DOI URL PMID |
[36] |
Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman AJ, Hemmings FA, Leishman MR ( 2009). Global patterns in plant height. Journal of Ecology, 97, 923-932.
DOI URL |
[37] | Morot-Gaudry JF (1997). Assimilation de l’ azote chez les plantes: aspects physiologique, biochimique et moléculaire. INRA Press, Paris. |
[38] | Olson ME, Soriano D, Rosell JA, Anfodillo T, Donoghue MJ, Edwards EJ, León-Gómez C, Dawson T, Camarero Martínez JJ, Castorena M, Echeverría A, Espinosa CI, Fajardo A, Gazol A, Isnard S, Lima RS, Marcati CR, Méndez-Alonzo R ( 2018). Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences of the United States of America, 115, 7551-7556. |
[39] |
Osada N ( 2011). Height-dependent changes in shoot structure and tree allometry in relation to maximum height in four deciduous tree species. Functional Ecology, 25, 777-786.
DOI URL |
[40] |
Osunkoya OO, Sheng TK, Mahmud N, Damit N ( 2007). Variation in wood density, wood water content, stem growth and mortality among twenty-seven tree species in a tropical rainforest on Borneo Island. Austral Ecology, 32, 191-201.
DOI URL |
[41] |
Peltoniemi MS, Duursma RA, Medlyn BE ( 2012). Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies. Tree Physiology, 32, 510-519.
DOI URL PMID |
[42] |
Phillips NG, Ryan MG, Bond BJ, McDowell NG, Hinckley TM, Čermák J ( 2003). Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiology, 23, 237-245.
DOI URL PMID |
[43] |
Poorter L, Lianes E, Heras MDL, Zavala MA ( 2012). Architecture of Iberian canopy tree species in relation to wood density, shade tolerance and climate. Plant Ecology, 213, 707-722.
DOI URL |
[44] |
Poorter L, McDonald I, Alarcón A, Fichtler E, Licona JC, Peña-Claros M, Sterck F, Villegas Z, Sass-Klaassen Ü ( 2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185, 481-492.
DOI URL |
[45] |
Poorter L, Rozendaal DMA, Bongers F, Almeida-Cortez JS, Almeyda Zambrano AM, Álvarez FS, Andrade JL, Villa LFA, Balvanera P, Becknell JM, Bentos TV, Bhaskar R, Boukili V, Brancalion PHS, Broadbent EN , et al. ( 2019). Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nature Ecology & Evolution, 3, 928-934.
DOI URL PMID |
[46] |
Pratt RB, Black RA ( 2006). Do invasive trees have a hydraulic advantage over native trees? Biological Invasions, 8, 1331-1341.
DOI URL |
[47] |
Pratt RB, Jacobsen AL ( 2017). Conflicting demands on angiosperm xylem: tradeoffs among storage, transport and biomechanics. Plant, Cell & Environment, 40, 897-913.
DOI URL |
[48] |
Pratt RB, Jacobsen AL, Ewers FW, Davis SD ( 2007). Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytologist, 174, 787-798.
DOI URL |
[49] |
Preston KA, Cornwell WK, Denoyer JL ( 2006). Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytologist, 170, 807-818.
DOI URL |
[50] |
Pulido-Rodríguez E, López-Camacho R, Tórres J, Velasco E, Salgado-Negret B ( 2020). Traits and trade-offs of wood anatomy between trunks and branches in tropical dry forest species. Trees, 34, 497-505.
DOI URL |
[51] | R Core Team ( 2018). R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[52] | Richard C, Lyons-Sobaski S, Wise R ( 2018). Periderm: a concept- based approach to the structure of seed plants//Richard C, Lyons-Sobaski S, Wise R. Plant Anatomy. Springer, Cham, Switzerland. |
[53] |
Rijkers T, Pons TL, Bongers F ( 2000). The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance. Functional Ecology, 14, 77-86.
DOI URL |
[54] |
Rodriguez-Zaccaro FD, Valdovinos-Ayala J, Percolla MI, Venturas MD, Pratt RB, Jacobsen AL ( 2019). Wood structure and function change with maturity: age of the vascular cambium is associated with xylem changes in current-year growth. Plant, Cell & Environment, 42, 1816-1831.
DOI URL PMID |
[55] | Rosell JA, Olson ME, Anfodillo T ( 2017). Scaling of xylem vessel diameter with plant size: causes, predictions, and outstanding questions. Current Forestry Reports, 3, 46-59. |
[56] | Schumann K, Leuschner C, Schuldt B ( 2019). Xylem hydraulic safety and efficiency in relation to leaf and wood traits in three temperate Acer species differing in habitat preferences. Trees, 33, 1475-1490. |
[57] | Sperry JS, Meinzer FC, McCulloh KA ( 2008). Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant, Cell & Environment, 31, 632-645. |
[58] | Sterck FJ, Bongers F ( 2001). Crown development in tropical rain forest trees: patterns with tree height and light availability. Journal of Ecology, 89, 1-13. |
[59] | Stratton L, Goldstein G, Meinzer FC ( 2000). Stem water storage capacity and efficiency of water transport: their functional significance in a Hawaiian dry forest. Plant, Cell & Environment, 23, 99-106. |
[60] |
Suzuki M, Hiura T ( 2000). Allometric differences between current-year shoots and large branches of deciduous broad-leaved tree species. Tree Physiology, 20, 203-209.
DOI URL PMID |
[61] | Takashima T, Hikosaka K, Hirose T ( 2004). Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant, Cell & Environment, 27, 1047-1054. |
[62] |
Tarelkin Y, Hufkens K, Hahn S, Bulcke J, Bastin JF, Ilondea BA, Debeir O, Acker J, Beeckman H, Cannière C ( 2019). Wood anatomy variability under contrasted environmental conditions of common deciduous and evergreen species from central African forests. Trees, 33, 893-909.
DOI URL |
[63] | Virgulino-Júnior PCC, Gardunho DCL, Silva DNC, Fernandes MEB ( 2020). Wood density in mangrove forests on the Brazilian Amazon Coast. Trees, 34, 51-60. |
[64] | Wang GL, Fahey TJ, Xue S, Liu F ( 2013). Root morphology and architecture respond to N addition in Pinus tabuliformis, west China. Oecologia, 171, 583-590. |
[65] | Wang GL, Liu F, Xue S ( 2017). Nitrogen addition enhanced water uptake by affecting fine root morphology and coarse root anatomy of Chinese pine seedlings. Plant and Soil, 418, 177-189. |
[66] | Wellstein C, Chelli S, Campetella G, Bartha S, Galiè M, Spada F, Canullo R ( 2013). Intraspecific phenotypic variability of plant functional traits in contrasting mountain grasslands habitats. Biodiversity and Conservation, 22, 2353-2374. |
[67] | Will GM ( 1971). Nitrogen supply, apical dominance and branch growth in Pinus radiata. Plant and Soil, 34, 515-517. |
[68] | Woodcock DW, Shier AD ( 2003). Does canopy position affect wood specific gravity in temperate forest trees? Annals of Botany, 91, 529-537. |
[69] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R ( 2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[70] | Xiang S, Wu N, Sun SC ( 2009). Within-twig biomass allocation in subtropical evergreen broad-leaved species along an altitudinal gradient: allometric scaling analysis. Trees, 23, 637-647. |
[71] | Xiao WF, Xu DY, Liu SR, Han JJ ( 2002). The spatial and temporal characteristics of photosynthesis and transpiration of needles of Chinese fir. Scientia Silvae Sinicae, 38(5), 38-46. |
[ 肖文发, 徐德应, 刘世荣, 韩景军 ( 2002). 杉木人工林针叶光合与蒸腾作用的时空特征. 林业科学, 38(5), 38-46.] | |
[72] | Xiao Y ( 1995). Horizontal and vertical fluctuation of number and longevity of leaf populations in henry pine (Pinus hbnryi) forest. Acta Phytoecologica Sinica, 19, 43-54. |
[ 肖瑜 ( 1995). 巴山松针叶群体数量和寿命的水平和垂直变化趋势分析. 植物生态学报, 19, 43-54.] | |
[73] | Xu ZB, Li X, Dai HC, Zhang YP, Guo XF ( 1987). Root distributions of dominant trees in broad-leaved Korean pine forest of Changbai Mountain. Chinese Journal of Ecology, 6, 19-24. |
[ 徐振邦, 李昕, 戴洪才, 章依平, 郭杏芬 ( 1987). 长白山阔叶红松林主要树种根系分布规律的研究. 生态学杂志, 6, 19-24.] | |
[74] | Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM ( 2012). Leaf and twig functional traits of woody plants and their relationships with environmental change: a review. Chinese Journal of Ecology, 31, 702-713. |
[ 杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙 ( 2012). 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 31, 702-713.] | |
[75] | Yang DX, Song L, Jin GZ ( 2019a). The soil C:N stoichiometry is more sensitive than the leaf C:N stoichiometry to nitrogen addition: a four-year nitrogen addition experiment in a Pinus koraiensis plantation. Plant and Soil, 442, 183-198. |
[76] | Yang SJ, Mao J, Zuo CW, Tian FJ, Li WF, Dawuda MM, Ma ZH, Chen BH ( 2019b). Branch age and angle as crucial drivers of leaf photosynthetic performance and fruiting in high-density planting: a study case in spur-type apple “Vallee Spur” (Malus domestica). Scientia Horticulturae, 246, 898-906. |
[77] | Yang XD, Yan ER, Chang SX, Wang XH, Zhao YT, Shi QR ( 2014). Twig-leaf size relationships in woody plants vary intraspecifically along a soil moisture gradient. Acta Oecologica, 60, 17-25. |
[78] | Zhang XS, Jin GZ, Liu ZL ( 2019). Contribution of leaf anatomical traits to leaf mass per area among canopy layers for five coexisting broadleaf species across shade tolerances at a regional scale. Forest Ecology and Management, 452, 117569. DOI: 10.1016/j.foreco.2019.117569. |
[79] | Zhao PY, Feng M, Jiao PP, Li ZJ ( 2016). Relationship between morphological or anatomical features of leaves and trunk diameter at breast height at different growing stages of Populus euphratica. Arid Zone Research, 33, 1071-1080. |
[ 赵鹏宇, 冯梅, 焦培培, 李志军 ( 2016). 胡杨不同发育阶段叶片形态解剖学特征及其与胸径的关系. 干旱区研究, 33, 1071-1080.] | |
[80] | Ziaco E, Liang EY ( 2019). New perspectives on sub-seasonal xylem anatomical responses to climatic variability. Trees, 33, 973-975. |
[81] | Zwieniecki MA, Melcher PJ, Feild TS, Holbrook NM ( 2004). A potential role for xylem-phloem interactions in the hydraulic architecture of trees: effects of phloem girdling on xylem hydraulic conductance. Tree Physiology, 24, 911-917. |
[1] | 文佳 张新娜 王娟 赵秀海 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应 [J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 邓蓓 王晓锋 廖君. 环境胁迫影响三峡库区消落带草本和木本植物生理生态特征的整合分析[J]. 植物生态学报, 2024, 48(5): 623-637. |
[3] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[4] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[5] | 王雨婷, 刘旭婧, 唐驰飞, 陈玮钰, 王美娟, 向松竹, 刘梅, 杨林森, 傅强, 晏召贵, 孟红杰. 神农架极小种群植物庙台槭群落特征及种群动态[J]. 植物生态学报, 2024, 48(1): 80-91. |
[6] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[7] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[8] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[9] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[10] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[11] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[12] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[13] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[14] | 王德利, 梁存柱. 退化草原的恢复状态: 气候顶极或干扰顶极?[J]. 植物生态学报, 2023, 47(10): 1464-1470. |
[15] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19