植物生态学报 ›› 2011, Vol. 35 ›› Issue (2): 214-222.DOI: 10.3724/SP.J.1258.2011.00214
王华田1,*(), 杨阳1, 王延平1, 姜岳忠2, 王宗芹1
收稿日期:
2010-01-04
接受日期:
2010-11-01
出版日期:
2011-01-04
发布日期:
2011-01-21
作者简介:
王华田, E-mail: wanght@sdau.edu.cn
WANG Hua-Tian1,*(), YANG Yang1, WANG Yan-Ping1, JIANG Yue-Zhong2, WANG Zong-Qin1
Received:
2010-01-04
Accepted:
2010-11-01
Online:
2011-01-04
Published:
2011-01-21
摘要:
连作杨树人工林地力衰退可能与土壤中累积的酚酸存在密切的关系。土壤氮素供应是决定杨树生长发育的重要因素, 而硝态氮是土壤无机氮化合物的主要形式之一。研究酚酸作用下杨树对硝态氮的吸收利用对于揭示酚酸化感机理、明确林地改良的途径和方法具有重要意义。以欧美杨‘I-107’ (Populus × euramericana ‘Neva’)水培苗为试验材料, 采用改良Hoagland营养液培养, 以二代杨树连作人工林土壤酚酸的实际含量为参照浓度(X), 设置5个酚酸浓度水平(0, 0.5X, 1.0X, 1.5X, 2.0X), 分析不同浓度酚酸混合物对杨树硝态氮吸收利用的影响。分别在酚酸处理后第1、5、10、20、30和40天测定分析与硝态氮吸收利用密切相关的生理特性。试验结果表明: 酚酸处理导致根系伤害度明显提高, 根系活力受到酚酸物质的明显抑制, 处理后第40天各处理间表现出显著差异(p < 0.05); 48 h动态测定发现酚酸物质对硝态氮的吸收存在显著的抑制作用(p < 0.05); 处理后第40天, 低浓度酚酸(0.5X, 1.0X)导致硝态氮在植株体内发生积累, 而高浓度酚酸(1.5X, 2.0X)导致植株硝态氮含量下降; 酚酸物质明显抑制植株硝酸还原酶活性, 处理后第40天各处理间表现出显著差异(p < 0.05), 酚酸物质处理后期则引起亚硝态氮含量的升高。酚酸浓度与处理时间对杨树水培苗硝态氮的生理效应关系可以用多元线性模型描述。
王华田, 杨阳, 王延平, 姜岳忠, 王宗芹. 外源酚酸对欧美杨‘I-107’水培幼苗硝态氮吸收利用的影响. 植物生态学报, 2011, 35(2): 214-222. DOI: 10.3724/SP.J.1258.2011.00214
WANG Hua-Tian, YANG Yang, WANG Yan-Ping, JIANG Yue-Zhong, WANG Zong-Qin. Effects of exogenous phenolic acids on nitrate absorption and utilization of hydroponic cuttings of Populus × euramericana ‘Neva’. Chinese Journal of Plant Ecology, 2011, 35(2): 214-222. DOI: 10.3724/SP.J.1258.2011.00214
图1 外源酚酸影响下杨树水培幼苗根系伤害度与根系活力的动态变化(平均值±标准误差)。按照Duncan多重极差检验, 标记不同字母的均值间存在显著差异(p < 0.05)。X, 二代杨树连作人工林土壤酚酸含量。
Fig. 1 Dynamic changes of root injury degree and root activity of poplar hydroponic cuttings under effect of exogenous phenolic acids (mean ± SE). Means marked with different letters are significantly different according to Duncan’s multiple range tests (p < 0.05). X, phenolic acids content in the soil of a second-generation poplar plantation.
图2 外源酚酸影响下杨树水培幼苗硝态氮吸收速率的动态变化(平均值±标准误差)。标记不同字母的均值间存在显著差异 (p < 0.05)。X, 二代杨树连作人工林土壤酚酸含量。
Fig. 2 Dynamic absorption of nitrate nitrogen of poplar hydroponic cuttings under effect of exogenous phenolic acids (mean ± SE). Means marked with different letters are significantly different according to Duncan’s multiple range tests (p < 0.05). X, phenolic acids content in the soil of a second-generation poplar plantation.
图3 外源酚酸影响下杨树水培幼苗体内硝态氮含量的动态变化(平均值±标准误差)。标记不同字母的均值间存在显著差异 (p < 0.05)。X, 二代杨树连作人工林土壤酚酸含量。
Fig. 3 Dynamic content of nitrate nitrogen of poplar hydroponic cuttings under effect of exogenous phenolic acids (mean ± SE). Means marked with different letters are significantly different according to Duncan’s multiple range tests (p < 0.05). X, phenolic acids content in the soil of a second-generation poplar plantation.
图4 外源酚酸影响下杨树水培幼苗体内硝酸还原酶活性动态变化(平均值±标准误差)。标记不同字母的均值间存在显著差异 (p < 0.05)。X, 二代杨树连作人工林土壤酚酸含量。
Fig. 4 Dynamic changes of nitratase activity of poplar hydroponic cuttings under effect of exogenous phenolic acids (mean ± SE). Means marked with different letters are significantly different according to Duncan’s multiple range tests (p < 0.05). X, phenolic acids content in the soil of a second-generation poplar plantation.
图5 外源酚酸影响下杨树水培幼苗体内亚硝态氮含量的动态变化(平均值±标准误差)。标记不同字母的均值间存在显著差异 (p < 0.05)。X, 二代杨树连作人工林土壤酚酸含量。
Fig. 5 Dynamic content of trite nitrogen of poplar hydroponic cuttings under effect of exogenous phenolic acids (mean ± SE). Means marked with different letters are significantly different according to Duncan’s multiple range tests (p < 0.05). X, phenolic acids content in the soil of a second-generation poplar plantation.
[1] |
Attiwill PM, Adams MA (1993). Nutrient cycling in forests. New Phytologist, 124, 561-582.
DOI URL |
[2] |
Baziramakenga R, Leroux GD, Simard RR (1995). Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. Journal of Chemical Ecology, 21, 1271-1285.
DOI URL PMID |
[3] |
Blum U, Dalton BR, Shann JR (1985). Effects of various mixtures of ferulic acid and some of its microbial metabolic products on cucumber leaf expansion and dry matter in nutrient culture. Journal of Chemical Ecology, 11, 619-641.
DOI URL PMID |
[4] |
Blum U, Gerig TM (2005). Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: nutrient culture studies. Journal of Chemical Ecology, 31, 1907-1932.
DOI URL PMID |
[5] |
Blum U, Rebbeck J (1989). Inhibition and recovery of cucumber roots given multiple treatments of ferulic acid in nutrient culture. Journal of Chemical Ecology, 15, 917-928.
DOI URL PMID |
[6] |
Chon SU, Choi SK, Jung S, Jang HG, Pyo BS, Kim SM (2002). Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Protection, 21, 1077-1082.
DOI URL |
[7] | Devi RS, Prasad MNV (1996). Ferulic acid mediated changes in oxidative enzymes of maize seedlings: implications in growth. Biologia Plantarum, 38, 387-395. |
[8] | Einhellig FA (1985). Effects of Allelopathic Chemicals on Crop Productivity. American Chemical Society, Washington DC. 109-130. |
[9] | Einhellig FA (1995). Mechanism of Action of Allelochemicals in Allelopathy. American Chemical Society,Washington DC. 96-116. |
[10] |
Einhellig FA (1996). Interactions involving allelopathy in cropping systems. Agronomy Journal, 88, 886-893.
DOI URL |
[11] |
Glass ADM, Dunlop J (1974). Influence of phenolic acids on ion uptake. IV. Depolarization of membrane potentials. Plant Physiology, 54, 855-858.
DOI URL PMID |
[12] | He HQ (何华勤), Lin WX (林文雄) (2001). Studies on allelopathic physiobiochemical characteristics of rice. Chinese Journal of Eco-Agriculture (中国生态农业学报), 9(3), 56-57. (in Chinese with English abstract) |
[13] |
Holappa LD, Blum U (1991). Effects of exogenously applied ferulic acid, a potential allelopathic compound, on leaf growth, water utilization, and endogenous abscisic acid levels of tomato, cucumber, and bean. Journal of Chemical Ecology, 17, 865-886.
DOI URL PMID |
[14] |
Inderjit, Dakshini KMM (1995). On laboratory bioassays in allelopathy. Botanical Review, 61, 28-44.
DOI URL |
[15] | Kong CH (孔垂华), Xu T (徐涛), Hu F (胡飞), Huang SS (黄寿山) (2000). Allelopathy under environmental stress and its induced mechanism. Acta Ecologica Sinica (生态学报), 20, 849-854. (in Chinese with English abstract) |
[16] | Kong XS (孔祥生), Yi XF (易现峰) (2008). Plant Physiological Experimental Techniques (植物生理学实验技术). China Agriculture Press, Beijing. (in Chinese) |
[17] |
Lehman ME, Blum U (1999). Evaluation of ferulic acid uptake a same asurement of allelochemical dose: effective concentration. Journal of Chemical Ecology, 25, 2585-2600.
DOI URL |
[18] | Lin SZ (林思祖), Du L (杜玲), Cao GQ (曹光球) (2002). Advance and application prospects on allelopathy research in forestry. Journal of Fujian College of Forestry (福建林学院学报), 22, 184-188. (in Chinese with English abstract) |
[19] | Liu FD (刘福德), Jiang YZ (姜岳忠), Wang HT (王华田), Kong LG (孔令刚), Wang Y (王迎) (2005). Effect of continuous cropping on poplar plantation. Journal of Soil and Water Conservation (水土保持学报), 19(2), 102-105. (in Chinese with English abstract) |
[20] | Lü WG (吕卫光), Zhang CL (张春兰), Yuan F (袁飞), Peng Y (彭宇) (2002). Mechanism of allelochemicals inhibiting continuous cropping cucumber growth. Scientia Agricultura Sinica (中国农业科学), 35, 106-109. (in Chinese with English abstract) |
[21] | Politycka B (1996). Peroxidase activity and lipid peroxidation in roots of cucumber seedlings influenced by derivatives of cinnamic and benzoic Acids. Acta Physiologiae Plantarum, 18, 365-370. |
[22] | Rice EL (1984). Allelopathy 2nd edn. Academic Press, New York. 267-290. |
[23] |
Romagni JG, Allen SN, Dayan FE (2000). Allelopathic effects of volatile cineoles on two weedy plants. Journal of Chemical Ecology, 26, 303-314.
DOI URL |
[24] | Roshchina VV, Roshchina VD (1993). The Excretory Function of Higher Plant. Spinger-Verlag, New York. 213-215. |
[25] |
Sang UC, Seong KC, Sunyo J (2002). Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard. Grass. Crop Protection, 21, 1077-1082.
DOI URL |
[26] | Sun CL (孙翠玲), Zhu ZX (朱占学), Wang Z (王珍), Tong CR (佟超然) (1995). Study on the soil degradation of the poplar plantation and the technique to preserve and increase soil fertility. Scientia Silvae Sinicae (林业科学), 31, 506-512. (in Chinese with English abstract) |
[27] | Tan XM (谭秀梅), Wang HT (王华田), Kong LG (孔令刚), Wang YP (王延平) (2008). Accumulation of phenolic acids in soil of a continuous cropping poplar plantation and their effects on soil microbes. Journal of Shandong University (Natural Science) (山东大学学报(理学版)), 43(1), 14-19. (in Chinese with English abstract) |
[28] |
Tang CS, Young CC (1982). Collection and identification of allelopathic compounds from the undisturbed root system of Bigalta Limpo grass Hemarthria altissima). Plant Physiology, 69, 155-160.
DOI URL |
[29] |
Vitousek PM, Gosz JR, Grier CC, Melillo JM, Reiners WA (1982). A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems. Ecological Monographs, 52, 155-177.
DOI URL |
[30] | Waller GR (1987). Allelochemicals: Role in Agriculture and Forestry. American Chemical Society, Washington. |
[31] | Wu FZ (吴凤芝), Zhao FX (赵凤艳), Ma FM (马凤鸣) (2001). Phenolic acid substances and allelopathy mechanisms. Journal of Northeast Agricultural University (东北农业大学学报), 32, 313-319. (in Chinese with English abstract) |
[32] | Wu XH (吴晓辉) (2005). Studies on the Allelopathy of Several Submerged Potamogetonaceae Species on Planktonic Algae (常见眼子菜科沉水植物对浮游藻类的化感作用研究). PhD dissertation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan. 24-25. (in Chinese) |
[33] |
Yu JQ, Matsui Y (1997). Effects of root exudates of cucumber ( Cucumis sativus L.) and allelochemicals on uptake by cucumber seedlings. Journal of Chemical Ecology, 23, 817-827.
DOI URL |
[34] | Zhang SX (张淑香), Gao ZQ (高子勤) (2000). Continuous cropping obstacle and rhizospheric microecology. II. Root exudates and phenolic acids. Chinese Journal of Applied Ecology (应用生态学报), 11, 152-156. (in Chinese with English abstract) |
[35] | Zhao SJ (赵世杰), Zou Q (邹琦), Gao HY (高辉远), Meng QW (孟庆伟) (2004). Plant Physiologic Experimental Guide (植物生理学实验指导). Chinese Agricultural Science and Technology Press, Beijing. 98-101. (in Chinese) |
[1] | 赵小宁 田晓楠 李新 李广德 郭有正 贾黎明 段劼 席本野. Granier原始公式计算树干液流速率的适用性分析—以毛白杨为例[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 姚萌 康荣华 王盎 马方园 李靳 台子晗 方运霆. 利用15N示踪技术研究乔木幼苗对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 0-0. |
[3] | 项伟, 黄冬柳, 朱师丹. 热带亚热带26种蕨类植物的吸收根解剖特征[J]. 植物生态学报, 2022, 46(5): 593-601. |
[4] | 侯宝林, 庄伟伟. 古尔班通古特沙漠一年生植物的氮吸收策略[J]. 植物生态学报, 2021, 45(7): 760-770. |
[5] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
[6] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[7] | 李崇玮, 柏新富, 陈国忠, 朱萍, 张淑婷, 侯玉平, 张兴晓. 不同恢复年限老参地土壤养分以及酚酸类代谢物含量差异[J]. 植物生态学报, 2021, 45(11): 1263-1274. |
[8] | 李诗奇, 张彦浩, 李政, 张沛东. 大叶藻对氮磷营养盐的吸收动力学特征[J]. 植物生态学报, 2020, 44(7): 772-781. |
[9] | 刘丽燕, 冯锦霞, 刘文鑫, 万贤崇. 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响[J]. 植物生态学报, 2020, 44(6): 677-686. |
[10] | 陈婵, 张仕吉, 李雷达, 刘兆丹, 陈金磊, 辜翔, 王留芳, 方晰. 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征[J]. 植物生态学报, 2019, 43(8): 658-671. |
[11] | 冯璐, 卜兆君, 吴玉环, 刘莎莎, 刘超. 泥炭地特征性环境因子促进泥炭藓持久孢子库的形成[J]. 植物生态学报, 2019, 43(6): 512-520. |
[12] | 周慧敏, 李品, 冯兆忠, 张殷波. 地表臭氧浓度升高与干旱交互作用对杨树非结构性碳水化合物积累和叶根分配的短期影响[J]. 植物生态学报, 2019, 43(4): 296-304. |
[13] | 牟静, 宾振钧, 李秋霞, 卜海燕, 张仁懿, 徐当会. 氮硅添加对青藏高原高寒草甸土壤氮矿化的影响[J]. 植物生态学报, 2019, 43(1): 77-84. |
[14] | 沈芳芳, 李燕燕, 刘文飞, 段洪浪, 樊后保, 胡良, 孟庆银. 长期氮沉降对杉木人工林叶、枝氮磷养分再吸收的影响[J]. 植物生态学报, 2018, 42(9): 926-937. |
[15] | 汪星, 宫兆宁, 井然, 张磊, 金点点. 基于连续统去除法的水生植物提取及其时空变化分析——以官厅水库库区为例[J]. 植物生态学报, 2018, 42(6): 640-652. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19