植物生态学报 ›› 2020, Vol. 44 ›› Issue (7): 772-781.DOI: 10.17521/cjpe.2019.0335
收稿日期:
2019-12-03
接受日期:
2020-05-01
出版日期:
2020-07-20
发布日期:
2020-07-02
通讯作者:
*张沛东,zhangpdsg@ouc.edu.cn
作者简介:
李诗奇: ORCID:0000-0002-6100-457X
基金资助:
LI Shi-Qi, ZHANG Yan-Hao, LI Zheng, ZHANG Pei-Dong*()
Received:
2019-12-03
Accepted:
2020-05-01
Online:
2020-07-20
Published:
2020-07-02
Contact:
ZHANG Pei-Dong,zhangpdsg@ouc.edu.cn
Supported by:
摘要:
营养盐是影响海草生长的关键因子, 目前有关海草不同组织对不同形式氮和磷的吸收特征尚不明确。该研究通过利用海草地上和地下组织分隔培养装置, 设置不同的氨态氮、硝态氮和磷酸盐浓度, 探究了大叶藻(Zostera marina)植株及其地上和地下组织对氮磷营养盐的吸收动力学特征。结果显示: (1)大叶藻对氮磷的吸收符合饱和吸收动力学特征, 吸收速率和水体氮磷浓度可用米式方程描述; (2)大叶藻植株对NH4+-N的最大吸收速率(Vmax, 52 μmol·g-1·h-1)显著高于其对NO3--N的Vmax (39 μmol·g-1·h-1); (3)大叶藻地上组织和地下组织均可吸收氮磷, 但地上组织对氨态氮、硝态氮、磷酸盐的Vmax分别为43.1、30.5和15.6 μmol·g-1·h-1, 为地下组织的2.6、1.2和6倍。结果表明, 大叶藻对氨态氮的吸收能力高于硝态氮, 且对氮磷的吸收可能主要依赖地上组织(叶片)。结果为查明大叶藻对氮磷的吸收利用机制及评估大叶藻的海洋生态效应提供了理论依据。
李诗奇, 张彦浩, 李政, 张沛东. 大叶藻对氮磷营养盐的吸收动力学特征. 植物生态学报, 2020, 44(7): 772-781. DOI: 10.17521/cjpe.2019.0335
LI Shi-Qi, ZHANG Yan-Hao, LI Zheng, ZHANG Pei-Dong. Uptake kinetics of nitrogen and phosphorus by Zostera marina. Chinese Journal of Plant Ecology, 2020, 44(7): 772-781. DOI: 10.17521/cjpe.2019.0335
分隔装置 Separation apparatus | 未分隔组 No-separating group | 分隔且地上组织添加组 Separation group with N, P addition in the leaf compartment | 分隔且地下组织添加组 Separation group with N, P addition in the root- rhizome compartment |
---|---|---|---|
玻璃水槽 Glass aquarium | 设置的营养盐浓度 Designed nutrient concentration | 设置的营养盐浓度 Designed nutrient concentration | 天然海水营养盐浓度 Nutrient concentration of natural seawater |
聚乙烯瓶 Polyethylene bottle | 设置的营养盐浓度 Designed nutrient concentration | 天然海水营养盐浓度 Nutrient concentration of natural seawater | 设置的营养盐浓度 Designed nutrient concentration |
表1 大叶藻分隔培养不同实验装置水体营养盐浓度设置方案
Table 1 Installment scheme of water nutrient concentrations under different experimental treatments for separate cultivation of Zostera marina
分隔装置 Separation apparatus | 未分隔组 No-separating group | 分隔且地上组织添加组 Separation group with N, P addition in the leaf compartment | 分隔且地下组织添加组 Separation group with N, P addition in the root- rhizome compartment |
---|---|---|---|
玻璃水槽 Glass aquarium | 设置的营养盐浓度 Designed nutrient concentration | 设置的营养盐浓度 Designed nutrient concentration | 天然海水营养盐浓度 Nutrient concentration of natural seawater |
聚乙烯瓶 Polyethylene bottle | 设置的营养盐浓度 Designed nutrient concentration | 天然海水营养盐浓度 Nutrient concentration of natural seawater | 设置的营养盐浓度 Designed nutrient concentration |
营养盐形式 Form of nutrient | 植株部位 Tissue of plant | Vmax (μmol·g-1·h-1) | Km (μmol·L-1) | R2 |
---|---|---|---|---|
NH4+-N | 植株 Shoot | 51.8 ± 7.1b | 68.1 ± 15.9 | 0.98 |
地上组织 Aboveground tissue | 43.1 ± 7.2b | 58.9 ± 19.4 | 0.92 | |
地下组织 Belowground tissue | 16.3 ± 8.5a | 48.6 ± 17.9 | 0.95 | |
NO3--N | 植株 Shoot | 39.1 ± 7.0 | 68.6 ± 16.8 | 0.99 |
地上组织 Aboveground tissue | 30.5 ± 10.9 | 42.8 ± 13.5 | 0.97 | |
地下组织 Belowground tissue | 26.5 ± 3.8 | 53.3 ± 9.1 | 0.99 | |
PO43--P | 植株 Shoot | 27.9 ± 8.4b | 24.8 ± 4.4b | 0.97 |
地上组织 Aboveground tissue | 15.6 ± 0.9b | 7.6 ± 0.2a | 0.90 | |
地下组织 Belowground tissue | 2.6 ± 0.9a | 6.0 ± 1.9a | 0.97 |
表2 大叶藻对NH4+-N、NO3--N和PO43--P的吸收动力学参数
Table 2 Kinetics characteristics of nutrient uptake of NH4+-N, NO3--N and PO43--P by Zostera marina
营养盐形式 Form of nutrient | 植株部位 Tissue of plant | Vmax (μmol·g-1·h-1) | Km (μmol·L-1) | R2 |
---|---|---|---|---|
NH4+-N | 植株 Shoot | 51.8 ± 7.1b | 68.1 ± 15.9 | 0.98 |
地上组织 Aboveground tissue | 43.1 ± 7.2b | 58.9 ± 19.4 | 0.92 | |
地下组织 Belowground tissue | 16.3 ± 8.5a | 48.6 ± 17.9 | 0.95 | |
NO3--N | 植株 Shoot | 39.1 ± 7.0 | 68.6 ± 16.8 | 0.99 |
地上组织 Aboveground tissue | 30.5 ± 10.9 | 42.8 ± 13.5 | 0.97 | |
地下组织 Belowground tissue | 26.5 ± 3.8 | 53.3 ± 9.1 | 0.99 | |
PO43--P | 植株 Shoot | 27.9 ± 8.4b | 24.8 ± 4.4b | 0.97 |
地上组织 Aboveground tissue | 15.6 ± 0.9b | 7.6 ± 0.2a | 0.90 | |
地下组织 Belowground tissue | 2.6 ± 0.9a | 6.0 ± 1.9a | 0.97 |
图2 不同氨态氮浓度下大叶藻对NH4+-N的吸收动力学特征(平均值±标准偏差)。 误差线上不同小写字母表示同一浓度下植株不同组织之间存在显著差异(p < 0.05)。
Fig. 2 Kinetics characteristics of NH4+-N uptake of Zostera marina in the different ammonia nitrogen concentrations (mean ± SD). Different lowercase letters above bars indicate significant differences between different tissues under the same nutrient concentration (p < 0.05).
图3 不同硝态氮浓度下大叶藻对NO3--N的吸收动力学特征(平均值±标准偏差)。
Fig. 3 Kinetics characteristics of NO3--N uptake of Zostera marina in the different nitrate nitrogen concentrations (mean ± SD).
图4 不同磷酸盐浓度下大叶藻对PO43--P的吸收动力学特征(平均值±标准偏差)。 误差线上不同小写字母表示同一浓度下植株不同组织之间存在显著差异(p < 0.05)。
Fig. 4 Kinetics characteristics of PO43--P uptake of Zostera marina in the different phosphate concentrations (mean ± SD). Different lowercase letters above bars indicate significant differences between different tissues under the same nutrient concentration (p < 0.05).
种类 Species | 研究地点 Study area | Vmax (μmol·g-1·h-1) | Km (μmol·L-1) | 文献 Reference | ||||
---|---|---|---|---|---|---|---|---|
NH4+-N | NO3--N | PO43--P | NH4+-N | NO3--N | PO43--P | |||
大叶藻 Zostera marina | 山东荣成天鹅湖 Tian’e Lake, Rongcheng, Shandong China (37.35° N, 122.57° E) | 51.8 | 39.1 | 27.9 | 68.1 | 68.6 | 24.8 | 本研究 This study |
美国罗德岛 Rhode Island, USA (41.30° N, 71.30° W) | 48 | |||||||
Phyllospadix torreyi | 美国拉由拉市 La Jolla, USA (32.48° N, 117.16° W) | 96-204 | 25-75 | 9-34 | 4-17 | |||
泰来藻 Thalassia hemprichii | 印度尼西亚斯佩蒙德群岛 Spermonde Archipelago, Indonesia (5.03° S, 119.20° E) | 32-37 | 21-60 | |||||
Thalassia testudinum | 美国圣体湾和马德雷湖 Corpus Christi Bay (27.49° N, 97.07° W) & Laguna Madre, USA (26.09° N, 97.12° W) | 8-16 | 4-7 | 8-15 | 2-39 | |||
Posidonia oceanica | 西班牙马拉加 Málaga, Spain (36.40° N, 4.21° W) | 8.7 | 5.8 | |||||
真江蓠 Gracilari asiatica | 浙江奉化象山港 Xiangshan Harbor, Fenghua, China (29.11° N, 122.01° E) | 159.4 | ||||||
龙须菜 Asparagus schoberioides | 福建东山岛 Dongshan Island, Fujian China (23.36° N, 117.14° E) | 3.1 | ||||||
浒苔 Ulva prolifera | 山东青岛汇泉湾 Huiquan Bay, Qingdao, Shandong China (36.03° N, 123.20° E) | 250.4 | 5.8 |
表3 海草和藻类对NH4+-N、NO3--N和PO43--P的吸收动力学参数
Table 3 Uptake kinetics of NH4+-N, NO3--N and PO43--P by seagrasses and seaweeds
种类 Species | 研究地点 Study area | Vmax (μmol·g-1·h-1) | Km (μmol·L-1) | 文献 Reference | ||||
---|---|---|---|---|---|---|---|---|
NH4+-N | NO3--N | PO43--P | NH4+-N | NO3--N | PO43--P | |||
大叶藻 Zostera marina | 山东荣成天鹅湖 Tian’e Lake, Rongcheng, Shandong China (37.35° N, 122.57° E) | 51.8 | 39.1 | 27.9 | 68.1 | 68.6 | 24.8 | 本研究 This study |
美国罗德岛 Rhode Island, USA (41.30° N, 71.30° W) | 48 | |||||||
Phyllospadix torreyi | 美国拉由拉市 La Jolla, USA (32.48° N, 117.16° W) | 96-204 | 25-75 | 9-34 | 4-17 | |||
泰来藻 Thalassia hemprichii | 印度尼西亚斯佩蒙德群岛 Spermonde Archipelago, Indonesia (5.03° S, 119.20° E) | 32-37 | 21-60 | |||||
Thalassia testudinum | 美国圣体湾和马德雷湖 Corpus Christi Bay (27.49° N, 97.07° W) & Laguna Madre, USA (26.09° N, 97.12° W) | 8-16 | 4-7 | 8-15 | 2-39 | |||
Posidonia oceanica | 西班牙马拉加 Málaga, Spain (36.40° N, 4.21° W) | 8.7 | 5.8 | |||||
真江蓠 Gracilari asiatica | 浙江奉化象山港 Xiangshan Harbor, Fenghua, China (29.11° N, 122.01° E) | 159.4 | ||||||
龙须菜 Asparagus schoberioides | 福建东山岛 Dongshan Island, Fujian China (23.36° N, 117.14° E) | 3.1 | ||||||
浒苔 Ulva prolifera | 山东青岛汇泉湾 Huiquan Bay, Qingdao, Shandong China (36.03° N, 123.20° E) | 250.4 | 5.8 |
图5 大叶藻对氮磷元素的吸收模式示意图。 图中数字表示最大吸收速率(Vmax, μmol·g-1·h-1)。
Schematic diagram of absorption pattern for Zostera marina on nitrogen and phosphorus. Numbers in the figure mean maximum absorption rate (Vmax, μmol·g-1·h-1).
[1] | Alcoverro T, Duarte CM, Romero J (1995). Annual growth dynamics of Posidonia oceanica: contribution of large- scale versus local factors to seasonality. Marine Ecology Progress Series, 120, 203-210. |
[2] | Alexandre A, Hill PW, Jones DL, Santos R (2015). Dissolved organic nitrogen: a relevant, complementary source of nitrogen for the seagrass Zostera marina. Limnology and Oceanography, 60, 1477-1483. |
[3] | Alexandre A, Silva J, Santos R (2004). The maximum nitrate reductase activity of the seagrass Zostera noltii(Hornem.) varies along its vertical distribution. Journal of Experimental Marine Biology and Ecology, 307, 127-135. |
[4] | Bethoux JP, El Boukhary MS, Ruiz-Pino D, Morin P, Copin-Montégut C (2005). Nutrient, oxygen and carbon ratios, CO2 sequestration and anthropogenic forcing in the Mediterranean Sea//Saliot A. The Mediterranean Sea—The Handbook of Environmental Chemistry: Vol. 5•K. Springer, Berlin. 67-86. |
[5] | Brun FG, Hernández I, Vergara JJ, Peralta G, Pérez-Lloréns JL (2002). Assessing the toxicity of ammonium pulses to the survival and growth of Zostera noltii. Marine Ecology Progress Series, 225. 177-187. |
[6] |
Burkholder JM, Mason KM, Glasgow Jr HB (1992). Water- column nitrate enrichment promotes decline of eelgrass Zostera marina: evidence from seasonal mesocosm experiments. Marine Ecology Progress Series, 81. 163-178.
DOI URL |
[7] |
Burkholder JM, Tomasko DA, Touchette BW (2007). Seagrasses and eutrophication. Journal of Experimental Marine Biology & Ecology, 350, 46-72.
DOI URL |
[8] |
Campbell JE, Altieri AH, Johnston LN, Kuempel CD, Paperno R, Paul VJ, Duffy JE (2018). Herbivore community determines the magnitude and mechanism of nutrient effects on subtropical and tropical seagrasses. Journal of Ecology, 106, 401-412.
DOI URL |
[9] | Cheng LW, Zou DH, Zheng QS, Liu ZP, Li F, Jiang HP (2010). Effects of temperature and light intensity on the nitrate uptake kinetics of nitrogen starved and repleteUlva lactuca. Chinese Journal of Ecology, 29, 939-944. |
[ 程丽巍, 邹定辉, 郑青松, 刘兆普, 李枫, 蒋和平 (2010). 光照和温度对氮饥饿及饱和营养条件下石莼(Ulva lactuca)的硝态氮吸收动力学影响. 生态学杂志, 29, 939-944.] | |
[10] |
Darnell KM, Dunton KH (2017). Plasticity in turtle grass (Thalassia testudinum) flower production as a response to porewater nitrogen availability. Aquatic Botany, 138, 100-106.
DOI URL |
[11] |
Dennison WC, Orth RJ, Moore KA, Stevenson JC, Carter V, Kollar S, Bergstrom PW, Batiuk RA (1993). Assessing water quality with submersed aquatic vegetation: habitat requirements as barometers of Chesapeake Bay health. BioScience, 43, 86-94.
DOI URL |
[12] | Duarte CM (1990). Seagrass nutrient content. Marine Ecology Progress Series, 6, 201-207. |
[13] |
Erftemeijer PLA, Middelburg JJ (1995). Mass balance constraints on nutrient cycling in tropical seagrass beds. Aquatic Botany, 50, 21-36.
DOI URL |
[14] |
Flynn KJ (1991). Algal carbon-nitrogen metabolism: a biochemical basis for modelling the interactions between nitrate and ammonium uptake. Journal of Plankton Research, 13, 373-387.
DOI URL |
[15] |
Geider RJ, MacIntyre HL, Kana TM (1997). Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrient-limitation and temperature. Marine Ecology Progress Series, 148, 187-200.
DOI URL |
[16] |
Gras A, Koch MS, Madden CJ (2003). Phosphorus uptake kinetics of a dominant tropical seagrass Thalassia testudinum. Aquatic Botany, 76, 299-315.
DOI URL |
[17] |
Greening H, Janicki A (2006). Toward reversal of eutrophic conditions in a subtropical estuary: water quality and seagrass response to nitrogen loading reductions in Tampa bay, Florida, USA. Environmental Management, 38, 163-178.
URL PMID |
[18] |
Guo MY, Li WT, Yang XL, Zhang XM, Liu JY, Li CJ (2017). Growth adaptability of Zostera marina at different habitats of the Swan Lake in Rongcheng, China. Chinese Journal of Applied Ecology, 28, 1498-1506.
URL PMID |
[ 郭美玉, 李文涛, 杨晓龙, 张秀梅, 刘建影, 李常军 (2017). 鳗草在荣成天鹅湖不同生境中生长的适应性. 应用生态学报, 28, 1498-1506.]
PMID |
|
[19] |
Guo SW, Chen G, Zhou Y, Shen QR (2007). Ammonium nutrition increases photosynthesis rate under water stress at early development stage of rice (Oryza sativa L.). Plant and Soil, 296, 115-124.
DOI URL |
[20] |
Güsewell S, Bollens U, Ryser P, Klotzli F (2003). Contrasting effects of nitrogen, phosphorus and water regime on first- and second-year growth of 16 wetland plant species. Functional Ecology, 17, 754-765.
DOI URL |
[21] |
Haglund K, Pedersén M (1993). Outdoor pond cultivation of the subtropical marine red algaGracilaria tenuistipitata in brackish water in Sweden. Growth, nutrient uptake, co-cultivation with rainbow trout and epiphyte control. Journal of Applied Phycology, 5, 271-284.
DOI URL |
[22] |
Hanisak MD, Harlin MM (2010). Uptake of inorganic nitrogen by Codium fragile subsp. tomentosoides(chlorophyta). Journal of Phycology, 14, 450-454.
DOI URL |
[23] | Hemminga MA, Duarte CM (2000). Seagrass Ecology. Cambridge University Press, Cambridge, UK. |
[24] |
Hemminga MA, Koutstaal BP, Soelen J, Merks AGA (1994). The nitrogen supply to intertidal eelgrass (Zostera marina). Marine Biology, 118, 223-227.
DOI URL |
[25] | Huang BQ, Huang SY, Weng Y, Hong HS (1999). Effect of dissolved phosphorus on alkaline phosphatase activity in marine microalgae. Acta Oceanologica Sinica, 21, 55-60. |
[ 黄邦钦, 黄世玉, 翁妍, 洪华生 (1999). 溶解态磷在海洋微藻碱性磷酸酶活力变化中的调控作用. 海洋学报, 21, 55-60.] | |
[26] |
Kaldy JE (2014). Effect of temperature and nutrient manipulations on eelgrass Zostera marina L. from the Pacific Northwest, USA. Journal of Experimental Marine Biology and Ecology, 453, 108-115.
DOI URL |
[27] |
Kraemer HC, Kazdin AE, Offord DR, Kessler RC, Jensen PS, Kupfer DJ (1997). Coming to terms with the terms of risk. Archives of General Psychiatry, 54, 337-343.
DOI URL PMID |
[28] |
Lara C, Rodriguez R, Guerrero MG (1993). Sodium-dependent nitrate transport and energetics of cyanobacteria. Journal of Phycology, 29, 389-395.
DOI URL |
[29] |
Lavery PS, McComb AJ (1991). Macroalgal-sediment nutrient interactions and their importance to macroalgal nutrition in a eutrophic estuary. Estuarine Coastal and Shelf Science, 32, 281-295.
DOI URL |
[30] |
Lee K, Park SR, Kim YK (2007). Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. Journal of Experimental Marine Biology and Ecology, 350, 144-175.
DOI URL |
[31] |
Lee KS, Dunton KH (1999). Inorganic nitrogen acquisition in the seagrass Thalassia testudinum: development of a whole-plant nitrogen budget. Limnology and Oceanography, 44, 1204-1215.
DOI URL |
[32] |
Lee KS, Dunton KH (2000). Effects of nitrogen enrichment on biomass allocation, growth, and leaf morphology of the seagrass Thalassia testudinum. Marine Ecology Progress Series, 196, 39-48.
DOI URL |
[33] |
Li MY, Lundquist CJ, Pilditch CA, Rees A, Ellis J (2019). Implications of nutrient enrichment for the conservation and management of seagrass Zostera muelleri meadows. Aquatic Conservation: Marine and Freshwater Ecosystems, 29, 1484-1502.
DOI URL |
[34] | Li WT, Zhang XM(2009). The ecological functions of seagrass meadows. Periodical of Ocean University of China, 39, 933-939. |
[ 李文涛, 张秀梅 (2009). 海草场的生态功能. 中国海洋大学学报, 39, 933-939.] | |
[35] | Liu CF, Zhang ZY, Lei YZ (2001). Effects of salinity, light and nutrients on photosynthesis of sterile Ulva pertusa. Acta Ecologica Sinica, 21, 795-798. |
[ 刘长发, 张泽宇, 雷衍之(2001). 盐度、光照和营养盐对孔石莼(Ulva pertusa)光合作用的影响. 生态学报, 21, 795-798.] | |
[36] | Liu JW, Dong SL (2001). Nutrient matebolism and the major nutritient uptake kinetics of sea weeds. Plant Physiology Communications, 37, 325-330. |
[ 刘静雯, 董双林 (2001). 海藻的营养代谢及其对主要营养盐的吸收动力学. 植物生理学通讯, 37, 325-330.] | |
[37] | Liu JW, Dong SL, Ma S (2001). Effects of temperature and salinity on growth of G. tenuistipitata var. liui, U. pertusa, G. filicina and NH4-N uptake of G. tenuistipitata var. liui. Acta Oceanologica Sinica, 23, 109-116. |
[ 刘静雯, 董双林, 马甡 (2001). 温度和盐度对几种大型海藻生长率和NH4-N吸收的影响. 海洋学报, 23, 109-116.] | |
[38] | Liu WY, Han QY, Tang YQ, Sun XY (2017). Review of nutrient enrichment and global warming effects on seagrasses. Chinese Journal of Ecology, 36, 1087-1096. |
[ 刘伟妍, 韩秋影, 唐玉琴, 孙西艳 (2017). 营养盐富集和全球温度升高对海草的影响. 生态学杂志, 36, 1087-1096.] | |
[39] |
Lomas MW, Glibert PM (1999). Interactions between NH4+ and NO3- uptake and assimilation: comparison of diatoms and dinoflagellates at several growth temperatures. Marine Biology, 133, 541-551.
DOI URL |
[40] |
McCarthy MD, Benner R, Lee C, Hedges JI, Fogel ML (2004). Amino acid carbon isotopic fractionation patterns in oceanic dissolved organic matter: an unaltered photoautotrophic source for dissolved organic nitrogen in the ocean? Marine Chemistry, 92, 123-134.
DOI URL |
[41] |
Mukai H, Aioi K, Koike I, Iizumi H, Ohtsu M, Hattori A (1979). Growth and organic production of eelgrass (Zostera marina L.) in temperate waters of the pacific coast of Japan. I. Growth analysis in spring-summer. Aquatic Botany, 7, 47-56.
DOI URL |
[42] |
Nielsen OI, Koch MS, Jensen HS, Madden CJ (2006). Thalassia testudinum phosphate uptake kinetics at low in situ concentrations using a 33P radioisotope technique. Limnology and Oceanography, 51, 208-217.
DOI URL |
[43] |
Orth RJ (1973). Benthic infauna of eelgrass,Zostera marina, beds. Chesapeake Science, 14, 258-269.
DOI URL |
[44] |
Orth RJ, van Montfrans J (1984). Epiphyte-seagrass relationships with an emphasis on the role of micrograzing: a review. Aquatic Botany, 18, 43-69.
DOI URL |
[45] |
Pedersen MF, Ei PL, Walker D (1997). Nitrogen uptake and allocation in the seagrass Amphibolis antarctica. Aquatic Botany, 56, 105-117.
DOI URL |
[46] |
Pereda-Briones L, Tomas F, Terrados J (2018). Field transplantation of seagrass (Posidonia oceanica) seedlings: effects of invasive algae and nutrients. Marine Pollution Bulletin, 134, 160-165.
DOI URL PMID |
[47] |
Perry D, Hammar L, Linderholm HW, Gullström M (2020). Spatial risk assessment of global change impacts on Swedish seagrass ecosystems. PLOS ONE, 15, e0225318. DOI: 10.1371/journal.pone.0225318.
URL PMID |
[48] |
Phillips GL, Eminson D, Moss B (1978). A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany, 4, 103-126.
DOI URL |
[49] |
Pietro KC, Chimney MJ, Steinman AD (2006). Phosphorus removal by the Ceratophyllum/periphyton complex in a south Florida (USA) freshwater marsh. Ecological Engineering, 27, 290-300.
DOI URL |
[50] | Romero J, Lee KS, Pérez M, Mateo MA, Alcoverro T (2006). Nutrient dynamics in seagrass ecosystems //Larkum AWD, Orth RJ, Duarte CM. Seagrasses: Biology, Ecology and Conservation. Springer-Verlag, Berlin. 227-254. |
[51] |
Rubio L, García-Pérez D, García-Sánchez M, Fernández J (2018). Na+-dependent high-affinity nitrate, phosphate and amino acids transport in leaf cells of the seagrass Posidonia oceanica (L.) delile. International Journal of Molecular Sciences, 19, 1570-1582.
DOI URL |
[52] |
Sandoval-Gil JM, Ávila-López MC, Camacho-Ibar VF, Hernández- Ayón JM, Zertuche-González JA, Cabello-Pasini A (2019). Regulation of nitrate uptake by the seagrassZostera marina during upwelling. Estuaries and Coasts, 42, 731-742.
DOI URL |
[53] |
Short FT, Polidoro B, Livingstone SR, Carpenter KE, Bandeira S, Bujang JS, Calumpong HP, Carruthers TJB, Coles R, Dennison WC, Erftemeijer PLA, Fortes MD, Freeman AS, Jagtap TG, Kamal AHM, Kendrick GA (2011). Extinction risk assessment of the world’s seagrass species. Biological Conservation, 144, 1961-1971.
DOI URL |
[54] |
Stapel J, Aarts TL, Bhm VD, Jd DG, den Hoogen Phw V, Hemminga M (1996). Nutrient uptake by leaves and roots of the seagrass Thalassia hemprichii in the Spermonde Archipelago, Indonesia. Marine Ecology Progress Series, 134, 195-206.
DOI URL |
[55] |
Stapel J, Hemminga MA (1997). Nutrient resorption from seagrass leaves. Marine Biology, 128, 197-206.
DOI URL |
[56] |
Terrados J, Williams SL (1997). Leaf versus root nitrogen uptake by the surfgrass Phyllospadix torreyi. Marine Ecology Progress Series, 149, 267-277.
DOI URL |
[57] |
Thormann MN, Bayley SE (1997). Response of aboveground net primary plant production to nitrogen and phosphorus fertilization in peatlands in southern boreal Alberta, Canada. Wetlands, 17, 502-512.
DOI URL |
[58] |
Thursby GB, Harlin MM (1982). Leaf-root interaction in the uptake of ammonia by Zostera marina. Marine Biology, 72, 109-112.
DOI URL |
[59] |
Thursby GB, Harlin MM (1984). Interaction of leaves and roots of Ruppia maritima in the uptake of phosphate, ammonia and nitrate. Marine Biology, 83, 61-67.
DOI URL |
[60] | Tian XH, Li SX, Wang QJ (2001). Preliminary study on the methods for determining absorption kinetic of NO3- by using some crops. Chinese Journal of Soil Science, 32, 16-18. |
[ 田霄鸿, 李生秀, 王清君 (2001). 几种作物NO3 吸收动力学参数测定方法初探. 土壤通报, 32, 16-18.] | |
[61] |
Touchette BW, Burkholder JM (2000). Review of nitrogen and phosphorus metabolism in seagrasses. Journal of Experimental Marine Biology and Ecology, 250, 133-167.
DOI URL PMID |
[62] |
Turpin DH (1991). Effects of inorganic n availability on algal photosynthesis and carbon metabolism. Journal of Phycology, 27, 14-20.
DOI URL |
[63] |
Udy J, Dennison WC (1997). Growth and physiological responses of three seagrass species to elevated sediment nutrients in Moreton Bay, Australia. Journal of Experimental Marine Biology and Ecology, 217, 253-277.
DOI URL |
[64] |
Unsworth RKF, Nordlund LM, Cullen-Unsworth LC (2019). Seagrass meadows support global fisheries production. Conservation Letters, 12, e12566. DOI: 10.1111/conl. 12566.
DOI URL |
[65] |
van Engeland T, Bouma TJ, Morris EP, Brun FG, Peralta G, Lara M, Hendriks IE, Soetaert K, Middelburg JJ (2011). Potential uptake of dissolved organic matter by seagrasses and macroalgae. Marine Ecology Progress Series, 427, 71-81.
DOI URL |
[66] |
van Katwijk MM, Schmitz GHW, Gasseling AP, van Avesaath PH (1999). Effects of salinity and nutrient load and their interaction on Zostera marina. Marine Ecology Progress Series, 190, 155-165.
DOI URL |
[67] |
van Katwijk MM, Vergeer LHT, Schmitz GHW, Roelofs JGM (1997). Ammonium toxicity in eelgrass Zostera marina. Marine Ecology Progress Series, 157, 159-173.
DOI URL |
[68] |
Villazán B, Salo T, Brun FG, Vergara JJ, Pedersen MF (2015). High ammonium availability amplifies the adverse effect of low salinity on eelgrass Zostera marina. Marine Ecology Progress Series, 536, 149-162.
DOI URL |
[69] |
Vonk JA, Middelburg JJ, Stapel J, Bouma TJ (2008). Dissolved organic nitrogen uptake by seagrasses. Limnology and Oceanography, 53, 542-548.
DOI URL |
[70] | Wang YY, Huo YZ, Tian QT, He PM (2011). The kinetics of NONO3-N and PO4-P uptake by Ulva prolifera Journal of Shanghai Fisheries University, 20, 121-125. |
[ 王阳阳, 霍元子, 田千桃, 何培民 (2011). 浒苔对NO3-N和PO4-P吸收动力学特征. 上海海洋大学学报, 20, 121-125.] | |
[71] |
Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106, 12377-12381.
DOI URL PMID |
[72] |
Weich RG, Granéli E (1989). Extracellular alkaline phosphatase activity in Ulva lactuca L. Journal of Experimental Marine Biology and Ecology, 129, 33-44.
DOI URL |
[73] |
Wen SS, Zhang HY, He WH, Zhang YJ, Xu SN, He PM (2008). Study on NH4-N removing efficiency and kinetics in Gracilaria asiatica. Journal of Fisheries of China, 32, 794-803.
DOI URL |
[ 温珊珊, 张寒野, 何文辉, 张饮江, 徐姗楠, 何培民 (2008). 真江蓠对氨氮去除效率与吸收动力学研究. 水产学报, 32, 794-803.] | |
[74] | Xu YJ, Qian LM, Wei W, Wang YS (2007). Studies on nutrient kinetics characteristics of two species seaweeds (Rhodophyta) at outdoor natural conditions. Marine Environmental Science, 26, 161-165. |
[ 徐永健, 钱鲁闽, 韦玮, 王永胜 (2007). 两种大型海藻自然环境下的营养动力学研究. 海洋环境科学, 26, 161-165.] | |
[75] |
Zheng FY, Qiu GL, Fan HQ, Zhang W (2013). Diversity, distribution and conservation of Chinese seagrass species. Biodiversity Science, 21, 517-526.
DOI URL |
[ 郑凤英, 邱广龙, 范航清, 张伟 (2013). 中国海草的多样性, 分布及保护. 生物多样性, 21, 517-526.] |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[5] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[6] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[7] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[8] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[9] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[10] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[11] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[12] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[13] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[14] | 李小玲, 朱道明, 余玉蓉, 吴浩, 牟利, 洪柳, 刘雪飞, 卜贵军, 薛丹, 吴林. 模拟氮沉降对鄂西南贫营养泥炭地两种藓类植物生长与分解的影响[J]. 植物生态学报, 2023, 47(5): 644-659. |
[15] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19