植物生态学报 ›› 2022, Vol. 46 ›› Issue (5): 593-601.DOI: 10.17521/cjpe.2021.0328
收稿日期:
2021-09-10
接受日期:
2021-12-22
出版日期:
2022-05-20
发布日期:
2022-02-16
通讯作者:
朱师丹
作者简介:
* (zhushidan@gxu.edu.cn) ORCID: 朱师丹: 0000-0002-9228-368X基金资助:
XIANG Wei, HUANG Dong-Liu, ZHU Shi-Dan()
Received:
2021-09-10
Accepted:
2021-12-22
Online:
2022-05-20
Published:
2022-02-16
Contact:
ZHU Shi-Dan
Supported by:
摘要:
植物吸收根的生理功能是从土壤中吸收水分和营养物质, 研究其解剖结构有助于揭示植物的环境适应策略。热带亚热带地区蕨类植物丰富, 生态和经济价值较高, 但目前对这一重要植物类群的吸收根解剖特征的研究仍然缺乏。该研究测定了分布在热带亚热带地区4种典型森林的共26种蕨类植物吸收根的解剖特征, 分析它们的种间差异, 结合系统发育与全球自然分布区的气候因子解释根系性状的变异。同时, 通过收集亚热带木本被子植物和温带蕨类植物相关的已发表数据, 比较不同类群的根系性状相关关系的差异。结果表明: (1)这些蕨类植物吸收根特征的种间差异显著, 8个根系性状的种间变异系数范围为20.61%-41.75%。(2)除皮层厚度外根系性状无显著的系统发育信号, 说明性状变异受系统发育的影响较小; 气候因子显著影响根系特征, 根直径和皮层厚度随着最干月(季)降水量减少而增大。(3)随着吸收根直径的减小, 亚热带木本被子植物趋于具有更低的皮层厚度/中柱直径比值, 而蕨类植物则相反; 与温带蕨类相比, 该研究中蕨类植物具有更大的根直径、皮层厚度和管胞直径。该研究有助于提高对热带亚热带蕨类植物根系生理生态适应性的认识。
项伟, 黄冬柳, 朱师丹. 热带亚热带26种蕨类植物的吸收根解剖特征. 植物生态学报, 2022, 46(5): 593-601. DOI: 10.17521/cjpe.2021.0328
XIANG Wei, HUANG Dong-Liu, ZHU Shi-Dan. Absorptive root anatomical traits of 26 tropical and subtropical fern species. Chinese Journal of Plant Ecology, 2022, 46(5): 593-601. DOI: 10.17521/cjpe.2021.0328
物种 Species | 缩写 Abbreviation | 科 Family | 地点 Site | 海拔1) Altitude1) (m) |
---|---|---|---|---|
无腺毛蕨 Cyclosorus procurrens | Cp | 金星蕨科 Thelypteridaceae | 大明山 Damingshan | 200-1 900 |
披针贯众 Cyrtomium devexiscapulae | Cd | 鳞毛蕨科 Dryopteridaceae | 大明山 Damingshan | 380-700 |
薄叶双盖蕨 Diplazium pinfaense | Dp | 蹄盖蕨科 Athyriaceae | 大明山 Damingshan | 400-1 800 |
双扇蕨 Dipteris conjugata | Dc | 双扇蕨科 Dipteridaceae | 大明山 Damingshan | 1 400-2 100 |
栗蕨 Histiopteris incisa | Hi | 碗蕨科 Dennstaedtiaceae | 大明山 Damingshan | 500-1 900 |
华南鳞盖蕨 Microlepia hancei | Mh | 碗蕨科 Dennstaedtiaceae | 大明山 Damingshan | 300-800 |
斜方鳞盖蕨 Microlepia rhomboidea | Mr | 碗蕨科 Dennstaedtiaceae | 大明山 Damingshan | <1 000 |
乌蕨 Odontosoria chinensis | Oc | 鳞始蕨科 Lindsaeaceae | 大明山 Damingshan | 200-1 900 |
紫萁 Osmunda japonica | Oj | 紫萁科 Osmundaceae | 大明山 Damingshan | <2 300 |
钝角金星蕨 Parathelypteris angulariloba | Pa | 金星蕨科 Thelypteridaceae | 大明山 Damingshan | 500-800 |
瘤足蕨 Plagiogyria adnata | Pla | 瘤足蕨科 Plagiogyriaceae | 大明山 Damingshan | 500-2 000 |
华中瘤足蕨 Plagiogyria euphlebia | Ple | 瘤足蕨科 Plagiogyriaceae | 大明山 Damingshan | 500-1 200 |
井栏边草 Pteris multifida | Pm | 凤尾蕨科 Pteridaceae | 大明山 Damingshan | <1 000 |
半边旗 Pteris semipinnata | Ps | 凤尾蕨科 Pteridaceae | 大明山 Damingshan | <850 |
蜈蚣凤尾蕨 Pteris vittata | Pv | 凤尾蕨科 Pteridaceae | 大明山 Damingshan | <2 000 |
卤蕨 Acrostichum aureum | Aa | 凤尾蕨科 Pteridaceae | 东寨港 Dongzhaigang | - |
桫椤 Alsophila spinulosa | As | 桫椤科 Cyatheaceae | 伏波 Fubo | 260-1 600 |
乌毛蕨 Blechnum orientale | Bo | 乌毛蕨科 Blechnaceae | 伏波 Fubo | 300-800 |
金毛狗 Cibotium barometz | Cb | 金毛狗科 Cibotiaceae | 伏波 Fubo | 150-1 800 |
长叶实蕨 Bolbitis heteroclita | Bh | 鳞毛蕨科 Dryopteridaceae | 十万大山 Shiwandashan | 50-1 500 |
芒萁 Dicranopteris pedata | Dip | 里白科 Gleicheniaceae | 十万大山 Shiwandashan | 1 880 |
中华里白 Diplopterygium chinense | Dic | 里白科 Gleicheniaceae | 十万大山 Shiwandashan | 800-1 650 |
肾蕨 Nephrolepis cordifolia | Nc | 肾蕨科 Nephrolepidaceae | 十万大山 Shiwandashan | 30-1 500 |
华南紫萁 Osmunda vachellii | Ov | 紫萁科 Osmundaceae | 十万大山 Shiwandashan | <700 |
红色新月蕨 Pronephrium lakhimpurense | Pl | 金星蕨科 Thelypteridaceae | 十万大山 Shiwandashan | 300-1 550 |
条裂叉蕨 Tectaria phaeocaulis | Tp | 叉蕨科 Tectariaceae | 十万大山 Shiwandashan | 400-500 |
表1 热带亚热带26种蕨类植物的采样地点、自然分布区的海拔
Table 1 A list of sample sites and their altitude for the 26 tropical and subtropical fern species
物种 Species | 缩写 Abbreviation | 科 Family | 地点 Site | 海拔1) Altitude1) (m) |
---|---|---|---|---|
无腺毛蕨 Cyclosorus procurrens | Cp | 金星蕨科 Thelypteridaceae | 大明山 Damingshan | 200-1 900 |
披针贯众 Cyrtomium devexiscapulae | Cd | 鳞毛蕨科 Dryopteridaceae | 大明山 Damingshan | 380-700 |
薄叶双盖蕨 Diplazium pinfaense | Dp | 蹄盖蕨科 Athyriaceae | 大明山 Damingshan | 400-1 800 |
双扇蕨 Dipteris conjugata | Dc | 双扇蕨科 Dipteridaceae | 大明山 Damingshan | 1 400-2 100 |
栗蕨 Histiopteris incisa | Hi | 碗蕨科 Dennstaedtiaceae | 大明山 Damingshan | 500-1 900 |
华南鳞盖蕨 Microlepia hancei | Mh | 碗蕨科 Dennstaedtiaceae | 大明山 Damingshan | 300-800 |
斜方鳞盖蕨 Microlepia rhomboidea | Mr | 碗蕨科 Dennstaedtiaceae | 大明山 Damingshan | <1 000 |
乌蕨 Odontosoria chinensis | Oc | 鳞始蕨科 Lindsaeaceae | 大明山 Damingshan | 200-1 900 |
紫萁 Osmunda japonica | Oj | 紫萁科 Osmundaceae | 大明山 Damingshan | <2 300 |
钝角金星蕨 Parathelypteris angulariloba | Pa | 金星蕨科 Thelypteridaceae | 大明山 Damingshan | 500-800 |
瘤足蕨 Plagiogyria adnata | Pla | 瘤足蕨科 Plagiogyriaceae | 大明山 Damingshan | 500-2 000 |
华中瘤足蕨 Plagiogyria euphlebia | Ple | 瘤足蕨科 Plagiogyriaceae | 大明山 Damingshan | 500-1 200 |
井栏边草 Pteris multifida | Pm | 凤尾蕨科 Pteridaceae | 大明山 Damingshan | <1 000 |
半边旗 Pteris semipinnata | Ps | 凤尾蕨科 Pteridaceae | 大明山 Damingshan | <850 |
蜈蚣凤尾蕨 Pteris vittata | Pv | 凤尾蕨科 Pteridaceae | 大明山 Damingshan | <2 000 |
卤蕨 Acrostichum aureum | Aa | 凤尾蕨科 Pteridaceae | 东寨港 Dongzhaigang | - |
桫椤 Alsophila spinulosa | As | 桫椤科 Cyatheaceae | 伏波 Fubo | 260-1 600 |
乌毛蕨 Blechnum orientale | Bo | 乌毛蕨科 Blechnaceae | 伏波 Fubo | 300-800 |
金毛狗 Cibotium barometz | Cb | 金毛狗科 Cibotiaceae | 伏波 Fubo | 150-1 800 |
长叶实蕨 Bolbitis heteroclita | Bh | 鳞毛蕨科 Dryopteridaceae | 十万大山 Shiwandashan | 50-1 500 |
芒萁 Dicranopteris pedata | Dip | 里白科 Gleicheniaceae | 十万大山 Shiwandashan | 1 880 |
中华里白 Diplopterygium chinense | Dic | 里白科 Gleicheniaceae | 十万大山 Shiwandashan | 800-1 650 |
肾蕨 Nephrolepis cordifolia | Nc | 肾蕨科 Nephrolepidaceae | 十万大山 Shiwandashan | 30-1 500 |
华南紫萁 Osmunda vachellii | Ov | 紫萁科 Osmundaceae | 十万大山 Shiwandashan | <700 |
红色新月蕨 Pronephrium lakhimpurense | Pl | 金星蕨科 Thelypteridaceae | 十万大山 Shiwandashan | 300-1 550 |
条裂叉蕨 Tectaria phaeocaulis | Tp | 叉蕨科 Tectariaceae | 十万大山 Shiwandashan | 400-500 |
图1 热带亚热带蕨类植物的吸收根解剖特征(A)和26种蕨类(B)的主成分分析图。CT, 皮层厚度; CT/SD, 皮层厚度与中柱直径的比值; RD, 根直径; SD, 中柱直径; SD/RD, 中柱直径与根直径的比值; TD, 管胞直径; TN, 管胞数量; XR, 木质部面积比。物种名称的缩写见表1。
Fig. 1 Results of the principal component analysis (PCA) for absorptive root anatomical traits (A), and the 26 tropical/subtropical fern species (B). CT, cortex thickness; CT/SD, cortex thickness/stele diameter; RD, root diameter; SD, stele diameter; SD/RD, stele diameter/root diameter; TD, tracheid diameter; TN, tracheid number; XR, xylem area ratio. Species abbreviations are shown in Table 1.
根解剖特征 Root anatomical trait | Blomberg’s K | p |
---|---|---|
根直径 Root diameter | 0.44 | 0.18 |
中柱直径 Stele diameter | 0.32 | 0.62 |
皮层厚度 Cortex thickness | 0.60 | 0.03 |
中柱直径/根直径 Stele diameter/root diameter | 0.43 | 0.22 |
皮层厚度/中柱直径 Cortex thickness/stele diameter | 0.38 | 0.41 |
木质部面积比 Xylem area ratio | 0.28 | 0.82 |
管胞数量 Tracheid number | 0.42 | 0.25 |
管胞直径 Tracheid diameter | 0.34 | 0.52 |
表2 热带亚热带26种蕨类植物吸收根解剖特征的系统发育信号
Table 2 Phylogeny signal of absorptive root anatomical traits of the 26 tropical and subtropical fern species
根解剖特征 Root anatomical trait | Blomberg’s K | p |
---|---|---|
根直径 Root diameter | 0.44 | 0.18 |
中柱直径 Stele diameter | 0.32 | 0.62 |
皮层厚度 Cortex thickness | 0.60 | 0.03 |
中柱直径/根直径 Stele diameter/root diameter | 0.43 | 0.22 |
皮层厚度/中柱直径 Cortex thickness/stele diameter | 0.38 | 0.41 |
木质部面积比 Xylem area ratio | 0.28 | 0.82 |
管胞数量 Tracheid number | 0.42 | 0.25 |
管胞直径 Tracheid diameter | 0.34 | 0.52 |
图2 热带亚热带26种蕨类植物吸收根解剖特征与全球自然分布区气候因子的相关关系。*, p < 0.05。
Fig. 2 Relationships between the absorptive root anatomical traits and the precipitation variables of the native ranges of the 26 tropical and subtropical fern species. *, p < 0.05.
图3 根直径与皮层厚度(A)、中柱直径(B)、皮层厚度/中柱直径(C)和管胞直径(D)的相关关系。○, 亚热带木本被子植物(n = 96; Kong et al., 2014); ●, 温带蕨类植物(n = 9; Dong et al., 2015); ●, 本研究蕨类植物(n = 26)。*, p < 0.05; ***, p < 0.001。木本被子植物与蕨类植物回归方程的斜率差异显著(ANCOVA; p < 0.001)。
Fig. 3 Relationships between root diameter and cortex thickness (A), stele diameter (B), cortex thickness/stele diameter (C) and tracheid diameter (D). ○, subtropical angiosperm woody species (n = 96; Kong et al., 2014); ●, temperate fern species (n = 9; Dong et al., 2015); ●, fern species in this study (n = 26). *, p < 0.05; ***, p < 0.001. Angiosperm woody species and ferns differenced significantly in the slopes of the regression lines (ANCOVA; p < 0.001).
[1] |
Brundrett MC, Tedersoo L (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 220, 1108-1115.
DOI PMID |
[2] |
Carlquist S, Schneider EL (2001). Vessels in ferns: structural, ecological, and evolutionary significance. American Journal of Botany, 88, 1-13.
PMID |
[3] | Chang WJ, Guo DL (2008). Variation in root diameter among 45 common tree species in temperate, subtropical and tropical forests in China. Journal of Plant Ecology (Chinese Version), 32, 1248-1257. |
[ 常文静, 郭大立 (2008). 中国温带、亚热带和热带森林45个常见树种细根直径变异. 植物生态学报, 32, 1248-1257.]
DOI |
|
[4] |
Chen WL, Zeng H, Eissenstat DM, Guo DL (2013). Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Global Ecology and Biogeography, 22, 846-856.
DOI URL |
[5] | Chen X, Chen DQ, Liu HK, Zhao CZ, Zhao WT, Dong Z, Zhang YT, Wang YP (2021). Responses of fine root anatomical traits of eleven tree species to the soil conditions in coastal saline-alkali stand sites of the Yellow River delta. Acta Ecologica Sinica, 41, 4150-4159. |
[ 陈旭, 陈冬倩, 刘洪凯, 赵春周, 赵文太, 董智, 张永涛, 王延平 (2021). 黄河三角洲滨海盐碱地11个造林树种细根解剖性状对土壤条件的响应. 生态学报, 41, 4150-4159.] | |
[6] |
Comas LH, Mueller KE, Taylor LL, Midford PE, Callahan HS, Beerling DJ (2012). Evolutionary patterns and biogeochemical significance of angiosperm root traits. International Journal of Plant Sciences, 173, 584-595.
DOI URL |
[7] | Ding DJ, Liao BW, Guan W, Xiong YM, Li M, Chen YJ (2016). Evaluation on service value of coastal wetland ecosystem in Dongzhai harbor mangrove nature reserve. Ecological Science, 35, 182-190. |
[ 丁冬静, 廖宝文, 管伟, 熊燕梅, 李玫, 陈玉军 (2016). 东寨港红树林自然保护区滨海湿地生态系统服务价值评估. 生态科学, 35, 182-190.] | |
[8] |
Ding JX, Kong DL, Zhang ZL, Cai Q, Xiao J, Liu Q, Yin HJ (2020). Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal- dominated alpine coniferous forests. Journal of Ecology, 108, 2544-2556.
DOI URL |
[9] |
Dong XY, Wang HF, Gu JC, Wang Y, Wang ZQ (2015). Root morphology, histology and chemistry of nine fern species (Pteridophyta) in a temperate forest. Plant and Soil, 393, 215-227.
DOI URL |
[10] |
Freschet GT, Valverde-Barrantes OJ, Tucker CM, Craine JM, McCormack ML, Violle C, Fort F, Blackwood CB, Urban-Mead KR, Iversen CM, Bonis A, Comas LH, Cornelissen JHC, Dong M, Guo DL, et al. (2017). Climate, soil and plant functional types as drivers of global fine-root trait variation. Journal of Ecology, 105, 1182-1196.
DOI URL |
[11] |
Gao J, Zhou MY, Shao JJ, Zhou GY, Liu RQ, Zhou LY, Liu HY, He YH, Chen Y, Zhou XH (2021). Fine root trait-function relationships affected by mycorrhizal type and climate. Geoderma, 394, 115011. DOI: 10.1016/j.geoderma.2021.115011.
DOI URL |
[12] |
Gu JC, Xu Y, Dong XY, Wang HF, Wang ZQ (2014). Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. Tree Physiology, 34, 415-425.
DOI URL |
[13] |
Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ (2008). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683.
DOI URL |
[14] | He TP, Tan WF, Wen YG, Zhao ZH, Wen XF, Huang ZH, Men YY (2007). Diversity of rare and endangered plants in Shiwandashan Mountain National Natural Reserve. Journal of Guangxi Agricultural and Biological Science, 26, 125-131. |
[ 和太平, 谭伟福, 温远光, 赵泽红, 文祥凤, 黄志辉, 门媛媛 (2007). 十万大山国家级自然保护区珍稀濒危植物的多样性. 广西农业生物科学, 26, 125-131.] | |
[15] |
Huang BR, Eissenstat DM (2000). Linking hydraulic conductivity to anatomy in plants that vary in specific root length. Journal of the American Society for Horticultural Science, 125, 260-264.
DOI URL |
[16] | Huang Y, Wang B, Yan LM, Wei XM, Lin L, Wei JW, Li HJ (2020). Observations on the spatial and temporal patterns of amphibian diversity in Damingshan, Guangxi. Journal of Ecology and Rural Environment, 36, 968-974. |
[ 黄勇, 王波, 颜琳妙, 韦筱媚, 林莉, 韦建威, 李华坚 (2020). 广西大明山两栖动物多样性时空格局观测. 生态与农村环境学报, 36, 968-974.] | |
[17] |
Jin Y, Qian H (2019). V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography, 42, 1353-1359.
DOI |
[18] |
Kong DL, Ma CG, Zhang Q, Li L, Chen XY, Zeng H, Guo DL (2014). Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203, 863-872.
DOI URL |
[19] |
Kong DL, Wang JJ, Valverde-Barrantes OJ, Kardol P (2021). A framework to assess the carbon supply-consumption balance in plant roots. New Phytologist, 229, 659-664.
DOI URL |
[20] |
Kong DL, Wang JJ, Wu HF, Valverde-Barrantes OJ, Wang RL, Zeng H, Kardol P, Zhang HY, Feng YL (2019). Nonlinearity of root trait relationships and the root economics spectrum. Nature Communications, 10, 2203.
DOI URL |
[21] |
Kong DL, Wang JJ, Zeng H, Liu MZ, Miao Y, Wu HF, Kardol P (2017). The nutrient absorption-transportation hypothesis: optimizing structural traits in absorptive roots. New Phytologist, 213, 1569-1572.
DOI URL |
[22] |
Li HB, Liu BT, McCormack ML, Ma ZQ, Guo DL (2017). Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient. New Phytologist, 216, 1140-1150.
DOI URL |
[23] |
Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97.
DOI URL |
[24] |
McAdam SAM, Brodribb TJ (2012). Stomatal innovation and the rise of seed plants. Ecology Letters, 15, 1-8.
DOI PMID |
[25] |
McCormack ML, Kaproth MA, Cavender-Bares J, Carlson E, Hipp AL, Han Y, Kennedy PG (2020). Climate and phylogenetic history structure morphological and architectural trait variation among fine-root orders. New Phytologist, 228, 1824-1834.
DOI URL |
[26] | Page CN (2002). Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology, 119, 1-33. |
[27] |
Paradis E, Claude J, Strimmer K (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289-290.
DOI URL |
[28] |
Pregitzer KS (2002). Fine roots of trees—A new perspective. New Phytologist, 154, 267-270.
DOI PMID |
[29] |
Rueden CT, Hiner MC, Eliceiri KW (2016). ImageJ: image analysis interoperability for the next generation of biological image data. Microscopy and Microanalysis, 22, 2066-2067.
DOI URL |
[30] | Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. 2nd ed. Springer, Berlin. |
[31] |
Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB (2017). A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytologist, 215, 1562-1573.
DOI PMID |
[32] |
Valverde-Barrantes OJ, Maherali H, Baraloto C, Blackwood CB (2020). Independent evolutionary changes in fine-root traits among main clades during the diversification of seed plants. New Phytologist, 228, 541-553.
DOI URL |
[33] |
Valverde-Barrantes OJ, Smemo KA, Blackwood CB (2015). Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology, 29, 796-807.
DOI URL |
[34] |
Wang HF, Wang ZQ, Dong XY (2019). Anatomical structures of fine roots of 91 vascular plant species from four groups in a temperate forest in Northeast China. PLOS ONE, 14, e0215126. DOI: 10.1371/journal.pone.0215126.
DOI URL |
[35] | Wu WX (2019). Plant Diversity, Soil Microbial Diversity and Ecosystem Multifunction in Pure and Mixed Plantations. PhD dissertation, Guangxi University, Nanning. |
[ 巫文香 (2019). 人工纯林和混交林植物、土壤微生物多样性与生态系统多功能性. 博士学位论文, 广西大学, 南宁.] | |
[36] |
Yang L, Huang YH, Lima LV, Sun ZY, Liu MJ, Wang J, Liu N, Ren H (2021). Rethinking the ecosystem functions of Dicranopteris, a widespread genus of ferns. Frontiers in Plant Science, 11, 581513. DOI: 10.3389/fpls.2020.581513.
DOI URL |
[37] | You YM, Xu JY, Cai DX, Liu SR, Zhu HG, Wen YG (2016). Environmental factors affecting plant species diversity of understory plant communities in a Castanopsis hystrix plantation chronosequence in Pingxiang, Guangxi, China. Acta Ecologica Sinica, 36, 164-172. |
[ 尤业明, 徐佳玉, 蔡道雄, 刘世荣, 朱宏光, 温远光 (2016). 广西凭祥不同年龄红椎林林下植物物种多样性及其环境解释. 生态学报, 36, 164-172.] | |
[38] |
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, et al. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92.
DOI URL |
[39] |
Zhang KM, Shen Y, Zhou XL, Fang YM (2019). Analysis of fern research article trends across the Web of Science in the 21st century. Biodiversity Science, 27, 1245-1250.
DOI URL |
[ 张开梅, 沈羽, 周晓丽, 方炎明 (2019). 21世纪以来蕨类植物研究论文的发表情况: 基于Web of Science的数据统计. 生物多样性, 27, 1245-1250.]
DOI |
|
[40] | Zhang XC (2012). Lycophytes and Ferns of China. Peking University Press, Beijing. 711. |
[ 张宪春 (2012). 中国石松类和蕨类植物. 北京大学出版社, 北京. 711.] | |
[41] |
Zhou M, Bai WM, Li QM, Guo YM, Zhang WH (2021). Root anatomical traits determined leaf-level physiology and responses to precipitation change of herbaceous species in a temperate steppe. New Phytologist, 229, 1481-1491.
DOI URL |
[42] |
Zhu SD, Li RH, Song J, He PC, Liu H, Berninger F, Ye Q (2016). Different leaf cost-benefit strategies of ferns distributed in contrasting light habitats of sub-tropical forests. Annals of Botany, 117, 497-506.
DOI URL |
[1] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[2] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[3] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[4] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[5] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[6] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度 敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[7] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[8] | 于海英 杨莉琳 付素静 张志敏 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量 累积变化的响应 [J]. 植物生态学报, 2022, 46(12): 1573-1584. |
[9] | 牟文博 徐当会 王谢军 张瑞英 顾玉玲 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[10] | 张央, 安明态, 武建勇, 刘锋, 汪伟. 中国兜兰属宽瓣亚属植物地理分布格局及其主导气候因子[J]. 植物生态学报, 2022, 46(1): 40-50. |
[11] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[12] | 王春成, 张云玲, 马松梅, 黄刚, 张丹, 闫涵. 中国扁桃亚属四种野生扁桃的系统发育与物种分化[J]. 植物生态学报, 2021, 45(9): 987-995. |
[13] | 高德才, 白娥. 冻融循环期间土壤氧化亚氮排放影响因素[J]. 植物生态学报, 2021, 45(9): 1006-1023. |
[14] | 方欧娅, 张永, 张启, 贾恒锋. 黄河上游甘蒙柽柳生长对极端旱涝的响应[J]. 植物生态学报, 2021, 45(6): 641-649. |
[15] | 倪铭, 张曦月, 姜超, 王鹤松. 中国西南部地区植被对极端气候事件的响应[J]. 植物生态学报, 2021, 45(6): 626-640. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19