植物生态学报 ›› 2023, Vol. 47 ›› Issue (6): 847-855.DOI: 10.17521/cjpe.2022.0253
所属专题: 生态化学计量
胡昭佚1, 陈天松1, 赵丽2,4, 许培轩2, 吴正江1, 董李勤1,3,*(), 张昆2
收稿日期:
2022-06-16
接受日期:
2023-02-14
出版日期:
2023-06-20
发布日期:
2023-02-24
通讯作者:
* (基金资助:
HU Zhao-Yi1, CHEN Tian-Song1, ZHAO Li2,4, XU Pei-Xuan2, WU Zheng-Jiang1, DONG Li-Qin1,3,*(), ZHANG Kun2
Received:
2022-06-16
Accepted:
2023-02-14
Online:
2023-06-20
Published:
2023-02-24
Contact:
* (Supported by:
摘要:
养分重吸收是植物适应环境的重要策略。该研究以若尔盖高寒草本沼泽中的木里薹草作为研究对象, 通过模拟实验, 于8月、10月对绿叶和枯叶及土壤采样并测定养分含量, 研究其在水位下降和自然水位下叶片养分含量、土壤养分含量和养分重吸收效率的变化规律, 以及相互间的关系。使用单因素方差分析比较不同组间叶片氮(N)含量、叶片磷(P)含量、土壤速效N含量、土壤速效P含量、叶片N:P和养分重吸收效率的差异, 使用一元线性回归拟合土壤速效N、P含量和养分重吸收效率之间的关系, 木里薹草叶片N含量、P含量、N:P和养分重吸收效率的关系均采用Pearson相关分析。结果表明: 水位下降后, 木里薹草土壤速效N含量升高, 速效P含量降低, 进一步导致木里薹草绿叶N含量增加, P含量降低, 枯叶N、P含量均降低, 木里薹草叶片N、P重吸收效率升高, 说明水位下降通过改变土壤速效养分含量影响木里薹草绿叶养分含量, 改变植物养分获取能力(如根数、根长)影响枯叶养分含量, 进而影响养分重吸收效率。
胡昭佚, 陈天松, 赵丽, 许培轩, 吴正江, 董李勤, 张昆. 水位下降对若尔盖高寒草本沼泽木里薹草氮磷重吸收的影响. 植物生态学报, 2023, 47(6): 847-855. DOI: 10.17521/cjpe.2022.0253
HU Zhao-Yi, CHEN Tian-Song, ZHAO Li, XU Pei-Xuan, WU Zheng-Jiang, DONG Li-Qin, ZHANG Kun. Effect of water level drop on nitrogen and phosphorus reabsorption of Carex muliensis in a herb swamp in Zoigê wetland, China. Chinese Journal of Plant Ecology, 2023, 47(6): 847-855. DOI: 10.17521/cjpe.2022.0253
土壤养分含量 Soil nutrient content (mg·g-1) | 叶片养分含量 Leaf nutrient content (mg·g-1) | 叶片氮磷比 Leaf N:P | ||||||
---|---|---|---|---|---|---|---|---|
速效氮 Available N | 速效磷 Available P | Ng | Pg | Ns | Ps | Ng:Pg | Ns:Ps | |
CK | 7.14 ± 0.32b | 18.64 ± 0.89a | 13.58 ± 0.08b | 1.26 ± 0.07a | 6.24 ± 0.50a | 0.49 ± 0.05a | 10.76 ± 0.75b | 12.85 ± 0.62b |
WTD | 11.29 ± 1.30a | 13.97 ± 1.73b | 16.28 ± 1.73a | 1.16 ± 0.14b | 5.02 ± 0.60b | 0.25 ± 0.06b | 14.44 ± 0.96a | 20.66 ± 1.91a |
表1 水位下降对若尔盖高寒草本沼泽土壤、木里薹草叶片养分含量的影响(平均值±标准误)
Table 1 Effect of water level drop on nutrient content of soil and leaves of Carex muliensis in a herb swamp in Zoigê wetland (mean ± SE)
土壤养分含量 Soil nutrient content (mg·g-1) | 叶片养分含量 Leaf nutrient content (mg·g-1) | 叶片氮磷比 Leaf N:P | ||||||
---|---|---|---|---|---|---|---|---|
速效氮 Available N | 速效磷 Available P | Ng | Pg | Ns | Ps | Ng:Pg | Ns:Ps | |
CK | 7.14 ± 0.32b | 18.64 ± 0.89a | 13.58 ± 0.08b | 1.26 ± 0.07a | 6.24 ± 0.50a | 0.49 ± 0.05a | 10.76 ± 0.75b | 12.85 ± 0.62b |
WTD | 11.29 ± 1.30a | 13.97 ± 1.73b | 16.28 ± 1.73a | 1.16 ± 0.14b | 5.02 ± 0.60b | 0.25 ± 0.06b | 14.44 ± 0.96a | 20.66 ± 1.91a |
图2 不同组的木里薹草叶片养分重吸收效率及相对重吸收效率(平均值±标准误)。NRE, 氮重吸收效率; PRE, 磷重吸收效率。CK, 对照; WTD, 水位下降。不同小写字母代表不同处理间差异显著(p < 0.05)。
Fig. 2 Leaves of Carex muliensis nutrient reabsorption efficiency and relative reabsorption efficiency of different groups (mean ± SE). NRE, nitrogen reabsorption efficiency; PRE, phosphorus reabsorption efficiency. CK, control; WTD, water level drop. Different lowercase letters indicate that there is significant difference between the two groups (p < 0.05).
图3 木里薹草叶片养分含量、重吸收效率与土壤有效养分含量的关系。NRE, 氮(N)重吸收效率; PRE, 磷(P)重吸收效率。
Fig. 3 Relationship between nutrient content, reabsorption efficiency of Carex muliensis leaves and soil effective nutrient content. NRE, nitrogen (N) reabsorption efficiency; PRE, phosphorus (P) reabsorption efficiency.
图4 木里薹草对照组叶片养分重吸收效率和养分含量、氮磷比(N:P)的Pearson相关性分析。*, p < 0.05。图中数字为相关系数。Ng, 绿叶N含量; Ng:Pg, 绿叶N:P; Ns, 枯叶N含量; Ns:Ps, 枯叶N:P; NRE, N重吸收效率; Pg, 绿叶P含量; Ps, 枯叶P含量; PRE, P重吸收效率; RR, 相对重吸收效率。
Fig. 4 Pearson correlation analysis of nutrient contents, nitrogen (N):phosphorus (P) and reabsorption efficiency in Carex muliensis leaves at control water level. *, p < 0.05. The figure is the correlation coefficient. Ng, green leaf N content; Ng:Pg, green leaf N:P; Ns, senescent leaf N content; Ns:Ps, senescent leaf N:P; NRE, N reabsorption efficiency; Pg, green leaf P content; Ps, senescent leaf P content; PRE, P reabsorption efficiency; RR, relative reabsorption efficiency.
图5 木里薹草水位下降组叶片养分重吸收效率和养分含量、氮磷比(N:P)的Pearson相关性分析。*, p < 0.05。图中数字为相关系数。Ng, 绿叶N含量; Ng:Pg, 绿叶N:P; Ns, 枯叶N含量; Ns:Ps, 枯叶N:P; NRE, N重吸收效率; Pg, 绿叶P含量; Ps, 枯叶P含量; PRE, P重吸收效率; RR, 相对重吸收效率。
Fig. 5 Pearson correlation analysis of nutrient contents, nitrogen (N):phosphorus (P) and reabsorption efficiency in Carex muliensis leaves at water level drop. *, p < 0.05. The figure is the correlation coefficient. Ng, green leaf N content; Ng:Pg, green leaf N:P; Ns, senescent leaf N content; Ns:Ps, senescent leaf N:P; NRE, N reabsorption efficiency; Pg, green leaf P content; Ps, senescent leaf P content; PRE, P reabsorption efficiency; RR, relative reabsorption efficiency.
[1] |
Aerts R (1996). Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 84, 597-608.
DOI URL |
[2] |
Brant AN, Chen HYH (2015). Patterns and mechanisms of nutrient resorption in plants. Critical Reviews in Plant Sciences, 34, 471-486.
DOI URL |
[3] |
Cai Z, Bongers F (2007). Contrasting nitrogen and phosphorus resorption efficiencies in trees and lianas from a tropical montane rain forest in Xishuangbanna, south-west China. Journal of Tropical Ecology, 23, 115-118.
DOI URL |
[4] |
Cao R, Wei X, Yang Y, Xi XQ, Wu XW (2017). The effect of water level decline on plant biomass and species composition in the Zoigê peatland: a four-year in situ field experiment. Agriculture, Ecosystems & Environment, 247, 389-395.
DOI URL |
[5] |
Ding MM, Li L, Jin BS, Chen JK (2021). Impact of water level fluctuations with different amplitudes and frequencies on biomass and morphological traits of Vallisneria spinulosa. Journal of Lake Sciences, 33, 192-203.
DOI URL |
[丁明明, 黎磊, 金斌松, 陈家宽 (2021). 水位波动的幅度与频率对刺苦草(Vallisneria spinulosa)生物量和形态特征的影响. 湖泊科学, 33, 192-203.] | |
[6] | Dong LQ, Yang W, Yao PJ, Wang HJ, Wang YF, Zhang K (2020). Responses of Carex muliensis growth characteristics to water level gradient in Zoigê Plateau wetland. Acta Ecologica Sinica, 40, 590-598. |
[董李勤, 杨文, 姚鹏举, 王洪军, 王妍方, 张昆 (2020). 若尔盖高原湿地木里苔草生理生态特征对水深梯度的响应. 生态学报, 40, 590-598.] | |
[7] |
Elser JJ, Andersen T, Baron JS, Bergström AK, Jansson M, Kyle M, Nydick KR, Steger L, Hessen DO (2009). Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326, 835-837.
DOI PMID |
[8] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI PMID |
[9] |
Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2000). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540-550.
DOI URL |
[10] |
Fan J, Harris W, Zhong H (2016). Stoichiometry of leaf nitrogen and phosphorus of grasslands of the Inner Mongolian and Qinghai-Tibet Plateaus in relation to climatic variables and vegetation organization levels. Ecological Research, 31, 821-829.
DOI URL |
[11] | Gao F, Zhang YM, Yang F, Ma MJ, Gao YX, Wu D, Ding YR (2017). Growth and photosynthetic fluorescence characteristics responses of four submersed macrophytes to rising water level. Journal of Ecology and Rural Environment, 33, 341-348. |
[高汾, 张毅敏, 杨飞, 马梦洁, 高月香, 巫丹, 丁轶睿 (2017). 水位抬升对4种沉水植物生长及光合特性的影响. 生态与农村环境学报, 33, 341-348.] | |
[12] | Gardner RC, Barchiesi S, Beltrame C, Finlayson CM, Galewski T, Harrison I, Paganini M, Perennou C, Pritchard D, Rosenqvist A, Walpole M (2015). State of the worldʼs wetlands and their services to people: a compilation of recent analyses. [2022-06-16]. https://www.ramsar.org/sites/default/files/documents/library/strp19_4_bn7_e.pdf. |
[13] | Guo J, Li GP (2007). Climate change in Zoigê Plateau Marsh Wetland and its impact on wetland degradation. Plateau Meteorology, 26, 422-428. |
[郭洁, 李国平 (2007). 若尔盖气候变化及其对湿地退化的影响. 高原气象, 26, 422-428.] | |
[14] | Guo W, Qi LH, Lei G, Wang R, Yang C (2021). Nutrient distribution patterns and stoichiometry characteristics in Phyllostachys edulis and its varieties. Journal of Northeast Forestry University, 49(4), 39-44. |
[郭雯, 漆良华, 雷刚, 王锐, 杨畅 (2021). 毛竹及其变种养分分配格局与化学计量特征. 东北林业大学学报, 49(4), 39-44.] | |
[15] |
Güsewell S (2005). Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Functional Ecology, 19, 344-354.
DOI URL |
[16] | Han HG (2015). Effects of Nitrogen Deposition on Nutrient Use Strategies and Their Responses to Soil Water Availability. PhD dissertation, Lanzhou University, Lanzhou. |
[韩会阁 (2015). 氮沉降背景下植物养分利用策略及其对水分的响应. 博士学位论文, 兰州大学, 兰州.] | |
[17] |
Han WX, Tang LY, Chen YH, Fang JY (2013). Relationship between the relative limitation and resorption efficiency of nitrogen vs phosphorus in woody plants. PLoS ONE, 8, e83366. DOI: 10.1371/journal.pone.0083366.
DOI |
[18] | Hu BY (2017). Study on Purification Effects and Growth Characteristics of Wetland Plants Under Varying Hydraulic Conditions. Master degree dissertation, Southwest University, Chongqing. |
[胡碧莹 (2017). 湿地植物在不同水力条件处理下的净化效果与生长特性研究. 硕士学位论文, 西南大学, 重庆.] | |
[19] | Hu LL, Zhu RG, Fu JP (2014). The distribution of phytobiocoenose on Poyang Lake wetlands response to water level changes. Jiangxi Chemical Industry, (4), 39-42. |
[胡玲玲, 朱仁果, 付建平 (2014). 鄱阳湖湿地植物群落分布对水位变化的响应. 江西化工, (4), 39-42.] | |
[20] | Kang J, Han GD, Ren HY, Zhu Y, Zhang X, Wang YH (2019). Responses of plant nutrient contents and resorption to warming and nitrogen addition under different precipitation conditions in a desert grassland. Acta Botanica Boreali- Occidentalia Sinica, 39, 1651-1660. |
[康静, 韩国栋, 任海燕, 朱毅, 张欣, 王悦骅 (2019). 不同降水条件下荒漠草原植物的养分含量及回收对增温和氮素添加的响应. 西北植物学报, 39, 1651-1660.] | |
[21] |
Killingbeck KT (1996). Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716-1727.
DOI URL |
[22] | Killingbeck KT (2004). Nutrient resorption//Noodén LD. Plant Cell Death Processes. Academic Press, New York. 215-226. |
[23] |
Li JJ, Li MR, Qi XE, Wang LL, Xu SJ (2020). Response of nutrient characteristics of Achnatherum splendens leaves to different levels of nitrogen and phosphorus addition. Chinese Journal of Plant Ecology, 44, 1050-1058.
DOI URL |
[李军军, 李萌茹, 齐兴娥, 王立龙, 徐世健 (2020). 芨芨草叶片养分特征对氮磷不同添加水平的响应. 植物生态学报, 44, 1050-1058.] | |
[24] | Li WY, Zhang YJ, Shen RN, Zhu JT, Cong N (2022). Ecosystem carbon uptake was co-limited by nitrogen and phosphorus in alpine meadow on the Qinghai-Tibet Plateau. Chinese Journal of Applied Ecology, 33, 51-58. |
[李文宇, 张扬建, 沈若楠, 朱军涛, 丛楠 (2022). 氮磷共限制青藏高原高寒草甸生态系统碳吸收. 应用生态学报, 33, 51-58. ]
DOI |
|
[25] |
Liang DF, Zhang JJ, Zhang ST (2015). Patterns of nitrogen resorption in functional groups in a Tibetan alpine meadow. Folia Geobotanica, 50, 267-274.
DOI URL |
[26] | Liu D, Zhang J, Bao YL, Zhao HY, Qi XX, Xie HJ, Zhang JB (2020). Nutrient resorption patterns of Phragmites australis leaves and its response to soil moisture in Yangguan wetland, Dunhuang, Northwest China. Chinese Journal of Applied Ecology, 31, 807-813. |
[刘冬, 张剑, 包雅兰, 赵海燕, 齐璇璇, 谢欢杰, 张静白 (2020). 敦煌阳关湿地芦苇叶片养分重吸收模式及其对土壤水分的响应. 应用生态学报, 31, 807-813.]
DOI |
|
[27] | Liu HW, Liu WD, Wang W, Chai J, Tao JP (2015). Leaf traits and nutrient resorption of major woody species in the karst limestone area of Chongqing. Acta Ecologica Sinica, 35, 4071-4080. |
[刘宏伟, 刘文丹, 王微, 柴捷, 陶建平 (2015). 重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征. 生态学报, 35, 4071-4080.] | |
[28] |
Liu XD, Hou ZY, Xie YH, Yu XY, Li X, Zeng J (2021). Influence of water level on four typical submerged plants in wetlands of Lake Dongting. Journal of Lake Sciences, 33, 181-191.
DOI URL |
[刘向东, 侯志勇, 谢永宏, 于晓英, 李旭, 曾静 (2021). 水位对洞庭湖湿地4种典型沉水植物的影响. 湖泊科学, 33, 181-191.] | |
[29] | Liu XY, Hu YK (2020). C:N:P stoichiometry of leaves and fine roots in typical forest swamps of the Greater Hinggan Mountains, China. Chinese Journal of Applied Ecology, 31, 3385-3394. |
[刘旭艳, 胡宇坤 (2020). 大兴安岭典型森林沼泽植物叶片和细根碳氮磷化学计量特征. 应用生态学报, 31, 3385-3394.]
DOI |
|
[30] | Lu JY, Duan BH, Yang M, Yang H, Yang HM (2018). Research progress in nitrogen and phosphorus resorption from senesced leaves and the influence of ontogenetic and environmental factors. Acta Prataculturae Sinica, 27(4), 178-188. |
[陆姣云, 段兵红, 杨梅, 杨晗, 杨惠敏 (2018). 植物叶片氮磷养分重吸收规律及其调控机制研究进展. 草业学报, 27(4), 178-188.]
DOI |
|
[31] |
Lu JY, Yang M, Liu MG, Wang YY, Yang HM (2019). Leaf stoichiometry and resorption of N and P in Lucerne at different growth stages under different water supplies. Journal of Plant Nutrition, 42, 501-511.
DOI URL |
[32] | Ma X, Yang W, Yao PJ, Liu HQ, Zhao L, Yang WZ, Zhang C, Zhang K, Dong LQ (2020). Physiological and ecological characteristics of Carex muliensis leaves in Zoigê Plateau under simulated ponding depths. Wetland Science, 18, 237-243. |
[马骁, 杨文, 姚鹏举, 刘宏强, 赵丽, 阳维宗, 张聪, 张昆, 董李勤 (2020). 模拟积水深度下若尔盖高原木里薹草叶片的生理生态特征. 湿地科学, 18, 237-243.] | |
[33] | Mitsch WJ, Gosselink JG (2015). Wetlands. John Wiley & Sons, New York. |
[34] | Ning QR, Li SZ, Jiang LC, Tao JJ, Chen HR, Liu C, Yang XY (2017). Characteristics and factors influencing foliar nutrient resorption in plants. Chinese Journal of Applied and Environmental Biology, 23, 811-817. |
[宁秋蕊, 李守中, 姜良超, 陶晶晶, 陈涵睿, 刘聪, 杨贤宇 (2017). 植物叶片养分再吸收特征及其影响因子. 应用与环境生物学报, 23, 811-817.] | |
[35] |
Prieto I, Querejeta JI (2020). Simulated climate change decreases nutrient resorption from senescing leaves. Global Change Biology, 26, 1795-1807.
DOI PMID |
[36] |
Ratnam J, Sankaran M, Hanan NP, Grant RC, Zambatis N (2008). Nutrient resorption patterns of plant functional groups in a tropical savanna: variation and functional significance. Oecologia, 157, 141-151.
DOI PMID |
[37] |
Rejmánková E (2005). Nutrient resorption in wetland macrophytes: comparison across several regions of different nutrient status. New Phytologist, 167, 471-482.
PMID |
[38] | Sterner RW, Elser JJ (2017). Ecological Stoichiometry. Princeton University Press, Princeton. |
[39] |
Suseela V, Tharayil N, Xing B, Dukes JS (2015). Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Quercus rubra. Global Change Biology, 21, 4177-4195.
DOI PMID |
[40] | Tang ZY, Xu WT, Zhou GY, Bai YF, Li JX, Tang XL, Chen DM, Liu Q, Ma WH, Xiong GM, He HL, He NP, Guo YP, Guo Q, Zhu JL, et al. (2018). Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 115, 4033-4038. |
[41] |
Turner MA, Huebert DB, Findlay DL, Hendzel LL, Jansen WA, Bodaly RD, Armstrong LM, Kasian SE (2005). Divergent impacts of experimental lake-level drawdown on planktonic and benthic plant communities in a boreal forest lake. Canadian Journal of Fisheries and Aquatic Sciences, 62, 991-1003.
DOI URL |
[42] |
van Heerwaarden LM, Toet S, Aerts R (2003). Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. Journal of Ecology, 91, 1060-1070.
DOI URL |
[43] | Wang DD, Wang HJ (2018). Influence of water level fluctuation on the growth of Vallisneria and water purification. City and Town Water Supply, (Suppl.), 174-178. |
[王豆豆, 王洪杰 (2018). 水位波动对苦草生长影响及水质净化. 城镇供水, (增刊), 174-178.] | |
[44] |
Xu MH, Xue X (2013). A research on summer vegetation characteristics & short-time responses to experimental warming of alpine meadow in the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 33, 2071-2083.
DOI URL |
[徐满厚, 薛娴 (2013). 青藏高原高寒草甸夏季植被特征及对模拟增温的短期响应. 生态学报, 33, 2071-2083.] | |
[45] | Yang J, Li EH, Cai XB, Wang Z, Wang XL (2014). Research progress in response of plants in wetlands to water level change. Wetland Science, 12, 807-813. |
[杨娇, 厉恩华, 蔡晓斌, 王智, 王学雷 (2014). 湿地植物对水位变化的响应研究进展. 湿地科学, 12, 807-813.] | |
[46] | Yao PJ, Dong LQ, Yang W, Han JF, Zhen S (2017). The height growth characteristics of Zoigê Plateau Wetland Carex mulieensis in different water level gradient. Journal of Yunnan Normal University (Natural Sciences Edition), 37(2), 58-63. |
[姚鹏举, 董李勤, 杨文, 韩金锋, 甄硕 (2017). 不同水位梯度下若尔盖高原湿地木里苔草株高生长特性. 云南师范大学学报(自然科学版), 37(2), 58-63.] | |
[47] |
Zedler JB, Kercher S (2005). Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources, 30, 39-74.
DOI URL |
[48] | Zeng DH, Chen GS, Chen FS, Zhao Q, Ji XY (2005). Foliar nutrients and their resorption efficiencies in four Pinus sylvestris var. mongolica plantations of different ages on sandy soil. Scientia Silvae Sinicae, 41(5), 21-27. |
[曾德慧, 陈广生, 陈伏生, 赵琼, 冀小燕 (2005). 不同林龄樟子松叶片养分含量及其再吸收效率. 林业科学, 41(5), 21-27.] | |
[49] | Zeng J, Chen H, Liu JL, Yang SZ, Yan F, Cao Q, Yang G (2022). The decrease of peatland water level on the Qinghai-Tibet Plateau caused the increase of soil phenolic substances and vegetation biomass which promoted the accumulation of soil carbon. Acta Ecologica Sinica, 42, 625-634. |
[曾嘉, 陈槐, 刘建亮, 杨随庄, 严飞, 曹芹, 杨刚 (2022). 青藏高原泥炭地水位下降促进土壤碳积累的影响机制. 生态学报, 42, 625-634.] | |
[50] | Zhang CF, Yan H, Pan LM, Yao MY, Liu G, Li WD, Qi W, Ma QF (2021). Effects of water levels and salinity on growth and biomass allocation of Scirpus nipponicus. Acta Ecologica Sinica, 41, 6580-6587. |
[张超凡, 燕红, 潘丽铭, 姚明远, 刘庚, 李伟东, 齐巍, 马琼芳 (2021). 不同水盐条件对三江藨草生长和生物量分配的影响. 生态学报, 41, 6580-6587.] | |
[51] |
Zhang SB, Zhang JL, Ferry Slik JW, Cao KF (2012). Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment. Global Ecology and Biogeography, 21, 809-818.
DOI URL |
[52] | Zhao L, Ma X, Liu HQ, Xiong YH, Guo XL, Li LP, Dong LQ, Zhang K (2021). Responses of leaf carbon, nitrogen, and phosphorus stoichiometry of Carex muliensis to water level drawdown in an alpine marsh on the Ruoergai Plateau, China. Chinese Journal of Applied Ecology, 32, 2426-2432. |
[赵丽, 马骁, 刘宏强, 熊银洪, 郭雪莲, 李丽萍, 董李勤, 张昆 (2021). 若尔盖高寒草本沼泽木里薹草叶片碳氮磷化学计量特征对水位下降的响应. 应用生态学报, 32, 2426-2432.]
DOI |
|
[53] |
Zheng JY, Bian JJ, Ge QS, Yin YH (2013). The climate regionalization in China for 1951-1980 and 1981-2010. Geographical Research, 32, 987-997.
DOI |
[郑景云, 卞娟娟, 葛全胜, 尹云鹤 (2013). 中国1951-1980年及1981-2010年的气候区划. 地理研究, 32, 987-997.] | |
[54] | Zheng Y, Guo YR, Wang MT, Li M, Fan RR, Sun J, Yang FC, Zhong QL, Cheng DL (2017). Foliar nutrients and their resorption efficiencies of Pinus hwangshanensis along an elevation gradient of Wuyi Mountains in Jiangxi. Journal of Anhui Agricultural University, 44, 415-421. |
[郑媛, 郭英荣, 王满堂, 李曼, 范瑞瑞, 孙俊, 杨福春, 钟全林, 程栋梁 (2017). 武夷山不同海拔梯度黄山松叶片养分含量及其再吸收效率. 安徽农业大学学报, 44, 415-421.] | |
[55] | Zhou LL, Qian RL, Li SB, Dong BW, Chen BY, Pan H (2019). Leaf functional traits and nutrient resorption among major silviculture tree species in coastal sandy site. Chinese Journal of Applied Ecology, 30, 2320-2328. |
[周丽丽, 钱瑞玲, 李树斌, 董博微, 陈宝英, 潘辉 (2019). 滨海沙地主要造林树种叶片功能性状及养分重吸收特征. 应用生态学报, 30, 2320-2328.]
DOI |
[1] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[2] | 安卓, 牛得草, 文海燕, 杨益, 张洪荣, 傅华. 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C:N:P化学计量特征的影响[J]. 植物生态学报, 2011, 35(8): 801-807. |
[3] | 阎恩荣, 王希华, 郭明, 仲强, 周武. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征[J]. 植物生态学报, 2010, 34(1): 48-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19