植物生态学报 ›› 2023, Vol. 47 ›› Issue (6): 756-769.DOI: 10.17521/cjpe.2022.0163
收稿日期:
2022-04-25
接受日期:
2022-09-28
出版日期:
2023-06-20
发布日期:
2022-09-28
通讯作者:
* ORCID:尹春英: 0000-0003-4749-2754, (基金资助:
LI Liu1,2, LIU Qing-Hua1, YIN Chun-Ying1,*()
Received:
2022-04-25
Accepted:
2022-09-28
Online:
2023-06-20
Published:
2022-09-28
Contact:
* (Supported by:
摘要:
硒是人体必需的微量营养元素, 其含量对人体“有益”和“有害”之间的界限非常窄, 通过植物进行生物强化是人体补充硒的安全有效途径。该文综述了植物对硒吸收、转运、代谢的过程。植物主要从土壤中吸收硒酸盐、亚硒酸盐、有机硒, 根系对于不同形态的硒有不同的吸收机制。吸收过程由不同的转运蛋白参与, 吸收后的硒主要以硒酸根离子的形态在植物体内转运, 通过木质部和韧皮部向地上部分运输, 并在各种酶的作用下进行代谢。最终, 根系吸收的硒一部分以有机硒的形式储存在植物体内, 另一部分以硒化物的形式释放到大气中。该文重点关注不同类型根际微生物对植物硒生物强化的影响, 丛枝菌根真菌、外生菌根真菌、根际促生细菌对植物的硒吸收有一定促进作用, 但其内在的作用机制尚不清楚。基于当前的研究现状, 提出了今后的研究重点: 1)植物对硒的吸收过程及其基因调控; 2)微生物对植物硒生物强化的影响机制及应用潜力。
李柳, 刘庆华, 尹春英. 植物硒生物强化及微生物在其中的应用潜力. 植物生态学报, 2023, 47(6): 756-769. DOI: 10.17521/cjpe.2022.0163
LI Liu, LIU Qing-Hua, YIN Chun-Ying. Selenium biofortification in plants and application potential of microorganisms in selenium biofortification. Chinese Journal of Plant Ecology, 2023, 47(6): 756-769. DOI: 10.17521/cjpe.2022.0163
图1 土壤中硒含量的影响因素。红色字体代表土壤中硒的主要流失过程, 蓝色字体代表土壤中硒的主要来源。+/-分别代表正负效应(图片修改自Jones等, 2017; Dinh等, 2018)。
Fig. 1 Influencing factors of selenium (Se) content in soil. The red font represents the loss of Se in the soil and blue represents the main resources of Se in the soil. +/- represents the positive/negative effects respectively (image modified from Jones et al., 2017; Dinh et al., 2018).
图2 植物对硒的吸收、转运。箭头代表吸收和转运方向(图片修改自Trippe III和Pilon-Smits, 2021)。AAP, 氨基酸通透酶; LHT, 赖氨酸和组氨酸转运蛋白; NIP, 根瘤素26-like内在蛋白; SeCys, 硒代脱氨酸; SeMet, 硒代蛋氨酸; SULTR, 硫酸盐转运蛋白。
Fig. 2 Selenium (Se) uptake and transport in plants. Arrows represent the directions of absorption and transportation (image modified from Trippe III & Pilon-Smits, 2021). AAP, amino acid permease; LHT, lysine and histidine transporter; NIP, nodulin 26-like intrinsic protein; SeCys, seleno cystine; SeMet, seleno methionine; SULTR, sulfate transpoter.
图3 植物体内硒的代谢反应及途径(图片翻译自Natasha等, 2018)。APS, 三磷酸腺苷硫酸化酶; APSe, 磷酸硫酸腺苷硒; ATP, 三磷酸腺苷。
Fig. 3 Metabolism reactions and pathways of selenium (Se) inside plants (image translated from Natasha et al., 2018). APS, adenosine triphosphate sulfurylase; APSe, adenosine phosphoselenate; ATP, adenosine triphosphate; Cys, cysteine; DMDSe, dimethyldiselenide; DMSe, dimethylselenide; OAS, O-acetylserine; OPH, O-phosphohomoserine; SeCys, selenocysteine; SeMet, selenomethionine.
微生物种类 Microbial type | 寄主植物 Host plant | 微生物名称 Microbes | 施肥方式 Fertilization method | 硒形态 Selenium form | 结论 Result | 参考文献 Reference | |||
---|---|---|---|---|---|---|---|---|---|
AMF | 玉米 Zea mays | 摩西球囊霉 Glomus mosseae | 土壤施肥 Soil fertilization | Se(IV) Se(VI) | 用Se(IV)处理时, 接种AMF减少了有机硒在玉米中的积累, 用Se(VI)处理时, 接种AMF对玉米中的硒含量无明显影响 When treated with Se(IV), inoculation with AMF reduced organic selenium accumulation in maize, and when treated with Se(VI), inoculation with AMF had no significant effect on selenium content in maize | Yu et al., | |||
莴苣 Lactuca sativa | 根内根孢囊霉 和摩西管柄囊霉 Rhizophagus intraradices and Funneliformis mosseae | 土壤施肥 Soil fertilization | Se(IV) SeCH3 SeU | 接种AMF减少了硒在莴苣叶片中的积累 Inoculation with AMF reduced selenium accumulation in lettuce leaves | Goicoechea et al., | ||||
小麦 Triticum aestivum | 变形球囊霉或摩西管柄囊霉 Glomus versiforme or Funneliformis mosseae | 土壤施肥 Soil fertilization | Se(IV) Se(VI) SeMet | 接种AMF提高了冬小麦对Se(IV)、Se(VI)吸收, 对SeMet的吸收无影响 Inoculation with AMF increased the absorption of Se(IV) and Se(VI) in winter wheat, but had no effect on the absorption of SeMet | Luo et al., | ||||
石刁柏 Asparagus officinalis | 根内根孢囊霉和摩西管柄囊霉 Rhizophagus intraradices and Funneliformis mosseae | 叶面施肥 Foliage fertilization | Se(VI) | 接种AMF使石刁柏中硒水平提高11.8倍, 提升了叶面施用硒肥的效率 Inoculation with AMF increased the level of selenium in spears of Asparagus officinalis 11.8 times, and significantly improved the efficiency of foliar selenium application | Conversa et al., | ||||
紫花苜蓿 Medicago sativa | 摩西球囊霉 Glomus mosseae | 土壤施肥 Soil fertilization | Se (IV) | 在低磷条件下, 接种AMF促进了苜蓿根系对硒的吸收 Under low phosphorus conditions, inoculation with AMF promoted the uptake of selenium by alfalfa roots | Peng et al., | ||||
水稻 Oryza sativa | 变形球囊霉和摩西管柄囊霉 Glomus versiforme and Funneliformis mosseae | 土壤施肥 Soil fertilization | Se(IV) Se(VI) | 接种AMF可能会改变微生物群落, 将土壤中的无效硒转变为有效硒而提高硒的吸收, 接种AMF能促进水稻籽粒中有机硒的积累 Inoculation with AMF may changethe microbial community, convert unavailable selenium to available selenium in soil and improve selenium absorption. Inoculation with AMF promote organic selenium accumulation in rice grain | Chen et al., | ||||
大蒜 Allium sativum | 变形球囊霉 Glomus versiforme | 叶面施肥 Foliage fertilization | Se(IV) | 在高浓度(50 mg·L-1)硒含量下, 接种AMF明显降低了植物对硒的吸收和转运 Under high selenium content (50 mg·L-1), inoculation with AMF significantly reduced the absorption and transport of selenium by plants | Yang et al., | ||||
ECM | 马尾松 Pinus massoniana | 褐环乳牛肝菌 Suillus luteus | - | - | 在低重金属污染的土壤中, 马尾松接种ECM后, 其植物中的平均硒含量显著增大 In low level heavy metal pollution soil, the mean selenium content in Pinus massoniana increased significantly after inoculation with ECM | Sun et al., | |||
PGPR | 小麦 Triticum aestivum | 假单胞菌属R8和寡养单胞菌属B19 Pseudomonas sp. R8 and Stenotrophomonas sp. B19 | 土壤施肥 Soil fertilization | Se(IV) | 接种耐硒细菌促进了硒从小麦的根部到叶片的运输 Inoculation with selenium-tolerant bacteria promoted selenium transport from roots to leaves in wheat | Acu?a et al., | |||
小麦 Triticum aestivum | 蜡样芽孢杆菌-YAP6和 地衣芽孢杆菌-YAP7 Bacillus Cereus-YAP6 and Bacillus Licheniformis-YAP7 | 土壤施肥 Soil fertilization | Se(VI) | 接种菌株YAP6和YAP7是一种很好的小麦硒生物强化策略 Inoculation with strains YAP6 and YAP7 is a good strategy for selenium biofortification in wheat | Yasin et al., | ||||
小麦 Triticum aestivum | Bacillus pichinotyi YAM2 | 土壤施肥 Soil fertilization | Se(VI) | Bacillus pichinotyi YAM2在硒胁迫和缺硒条件下均能促进小麦生长, 并提高小麦中硒的含量 Bacillus pichinotyi YAM2 promoted the growth of wheat and increased the content of selenium in wheat under both selenium stress and selenium deficiency conditions | Yasin et al., | ||||
甘蓝 Brassica oleracea | 假单胞菌属T5-6-I Pseudomonas sp. strain T5-6-I | 培养基施肥 Medium fertilization | Se(IV) | Pseudomonas sp. strain T5-6-I的接种能够提高硒在甘蓝中的积累, 但是并没有影响硒在甘蓝中的存在形态 The inoculation of Pseudomonas sp. strain T5-6-I could increase the accumulation of selenium in cabbage, but did not affect the existence of selenium in cabbage | Lusa et al., | ||||
白菜 Brassica campestris | 农杆菌属T3F4 Agrobacterium sp. T3F4 | 土壤施肥 Soil fertilization | Se0 Se(IV) | Agrobacterium sp. T3F4能够将土壤中的0价硒转变为+4价的硒, 从而促进白菜对硒的吸收 Agrobacterium sp. T3F4 could convert 0-valent selenium in soil to +4-valent selenium, thereby promoting the absorption of selenium by cabbage | Zhu et al., | ||||
水稻 Oryza sativa | 噬几丁质菌属和睾丸酮丛毛单胞菌 Chitinophaga sp. and Comamonas testosteroni | - | - | Chitinophaga sp.和Comamonas testosteroni均能有效还原Se (IV), 生成硒纳米粒子, 都能提高土壤中的有效硒和水稻植株中的硒含量 Both Chitinophaga sp. and Comamonas testosteroni effectively reduced Se(IV) and generated selenium nanoparticles, both of which can increase the available selenium in soil and the selenium content in rice plants | Huang et al., |
表1 微生物对植物硒(Se)吸收影响的相关研究
Table 1 Research on the effect of microorganisms on the absorption of selenium (Se) in plants
微生物种类 Microbial type | 寄主植物 Host plant | 微生物名称 Microbes | 施肥方式 Fertilization method | 硒形态 Selenium form | 结论 Result | 参考文献 Reference | |||
---|---|---|---|---|---|---|---|---|---|
AMF | 玉米 Zea mays | 摩西球囊霉 Glomus mosseae | 土壤施肥 Soil fertilization | Se(IV) Se(VI) | 用Se(IV)处理时, 接种AMF减少了有机硒在玉米中的积累, 用Se(VI)处理时, 接种AMF对玉米中的硒含量无明显影响 When treated with Se(IV), inoculation with AMF reduced organic selenium accumulation in maize, and when treated with Se(VI), inoculation with AMF had no significant effect on selenium content in maize | Yu et al., | |||
莴苣 Lactuca sativa | 根内根孢囊霉 和摩西管柄囊霉 Rhizophagus intraradices and Funneliformis mosseae | 土壤施肥 Soil fertilization | Se(IV) SeCH3 SeU | 接种AMF减少了硒在莴苣叶片中的积累 Inoculation with AMF reduced selenium accumulation in lettuce leaves | Goicoechea et al., | ||||
小麦 Triticum aestivum | 变形球囊霉或摩西管柄囊霉 Glomus versiforme or Funneliformis mosseae | 土壤施肥 Soil fertilization | Se(IV) Se(VI) SeMet | 接种AMF提高了冬小麦对Se(IV)、Se(VI)吸收, 对SeMet的吸收无影响 Inoculation with AMF increased the absorption of Se(IV) and Se(VI) in winter wheat, but had no effect on the absorption of SeMet | Luo et al., | ||||
石刁柏 Asparagus officinalis | 根内根孢囊霉和摩西管柄囊霉 Rhizophagus intraradices and Funneliformis mosseae | 叶面施肥 Foliage fertilization | Se(VI) | 接种AMF使石刁柏中硒水平提高11.8倍, 提升了叶面施用硒肥的效率 Inoculation with AMF increased the level of selenium in spears of Asparagus officinalis 11.8 times, and significantly improved the efficiency of foliar selenium application | Conversa et al., | ||||
紫花苜蓿 Medicago sativa | 摩西球囊霉 Glomus mosseae | 土壤施肥 Soil fertilization | Se (IV) | 在低磷条件下, 接种AMF促进了苜蓿根系对硒的吸收 Under low phosphorus conditions, inoculation with AMF promoted the uptake of selenium by alfalfa roots | Peng et al., | ||||
水稻 Oryza sativa | 变形球囊霉和摩西管柄囊霉 Glomus versiforme and Funneliformis mosseae | 土壤施肥 Soil fertilization | Se(IV) Se(VI) | 接种AMF可能会改变微生物群落, 将土壤中的无效硒转变为有效硒而提高硒的吸收, 接种AMF能促进水稻籽粒中有机硒的积累 Inoculation with AMF may changethe microbial community, convert unavailable selenium to available selenium in soil and improve selenium absorption. Inoculation with AMF promote organic selenium accumulation in rice grain | Chen et al., | ||||
大蒜 Allium sativum | 变形球囊霉 Glomus versiforme | 叶面施肥 Foliage fertilization | Se(IV) | 在高浓度(50 mg·L-1)硒含量下, 接种AMF明显降低了植物对硒的吸收和转运 Under high selenium content (50 mg·L-1), inoculation with AMF significantly reduced the absorption and transport of selenium by plants | Yang et al., | ||||
ECM | 马尾松 Pinus massoniana | 褐环乳牛肝菌 Suillus luteus | - | - | 在低重金属污染的土壤中, 马尾松接种ECM后, 其植物中的平均硒含量显著增大 In low level heavy metal pollution soil, the mean selenium content in Pinus massoniana increased significantly after inoculation with ECM | Sun et al., | |||
PGPR | 小麦 Triticum aestivum | 假单胞菌属R8和寡养单胞菌属B19 Pseudomonas sp. R8 and Stenotrophomonas sp. B19 | 土壤施肥 Soil fertilization | Se(IV) | 接种耐硒细菌促进了硒从小麦的根部到叶片的运输 Inoculation with selenium-tolerant bacteria promoted selenium transport from roots to leaves in wheat | Acu?a et al., | |||
小麦 Triticum aestivum | 蜡样芽孢杆菌-YAP6和 地衣芽孢杆菌-YAP7 Bacillus Cereus-YAP6 and Bacillus Licheniformis-YAP7 | 土壤施肥 Soil fertilization | Se(VI) | 接种菌株YAP6和YAP7是一种很好的小麦硒生物强化策略 Inoculation with strains YAP6 and YAP7 is a good strategy for selenium biofortification in wheat | Yasin et al., | ||||
小麦 Triticum aestivum | Bacillus pichinotyi YAM2 | 土壤施肥 Soil fertilization | Se(VI) | Bacillus pichinotyi YAM2在硒胁迫和缺硒条件下均能促进小麦生长, 并提高小麦中硒的含量 Bacillus pichinotyi YAM2 promoted the growth of wheat and increased the content of selenium in wheat under both selenium stress and selenium deficiency conditions | Yasin et al., | ||||
甘蓝 Brassica oleracea | 假单胞菌属T5-6-I Pseudomonas sp. strain T5-6-I | 培养基施肥 Medium fertilization | Se(IV) | Pseudomonas sp. strain T5-6-I的接种能够提高硒在甘蓝中的积累, 但是并没有影响硒在甘蓝中的存在形态 The inoculation of Pseudomonas sp. strain T5-6-I could increase the accumulation of selenium in cabbage, but did not affect the existence of selenium in cabbage | Lusa et al., | ||||
白菜 Brassica campestris | 农杆菌属T3F4 Agrobacterium sp. T3F4 | 土壤施肥 Soil fertilization | Se0 Se(IV) | Agrobacterium sp. T3F4能够将土壤中的0价硒转变为+4价的硒, 从而促进白菜对硒的吸收 Agrobacterium sp. T3F4 could convert 0-valent selenium in soil to +4-valent selenium, thereby promoting the absorption of selenium by cabbage | Zhu et al., | ||||
水稻 Oryza sativa | 噬几丁质菌属和睾丸酮丛毛单胞菌 Chitinophaga sp. and Comamonas testosteroni | - | - | Chitinophaga sp.和Comamonas testosteroni均能有效还原Se (IV), 生成硒纳米粒子, 都能提高土壤中的有效硒和水稻植株中的硒含量 Both Chitinophaga sp. and Comamonas testosteroni effectively reduced Se(IV) and generated selenium nanoparticles, both of which can increase the available selenium in soil and the selenium content in rice plants | Huang et al., |
[1] |
Acuña JJ, Jorquera MA, Barra PJ, Crowley DE, de la Luz Mora M (2012). Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops. Biology and Fertility of Soils, 49, 175-185.
DOI URL |
[2] |
Anderson IC, Cairney JWG (2007). Ectomycorrhizal fungi: exploring the mycelial frontier. FEMS Microbiology Reviews, 31, 388-406.
PMID |
[3] |
Artursson V, Finlay RD, Jansson JK (2006). Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology, 8, 1-10.
DOI PMID |
[4] |
Asher CJ, Butler GW, Peterson PJ (1977). Selenium transport in root systems of tomato. Journal of Experimental Botany, 28, 279-291.
DOI URL |
[5] |
Berg G (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84, 11-18.
DOI PMID |
[6] |
Blazina T, Sun YB, Voegelin A, Lenz M, Berg M, Winkel LHE (2014). Terrestrial selenium distribution in China is potentially linked to monsoonal climate. Nature Communications, 5, 4717. DOI: 10.1038/ncomms5717.
DOI |
[7] | Bodnar M, Konieczka P, Namiesnik J (2012). The properties, functions, and use of selenium compounds in living organisms. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis & Ecotoxicology Reviews, 30, 225-252. |
[8] |
Boorer KJ, Frommer WB, Bush DR, Kreman M, Loo DD, Wright EM (1996). Kinetics and specificity of a H+/amino acid transporter from Arabidopsis thaliana. The Journal of Biological Chemistry, 271, 2213-2220.
DOI URL |
[9] |
Cao D, Liu YL, Ma LL, Jin XF, Guo GY, Tan RR, Liu Z, Zheng L, Ye F, Liu W (2018). Transcriptome analysis of differentially expressed genes involved in selenium accumulation in tea plant (Camellia sinensis). PLoS ONE, 13, e0197506. DOI: 10.1371/journal.pone.0197506.
DOI |
[10] |
Cao MJ, Wang Z, Wirtz M, Hell R, Oliver DJ, Xiang CB (2013). SULTR3;1 is a chloroplast-localized sulfate transporter in Arabidopsis thaliana. The Plant Journal, 73, 607-616.
DOI URL |
[11] | Chen LC, Yang FM, Zhang YL, Hu QH, Pan GX (2002). Selenium analysis of some polished rice in China and effect of biological selenium-enriched fertilizers on level and chemical constitution of selenium in rice grains. Chinese Journal of Rice Science, 16, 341-345. |
[陈历程, 杨方美, 张艳玲, 胡秋辉, 潘根兴 (2002). 我国部分大米含硒量分析及生物硒肥对籽粒硒水平的影响. 中国水稻科学, 16, 341-345.] | |
[12] |
Chen X, Zhang ZY, Gu MH, Li H, Shohag MJI, Shen FK, Wang XL, Wei YY (2020). Combined use of arbuscular mycorrhizal fungus and selenium fertilizer shapes microbial community structure and enhances organic selenium accumulation in rice grain. Science of the Total Environment, 748, 141166. DOI: 10.1016/j.scitotenv.2020.141166.
DOI |
[13] |
Chen Z, Zhao PX, Miao ZQ, Qi GF, Wang Z, Yuan Y, Ahmad N, Cao MJ, Hell R, Wirtz M, Xiang CB (2019). SULTR3s function in chloroplast sulfate uptake and affect ABA biosynthesis and the stress response. Plant Physiology, 180, 593-604.
DOI PMID |
[14] |
Chilimba ADC, Young SD, Black CR, Meacham MC, Lammel J, Broadley MR (2012). Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crops Research, 125, 118-128.
DOI URL |
[15] |
Conversa G, Lazzizera C, Chiaravalle AE, Miedico O, Bonasia A, La Rotonda P, Elia A (2019). Selenium fern application and arbuscular mycorrhizal fungi soil inoculation enhance Se content and antioxidant properties of green asparagus (Asparagus officinalis L.) spears. Scientia Horticulturae, 252, 176-191.
DOI |
[16] |
Dinh QT, Wang MK, Tran TAT, Zhou F, Wang D, Zhai H, Peng Q, Xue MY, Du ZK, Bañuelos GS, Lin ZQ, Liang DL (2018). Bioavailability of selenium in soil-plant system and a regulatory approach. Critical Reviews in Environmental Science and Technology, 49, 443-517.
DOI URL |
[17] | Durán P, Acuña JJ, Armada E, López-Castillo OM, Cornejo P, Mora ML, Azcón R (2016). Inoculation with selenobacteria and arbuscular mycorrhizal fungi to enhance selenium content in lettuce plants and improve tolerance against drought stress. Journal of Soil Science and Plant Nutrition, 161, 201-225. |
[18] |
Durán P, Acuña JJ, Gianfreda L, Azcón R, Funes-Collado V, Mora ML (2015). Endophytic selenobacteria as new inocula for selenium biofortification. Applied Soil Ecology, 96, 319-326.
DOI URL |
[19] |
El Kassis E, Cathala N, Rouached H, Fourcroy P, Berthomieu P, Terry N, Davidian JC (2007). Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenate toxicity. Plant Physiology, 143, 1231-1241.
DOI PMID |
[20] |
El-Ramady HR, Abdalla N, Alshaal T, Domokos-Szabolcsy É, Elhawat N, Prokisch J, Sztrik A, Fári M, El-Marsafawy S, Shams MS (2014). Selenium in soils under climate change, implication for human health. Environmental Chemistry Letters, 13, 1-19.
DOI URL |
[21] |
El-Ramady HR, Abdalla N, Alshaal T, Elhenawy AS, Shams MS, Faizy SE-DA, Belal ESB, Shehata SA, Ragab MI, Amer MM, Fári M, Sztrik A, Prokisch J, Selmar D, Schnug E, et al. (2015). Giant reed for selenium phytoremediation under changing climate. Environmental Chemistry Letters, 13, 359-380.
DOI URL |
[22] |
El-Ramady HR, Abdalla N, Elbasiouny H, Elbehiry F, Elsakhawy T, Omara AED, Amer M, Bayoumi Y, Shalaby TA, Eid Y, Zia-ur-Rehman M (2021). Nano-biofortification of different crops to immune against COVID-19: a review. Ecotoxicology and Environmental Safety, 222, 112500. DOI: 10.1016/j.ecoenv.2021.112500.
DOI |
[23] |
Etteieb S, Magdouli S, Zolfaghari M, Brar S (2020). Monitoring and analysis of selenium as an emerging contaminant in mining industry: a critical review. Science of the Total Environment, 698, 134339. DOI: 10.1016/j.scitotenv.2019.134339.
DOI |
[24] |
Feinberg A, Stenke A, Peter T, Hinckley ELS, Driscoll CT, Winkel LHE (2021). Reductions in the deposition of sulfur and selenium to agricultural soils pose risk of future nutrient deficiencies. Communications Earth & Environment, 2, 101. DOI: 10.1038/s43247-021-00172-0.
DOI |
[25] |
Feng RW, Wei CY, Tu SX (2013). The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany, 87, 58-68.
DOI URL |
[26] |
Fernández-Martínez A, Charlet L (2009). Selenium environmental cycling and bioavailability: a structural chemist point of view. Reviews in Environmental Science and Bio/Technology, 8, 81-110.
DOI URL |
[27] |
Fitter AH, Helgason T, Hodge A (2011). Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fungal Biology Reviews, 25, 68-72.
DOI URL |
[28] |
Goicoechea N, Garmendia I, Fabbrin EG, Bettoni MM, Palop JA, Sanmartín C (2015). Selenium fertilization and mycorrhizal technology may interfere in enhancing bioactive compounds in edible tissues of lettuces. Scientia Horticulturae, 195, 163-172.
DOI URL |
[29] |
Gupta M, Gupta S (2017). An overview of selenium uptake, metabolism, and toxicity in plants. Frontiers in Plant Science, 7, 2074. DOI: 10.3389/fpls.2016.02074.
DOI |
[30] |
Hemkemeyer M, Schwalb SA, Heinze S, Joergensen RG, Wichern F (2021). Functions of elements in soil microorganisms. Microbiological Research, 252, 126832. DOI: 10.1016/j.micres.2021.126832.
DOI |
[31] |
Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W (2006). Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. The Plant Cell, 18, 1931-1946.
DOI URL |
[32] |
Hossain A, Skalicky M, Brestic M, Maitra S, Sarkar S, Ahmad Z, Vemuri H, Garai S, Mondal M, Bhatt R, Kumar P, Banerjee P, Saha S, Islam T, Laing AM (2021). Selenium biofortification: roles, mechanisms, responses and prospects. Molecules, 26, 881. DOI: 10.3390/molecules26040881.
DOI |
[33] |
Hu WL, Zhao C, Hu HB, Yin ST (2021). Food sources of selenium and its relationship with chronic diseases. Nutrients, 13, 1739. DOI: 10.3390/nu13051739.
DOI |
[34] |
Huang CL, Wang HL, Shi XY, Wang YH, Li P, Yin HQ, Shao YX (2021). Two new selenite reducing bacterial isolates from paddy soil and the potential Se biofortification of paddy rice. Ecotoxicology, 30, 1465-1475.
DOI |
[35] | Huang YT, Lei NY, Fan B, Deng KL, Blecker C, Maesen P, Wang FZ (2021). Effect of selenium on nutrient quality of agricultural products. Quality and Safety of Agro-products, (2), 80-87. |
[黄亚涛, 雷宁宇, 范蓓, 邓凯琳, Blecker C, Maesen P, 王凤忠 (2021). 硒对农产品营养品质的影响. 农产品质量与安全, (2), 80-87.] | |
[36] | Jiang Y, Zeng ZH, Yang QS, Zhao J, Yang YD, Hu YG (2016). Selenium (Se) uptake and transformation mechanisms and physiological function in plant: a review. Chinese Journal of Applied Ecology, 27, 4067-4076. |
[姜英, 曾昭海, 杨麒生, 赵杰, 杨亚东, 胡跃高 (2016). 植物硒吸收转化机制及生理作用研究进展. 应用生态学报, 27, 4067-4076.]
DOI |
|
[37] |
Johnson TM (2004). A review of mass-dependent fractionation of selenium isotopes and implications for other heavy stable isotopes. Chemical Geology, 204, 201-214.
DOI URL |
[38] |
Jones GD, Droz B, Greve P, Gottschalk P, Poffet D, McGrath SP, Seneviratne SI, Smith P, Winkel LHE (2017). Selenium deficiency risk predicted to increase under future climate change. Proceedings of the National Academy of Sciences of the United States of America, 114, 2848-2853.
DOI PMID |
[39] |
Kataoka T, Hayashi N, Yamaya T, Takahashi H (2004a). Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiology, 136, 4198-4204.
DOI URL |
[40] |
Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004b). Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. The Plant Cell, 16, 2693-2704.
DOI URL |
[41] |
Kausch M, Ng P, Ha J, Pallud C (2012). Soil-aggregate-scale heterogeneity in microbial selenium reduction. Vadose Zone Journal, 11, vzj2011.0101. DOI: 10.2136/vzj2011.0101.
DOI |
[42] |
Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41, 197-207.
PMID |
[43] |
Khanna K, Kumar P, Ohri P, Bhardwaj R (2023). Harnessing the role of selenium in soil-plant-microbe ecosystem: ecophysiological mechanisms and future prospects. Plant Growth Regulation, 100, 197-217.
DOI |
[44] |
Kikkert J, Berkelaar E (2013). Plant uptake and translocation of inorganic and organic forms of selenium. Archives of Environmental Contamination and Toxicology, 65, 458-465.
DOI PMID |
[45] |
König S, Luguet A, Lorand JP, Wombacher F, Lissner M (2012). Selenium and tellurium systematics of the Earth’s mantle from high precision analyses of ultra-depleted orogenic peridotites. Geochimica et Cosmochimica Acta, 86, 354-366.
DOI URL |
[46] |
Kumawat KC, Razdan N, Saharan K (2022). Rhizospheric microbiome: bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiological Research, 254, 126901. DOI: 10.1016/j.micres.2021.126901.
DOI |
[47] |
Lampis S, Zonaro E, Bertolini C, Bernardi P, Butler CS, Vallini G (2014). Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Microbial Cell Factories, 13, 35. DOI: 10.1186/1475-2859-13-35.
DOI |
[48] |
Li HF, McGrath SP, Zhao FJ (2008). Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytologist, 178, 92-102.
DOI URL |
[49] |
Li J, Liu RF, Wu BY, Zhang CY, Wang JF, Lyu LH, Tong XG, Wu FY (2022). Influence of arbuscular mycorrhizal fungi on selenium uptake by winter wheat depends on the level of selenate spiked in soil. Chemosphere, 291, 132813. DOI: 10.1016/j.chemosphere.2021.132813.
DOI |
[50] |
Li Z, Liang DL, Peng Q, Cui ZW, Huang J, Lin ZQ (2017). Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: a review. Geoderma, 295, 69-79.
DOI URL |
[51] |
Lindblom SD, Fakra SC, Landon J, Schulz P, Tracy B, Pilon- Smits EAH (2013). Inoculation of Astragalus racemosus and Astragalus convallarius with selenium-hyperaccumulator rhizosphere fungi affects growth and selenium accumulation. Planta, 237, 717-729.
DOI PMID |
[52] |
Lindblom SD, Fakra SC, Landon J, Schulz P, Tracy B, Pilon-Smits EAH (2014). Inoculation of selenium hyperaccumulator Stanleya pinnata and related non-accumulator Stanleya elata with hyperaccumulator rhizosphere fungi—Investigation of effects on Se accumulation and speciation. Physiologia Plantarum, 150, 107-118.
DOI URL |
[53] | Liu DY, Yuan YQ, Qiu RL, Wang SZ, Huang XF, Huang HY (2021). Effect of plant growth promoting rhizobacteria Enterobacter sp. EG16 on the growth and Selenium uptake of Brassica chinensis L. Journal of Agro-Environment Science, 40, 1420-1431. |
[刘东昀, 袁永强, 仇荣亮, 王诗忠, 黄雄飞, 黄海燕 (2021). 根际促生菌Enterobacter sp. EG16对小白菜生长及硒吸收的影响. 农业环境科学学报, 40, 1420-1431.] | |
[54] |
Liu JG, Diamond J (2005). China’s environment in a globalizing world. Nature, 435, 1179-1186.
DOI |
[55] | Liu LL, Liu RD, Huang RH (2014). Effect of arbuscular mycorrhizal fungi (AMF) on accumlation capability for Se and photosynthesis characteristics of Actinidia chinensis ‘hongyang’ leaves. Science and Technology of Food Industry, 35, 234-237. |
[刘丽丽, 刘仁道, 黄仁华 (2014). 丛枝菌根真菌(AMF)对红阳猕猴桃叶片富硒能力及光合特性的影响. 食品工业科技, 35, 234-237.] | |
[56] |
Longchamp M, Castrec-Rouelle M, Biron P, Bariac T (2015). Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate. Food Chemistry, 182, 128-135.
DOI PMID |
[57] |
Luo LP, Zhang JP, Zhang KY, Wen QY, Ming K, Xiong H, Ning FJ (2021). Peanut selenium distribution, concentration, speciation, and effects on proteins after exogenous selenium biofortification. Food Chemistry, 354, 129515. DOI: 10.1016/j.foodchem.2021.129515.
DOI |
[58] |
Luo WQ, Li J, Ma XN, Niu H, Hou SW, Wu FY (2019). Effect of arbuscular mycorrhizal fungi on uptake of selenate, selenite, and selenomethionine by roots of winter wheat. Plant and Soil, 438, 71-83.
DOI |
[59] |
Lusa M, Help H, Honkanen AP, Knuutinen J, Parkkonen J, Kalasová D, Bomberg M (2019). The reduction of selenium(IV) by boreal Pseudomonas sp. strain T5-6-I—Effects on selenium(IV) uptake in Brassica oleracea. Environmental Research, 177, 108642. DOI: 10.1016/j.enveres.2019.108642.
DOI |
[60] |
McLaughlin MJ, Parker DR, Clarke JM (1999). Metals and micronutrients—Food safety issues. Field Crops Research, 60, 143-163.
DOI URL |
[61] |
Mehdi Y, Hornick JL, Istasse L, Dufrasne I (2013). Selenium in the environment, metabolism and involvement in body functions. Molecules, 18, 3292-3311.
DOI PMID |
[62] | Meng Y, Xu FH, Meng QY, Gu WR (2008). Current application status and prospect of microbiological fertilizer in China. Chinese Agricultural Science Bulletin, 24, 276-283. |
[孟瑶, 徐凤花, 孟庆有, 顾万荣 (2008). 中国微生物肥料研究及应用进展. 中国农学通报, 24, 276-283.] | |
[63] |
Moghaddam A, Heller RA, Sun Q, Seelig J, Cherkezov A, Seibert L, Hackler J, Seemann P, Diegmann J, Pilz M, Bachmann M, Minich WB, Schomburg L (2020). Selenium deficiency is associated with mortality risk from COVID-19. Nutrients, 12, 2098. DOI: 10.3390/nu12072098.
DOI |
[64] |
Natasha, Shahid M, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI (2018). A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environmental Pollution, 234, 915-934.
DOI PMID |
[65] |
Neal RH, Sposito G, Holtzclaw KM, Traina SJ (1987). Selenite adsorption on alluvial soils: I. Soil composition and pH effects. Soil Science Society of America Journal, 51, 1161-1165.
DOI URL |
[66] |
Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, Al-Harrasi A (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiological Research, 209, 21-32.
DOI PMID |
[67] |
Olanrewaju OS, Glick BR, Babalola OO (2017). Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33, 197. DOI: 10.1007/s11274-017-2364-9.
DOI |
[68] |
Pankievicz VCS, Amaral FPD, Ané JM, Stacey G (2021). Diazotrophic bacteria and their mechanisms to interact and benefit cereals. Molecular Plant-Microbe Interactions, 34, 491-498.
DOI URL |
[69] |
Parniske M (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology, 6, 763-775.
DOI PMID |
[70] | Peng LL, Wang XL, Chen X, Dai WH, Gan SJ (2015). Environmental distribution of selenium and its effect on human health. Anhui Journal of Preventive Medicine, 21, 33-36. |
[朋玲龙, 王先良, 陈霞, 戴维红, 甘沈娟 (2015). 我国硒的环境分布及其健康影响. 安徽预防医学杂志, 21, 33-36.] | |
[71] |
Peng Q, Wu MM, Zhang ZK, Su R, He HH, Zhang XC (2020). The interaction of arbuscular mycorrhizal fungi and phosphorus inputs on selenium uptake by alfalfa (Medicago sativa L.) and selenium fraction transformation in soil. Frontiers in Plant Science, 11, 966.
DOI PMID |
[72] |
Ramakrishna W, Yadav R, Li KF (2019). Plant growth promoting bacteria in agriculture: two sides of a coin. Applied Soil Ecology, 138, 10-18.
DOI |
[73] |
Reis HPG, de Queiroz Barcelos JP, Silva VM, Santos EF, Tavanti RFR, Putti FF, Young SD, Broadley MR, White PJ, dos Reis AR (2020). Agronomic biofortification with selenium impacts storage proteins in grains of upland rice. Journal of the Science of Food and Agriculture, 100, 1990-1997.
DOI PMID |
[74] |
Sharma VK, McDonald TJ, Sohn M, Anquandah GAK, Pettine M, Zboril R (2015). Biogeochemistry of selenium. Environmental Chemistry Letters, 13, 49-58.
DOI URL |
[75] |
Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002). Selenate-resistant mutants of Arabidopsis thaliana identify SULTR1;2, a sulfate transporter required for efficient transport of sulfate into roots. The Plant Journal, 29, 475-486.
DOI URL |
[76] | Smith SE, Read DJ (2008). Mycorrhizal Symbiosis. 3rd ed. Academic Press, Cambridge, USA. |
[77] |
Sors TG, Ellis DR, Na GN, Lahner B, Lee SM, Leustek T, Pickering IJ, Salt DE (2005a). Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. The Plant Journal, 42, 785-797.
DOI URL |
[78] |
Sors TG, Ellis DR, Salt DE (2005b). Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynthesis Research, 86, 373-389.
DOI URL |
[79] |
Sun YJ, Yu PY, Chen JZ, Li SM, Jiang LJ (2020). Effects of slippery jack (Suillus luteus) on the heavy metal accumulation and soil properties of Masson’s pine (Pinus massoniana Lamb) in a mining area of China. Applied Ecology and Environmental Research, 18, 3741-3755.
DOI URL |
[80] |
Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000). The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. The Plant Journal, 23, 171-182.
DOI URL |
[81] |
Tan YQ, Yao R, Wang R, Wang D, Wang GJ, Zheng SX (2016). Reduction of selenite to Se(0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soil. Microbial Cell Factories, 15, 157. DOI: 10.1186/s12934-016-0554-z.
DOI |
[82] |
Terry N, Zayed AM, de Souza MP, Tarun AS (2000). Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 401-432.
PMID |
[83] |
Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson AC (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science, 8, 49. DOI: 10.3389/fpls.2017.00049.
DOI |
[84] |
Trippe III RC, Pilon-Smits EAH (2021). Selenium transport and metabolism in plants: phytoremediation and biofortification implications. Journal of Hazardous Materials, 404, 124178. DOI: 10.1016/j.jhazmat.2020.124178.
DOI |
[85] |
Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant A, Poole PS (2013). Comparative metatranscriptomics reveals Kingdom level changes in the rhizosphere microbiome of plants. The ISME Journal, 7, 2248-2258.
DOI |
[86] |
Vinceti M, Mandrioli J, Borella P, Michalke B, Tsatsakis A, Finkelstein Y (2014). Selenium neurotoxicity in humans: bridging laboratory and epidemiologic studies. Toxicology Letters, 230, 295-303.
DOI PMID |
[87] |
Wadgaonkar SL, Nancharaiah YV, Esposito G, Lens PNL (2018). Environmental impact and bioremediation of seleniferous soils and sediments. Critical Reviews in Biotechnology, 38, 941-956.
DOI PMID |
[88] |
Wang JF, Zhou C, Xiao X, Xie Y, Zhu L, Ma ZY (2017). Enhanced iron and selenium uptake in plants by volatile emissions of Bacillus amyloliquefaciens (BF06). Applied Sciences, 7, 85. DOI: 10.3390/app7010085.
DOI |
[89] |
Wang MK, Dinh QT, Qi MX, Wang M, Yang WX, Zhou F, Liang DL (2020). Radicular and foliar uptake, and xylem- and phloem-mediated transport of selenium in maize (Zea mays L.): a comparison of five Se exogenous species. Plant and Soil, 446, 111-123.
DOI |
[90] |
Wen HJ, Carignan J (2007). Reviews on atmospheric selenium: emissions, speciation and fate. Atmospheric Environment, 41, 7151-7165.
DOI URL |
[91] |
White PJ, Broadley MR (2009). Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182, 49-84.
DOI URL |
[92] | WHO (2009). Global health risks: mortality and burden of disease attributable to selected major risks. [2022-06-10]. https://www.who.int/publications/i/item/9789241563871. |
[93] |
Winkel LHE, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS (2015). Selenium cycling across soil- plant-atmosphere interfaces: a critical review. Nutrients, 7, 4199-4239.
DOI PMID |
[94] |
Wu ZL, Bañuelos GS, Lin ZQ, Liu Y, Yuan LX, Yin XB, Li M (2015). Biofortification and phytoremediation of selenium in China. Frontiers in Plant Science, 6, 136. DOI: 10.3389/fpls.2015.00136.
DOI |
[95] |
Xue TL, Hartikainen H, Piironen V (2001). Antioxidative and growth-promoting effect of selenium on senescing. Plant and Soil, 237, 55-61.
DOI URL |
[96] |
Xun WB, Shao JH, Shen QR, Zhang RF (2021). Rhizosphere microbiome: functional compensatory assembly for plant fitness. Computational and Structural Biotechnology Journal, 19, 5487-5493.
DOI PMID |
[97] |
Yang F, Pan YP, Ali A, Zhang SY, Li XX, Qi XF, Liu HJ, Meng HW, Cheng ZH (2021). Agronomic biofortification of garlic through selenium and arbuscular mycorrhizal fungi application. Horticulturae, 7, 230. DOI: 10.3390/horticulturae7080230.
DOI |
[98] | Yang LX, Xie YD, He ZQ, Yan WY (2020). Effects of selenium and arbuscular mycorrhizal fungi on the growth and quality of Talinum paniculatum (Jacq.) Gaertn under cadmium stress. Journal of Agro-Environment Science, 39, 982-988. |
[仰路希, 谢永东, 贺忠群, 严文一 (2020). 硒与丛枝菌根真菌对镉胁迫下人参菜生长及品质的影响. 农业环境科学学报, 39, 982-988.] | |
[99] |
Yasin M, El-Mehdawi AF, Anwar A, Pilon-Smits EAH, Faisal M (2015a). Microbial-enhanced selenium and iron biofortification of wheat (Triticum aestivum L.) — Applications in phytoremediation and biofortification. International Journal of Phytoremediation, 17, 341-347.
DOI URL |
[100] |
Yasin M, El-Mehdawi AF, Pilon-Smits EAH, Faisal M (2015b). Selenium-fortified wheat: potential of microbes for biofortification of selenium and other essential nutrients. International Journal of Phytoremediation, 17, 777-786.
DOI URL |
[101] |
Ye YM, Qu JW, Pu Y, Rao S, Xu F, Wu C (2020). Selenium biofortification of crop food by beneficial microorganisms. Journal of Fungi, 6, 59. DOI: 10.3390/jof6020059.
DOI |
[102] |
Yoshimoto N, Inoue E, Saito K, Yamaya T, Takahashi H (2003). Phloem-localizing sulfate transporter, SULTR1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiology, 131, 1511-1517.
DOI PMID |
[103] |
Yu Y, Luo L, Yang K, Zhang SZ (2011). Influence of mycorrhizal inoculation on the accumulation and speciation of selenium in maize growing in selenite and selenate spiked soils. Pedobiologia, 54, 267-272.
DOI URL |
[104] |
Yuan LX, Zhu YY, Lin ZQ, Banuelos G, Li W, Yin XB (2013). A novel selenocystine-accumulating plant in selenium- mine drainage area in Enshi, China. PLoS ONE, 8, e65615. DOI: 10.1371/journal.pone.0065615.
DOI |
[105] |
Zayed AM, Terry N (1992). Selenium volatilization in broccoli as influenced by sulfate supply. Journal of Plant Physiology, 140, 646-652.
DOI URL |
[106] |
Zhang LH, Hu B, Li W, Che RH, Deng K, Li H, Yu FY, Ling HQ, Li YJ, Chu CC (2014). OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytologist, 201, 1183-1191.
DOI PMID |
[107] | Zhang LH, Yu FY, Deng K, Xie YS (2014). Study on physiological characteristics of selenite uptake by soybean exised roots. Soybean Science, 33, 519-523. |
[张联合, 郁飞燕, 邓坤, 谢玉松 (2014). 大豆根系吸收亚硒酸盐的生理特性研究. 大豆科学, 33, 519-523.] | |
[108] |
Zhao FJ, McGrath SP (2009). Biofortification and phytoremediation. Current Opinion in Plant Biology, 12, 373-380.
DOI URL |
[109] |
Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010). Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiology, 153, 1871-1877.
DOI PMID |
[110] |
Zheng SX, Su J, Wang L, Yao R, Wang D, Deng YJ, Wang R, Wang GJ, Rensing C (2014). Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil. BMC Microbiology, 14, 204. DOI: 10.1186/s12866-014-0204-8.
DOI |
[111] |
Zhu DH, Niu YX, Fan KK, Zhang FJ, Wang Y, Wang GJ, Zheng SX (2021). Selenium-oxidizing Agrobacterium sp. T3F4 steadily colonizes in soil promoting selenium uptake by pak choi (Brassica campestris). Science of the Total Environment, 791, 148294. DOI: 10.1016/j.scitotenv.2021.148294.
DOI |
[112] | Zhu YY, Wu WL, Zhao GS, Guo YB (2018). Progress of selenium biological transformation in animals, plants, and microorganisms. Journal of Agricultural Resources and Environment, 35, 189-198. |
[朱燕云, 吴文良, 赵桂慎, 郭岩彬 (2018). 硒在动植物及微生物体中的转化规律研究进展. 农业资源与环境学报, 35, 189-198.] |
[1] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[2] | 胡昭佚, 陈天松, 赵丽, 许培轩, 吴正江, 董李勤, 张昆. 水位下降对若尔盖高寒草本沼泽木里薹草氮磷重吸收的影响[J]. 植物生态学报, 2023, 47(6): 847-855. |
[3] | 姚萌, 康荣华, 王盎, 马方园, 李靳, 台子晗, 方运霆. 利用15N示踪技术研究木荷与马尾松幼苗叶片对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 114-122. |
[4] | 项伟, 黄冬柳, 朱师丹. 热带亚热带26种蕨类植物的吸收根解剖特征[J]. 植物生态学报, 2022, 46(5): 593-601. |
[5] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
[6] | 侯宝林, 庄伟伟. 古尔班通古特沙漠一年生植物的氮吸收策略[J]. 植物生态学报, 2021, 45(7): 760-770. |
[7] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[8] | 李诗奇, 张彦浩, 李政, 张沛东. 大叶藻对氮磷营养盐的吸收动力学特征[J]. 植物生态学报, 2020, 44(7): 772-781. |
[9] | 陈婵, 张仕吉, 李雷达, 刘兆丹, 陈金磊, 辜翔, 王留芳, 方晰. 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征[J]. 植物生态学报, 2019, 43(8): 658-671. |
[10] | 沈芳芳, 李燕燕, 刘文飞, 段洪浪, 樊后保, 胡良, 孟庆银. 长期氮沉降对杉木人工林叶、枝氮磷养分再吸收的影响[J]. 植物生态学报, 2018, 42(9): 926-937. |
[11] | 汪星, 宫兆宁, 井然, 张磊, 金点点. 基于连续统去除法的水生植物提取及其时空变化分析——以官厅水库库区为例[J]. 植物生态学报, 2018, 42(6): 640-652. |
[12] | 申奥, 朱教君, 闫涛, 卢德亮, 杨凯. 辽东山区主要阔叶树种叶片养分含量和再吸收对落叶时间的影响[J]. 植物生态学报, 2018, 42(5): 573-584. |
[13] | 张慧萍, 王淑月, 欧忠辉. 根表面养分吸收通量和根围溶质浓度的近似解析解[J]. 植物生态学报, 2018, 42(10): 1043-1049. |
[14] | 秦书琪, 房凯, 王冠钦, 彭云峰, 张典业, 李飞, 周国英, 杨元合. 高寒草原土壤交换性盐基离子对氮添加的响应: 以紫花针茅草原为例[J]. 植物生态学报, 2018, 42(1): 95-104. |
[15] | 杨升, 张华新, 陈秋夏, 杨秀艳. 沙枣幼苗根尖离子流对NaCl胁迫的响应[J]. 植物生态学报, 2017, 41(4): 489-496. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19