植物生态学报 ›› 2018, Vol. 42 ›› Issue (6): 640-652.DOI: 10.17521/cjpe.2017.0240
所属专题: 生态遥感及应用
收稿日期:
2017-09-13
修回日期:
2018-04-04
出版日期:
2018-06-20
发布日期:
2018-06-20
通讯作者:
宫兆宁
基金资助:
WANG Xing,GONG Zhao-Ning(),JING Ran,ZHANG Lei,JIN Dian-Dian
Received:
2017-09-13
Revised:
2018-04-04
Online:
2018-06-20
Published:
2018-06-20
Contact:
Zhao-Ning GONG
Supported by:
摘要:
光谱特征变量的筛选作为水生植物识别的重要手段之一, 在水生植物种类识别研究中应用广泛。该研究将实测光谱特征提取与多时相Landsat 8 OLI影像数据分析相结合, 找到一种有效识别不同种类水生植物的特征变量。在水生植物反射光谱特征分析中引入矿质分析中普遍使用的连续统去除法, 对光谱重采样结果作连续统去除处理后提取光谱吸收深度特征。采用单因素方差分析法对比7个光谱重采样波段和3个连续统去除吸收深度敏感波段, 发现经连续统去除处理的短波红外1波段(SWIR1CR)对于不同类型的水生植物区分效果最佳。将连续统去除法应用到遥感影像处理上, 发现SWIR1CR波段能较好区分沉水植物和挺水植物; 结合影像归一化植被指数和SWIR1CR波段可较好区分三类水生植物。结合特征波段筛选结果采用支持向量机分类方法, 得到水生植物的分类结果精度为86.33%, 对比全生长期12期影像提取的水生植物分布图, 发现水生植物主要分布于官厅水库库区南北岸浅水区, 水生植物面积最大时约占库区总面积的35.13%; 其中沉水植物年内生长分布变化幅度较大, 6月上旬开始迅速生长; 10月份水生植物开始衰减; 11月份水生植物占库区面积的20%, 沉水、浮水植物大幅衰减消失。
汪星, 宫兆宁, 井然, 张磊, 金点点. 基于连续统去除法的水生植物提取及其时空变化分析——以官厅水库库区为例. 植物生态学报, 2018, 42(6): 640-652. DOI: 10.17521/cjpe.2017.0240
WANG Xing, GONG Zhao-Ning, JING Ran, ZHANG Lei, JIN Dian-Dian. Extraction of aquatic plants based on continuous removal method and analysis of its temporal and spatial changes—A case study of Guanting Reservoir. Chinese Journal of Plant Ecology, 2018, 42(6): 640-652. DOI: 10.17521/cjpe.2017.0240
植物类型 Vegetation types | 典型湿地植物 Typical wetland plant | 光谱数 Number of spectrum |
---|---|---|
沉水植物 Submerged plants | 篦齿眼子菜 Potamogeton pectinatus | 9 |
穗状狐尾藻 Myriophyllum spicatum | 8 | |
狸藻 Utricularia vulgaris | 3 | |
浮水植物 Floating plants | 两栖蓼 Polygonum amphibium | 20 |
挺水植物 Emergent plants | 芦苇 Phragmites australis | 10 |
香蒲 Typha angustifolia | 10 |
表1 官厅水库湿地植物类型及光谱数
Table 1 Wetland vegetation types and spectra numbers of Guanting Reservoir
植物类型 Vegetation types | 典型湿地植物 Typical wetland plant | 光谱数 Number of spectrum |
---|---|---|
沉水植物 Submerged plants | 篦齿眼子菜 Potamogeton pectinatus | 9 |
穗状狐尾藻 Myriophyllum spicatum | 8 | |
狸藻 Utricularia vulgaris | 3 | |
浮水植物 Floating plants | 两栖蓼 Polygonum amphibium | 20 |
挺水植物 Emergent plants | 芦苇 Phragmites australis | 10 |
香蒲 Typha angustifolia | 10 |
波段名称 Band names | 波长 Wavelength (μm) | 空间分辨率 Spatial resolution (m) |
---|---|---|
海岸 Coastal | 0.433-0.453 | 30 |
蓝 Blue | 0.450-0.515 | 30 |
绿 Green | 0.525-0.600 | 30 |
红 Red | 0.630-0.680 | 30 |
近红外 NIR | 0.845-0.885 | 30 |
短波红外1 SWIR1 | 1.560-1.660 | 30 |
短波红外2 SWIR2 | 2.100-2.300 | 30 |
全色 Pan | 0.500-0.680 | 15 |
卷云 Cirrus | 1.360-1.390 | 30 |
表2 Landsat 8 OLI 波段参数设置
Table 2 Spectral bands setting of Landsat 8 OLI
波段名称 Band names | 波长 Wavelength (μm) | 空间分辨率 Spatial resolution (m) |
---|---|---|
海岸 Coastal | 0.433-0.453 | 30 |
蓝 Blue | 0.450-0.515 | 30 |
绿 Green | 0.525-0.600 | 30 |
红 Red | 0.630-0.680 | 30 |
近红外 NIR | 0.845-0.885 | 30 |
短波红外1 SWIR1 | 1.560-1.660 | 30 |
短波红外2 SWIR2 | 2.100-2.300 | 30 |
全色 Pan | 0.500-0.680 | 15 |
卷云 Cirrus | 1.360-1.390 | 30 |
图2 A, 实测水体样点光谱曲线图。B, 典型代表性沉水植物、浮水植物、挺水植物和水体样点光谱曲线对比图。C, 官厅水库典型水生植物种类光谱曲线图。D, 水生植物光谱重采样结果图。
Fig. 2 A, Measured water sample spectral curve. B, Typical representative submerged plants, floating plants, emergent plants, and waters comparison of sample points spectrum curves. C, Guanting Reservoir typical aquatic plant species spectral curve. D, Aquatic plant spectrum resampling results.
植物类型 Vegetation type | 光谱数 Number of spectra | Blue处吸收深度平均值 Blue absorption depth average | Red处吸收深度平均值 Red absorption depth average | SWIR1处吸收深度平均值 SWIR1 absorption depth average |
---|---|---|---|---|
沉水植物 Submerged plants | 20 | 0.3202 | 0.3579 | 0.7977 |
浮水植物 Floating plants plants | 20 | 0.5955 | 0.7740 | 0.2167 |
挺水植物 Emergent plants | 20 | 0.7272 | 0.8466 | 0.3542 |
表3 官厅水库3种湿地植物类型吸收特征参数统计
Table 3 Statistics of parameters of absorption characteristic in 3 types of wetland vegetation types in Guanting Reservoir
植物类型 Vegetation type | 光谱数 Number of spectra | Blue处吸收深度平均值 Blue absorption depth average | Red处吸收深度平均值 Red absorption depth average | SWIR1处吸收深度平均值 SWIR1 absorption depth average |
---|---|---|---|---|
沉水植物 Submerged plants | 20 | 0.3202 | 0.3579 | 0.7977 |
浮水植物 Floating plants plants | 20 | 0.5955 | 0.7740 | 0.2167 |
挺水植物 Emergent plants | 20 | 0.7272 | 0.8466 | 0.3542 |
图6 不同类型水生植物影像灰度直方图统计结果。A, 归一化植被指数(NDVI)灰度影像。B, 连续统去除后短波红外1波段(SWIR1CR)灰度影像。
Fig. 6 The results of histogram of the gray histogram of different types of aquatic plants. A, Normalized differential vegetation index (NDVI) grey image. B, Short wave infrared 1 band, which was processed by continuum removal (SWIR1CR) grey image.
图7 多时相遥感影像3种水生植物样点的归一化植被指数(NDVI)(A)和连续统去除后短波红外1波段(SWIR1CR)时间序列曲线(B)。
Fig. 7 Time series curves of normalized differential vegetation index (NDVI)(A) and short wave infrared 1 band, which was processed by continuum removal (SWIR1CR)(B) for three types of aquatic plants in multitemporal remote sensing images.
地物类型 Category | 水体 Water body | 沉水植物 Submerged plants | 浮水植物 Floating plants | 挺水植物 Emergent plants |
---|---|---|---|---|
水体 Water body | 820 | 312 | 186 | 15 |
沉水植物 Submerged plants | 47 | 2969 | 9 | 86 |
浮水植物 Floating plants | 11 | 0 | 76 | 8 |
挺水植物 Emergent plants | 39 | 14 | 1 | 731 |
总体精度 Overall accuracy | 86.33% | Kappa系数 Kappa coefficient | 0.76 |
表4 分类精度验证
Table 4 Classification accuracy test
地物类型 Category | 水体 Water body | 沉水植物 Submerged plants | 浮水植物 Floating plants | 挺水植物 Emergent plants |
---|---|---|---|---|
水体 Water body | 820 | 312 | 186 | 15 |
沉水植物 Submerged plants | 47 | 2969 | 9 | 86 |
浮水植物 Floating plants | 11 | 0 | 76 | 8 |
挺水植物 Emergent plants | 39 | 14 | 1 | 731 |
总体精度 Overall accuracy | 86.33% | Kappa系数 Kappa coefficient | 0.76 |
图8 官厅水库库区WorldView_2影像图和局部水生植物影像特征展示。A, 挺水植物。B, 沉水植物。C, 浮水植物。
Fig. 8 The WorldView_2 image of the reservoir area and the display of local aquatic plant image features. A, Emergent plants. B, Submerged plants. C, Floating plants.
图10 官厅水库2016年水位统计结果(A)和年内水生植物空间分布面积变化统计(B)。
Fig. 10 The statistical results of the water level in Guanting Reservoir in 2016 (A) and the spatial distribution of aquatic plants in the year (B).
[1] |
Brown M, Lewis HG, Gunn SR ( 2000). Linear spectral mixture models and support vector machines for remote sensing. IEEE Transactions on Geoscience & Remote Sensing, 38, 2346-2360.
DOI URL |
[2] |
Carter GA ( 1993). Responses of leaf spectral reflectance to plant stress. American Journal of Botany, 80, 239-243.
DOI URL |
[3] | Chen W, Hu D, Fu BQ, Gong ZN, Gao W, Hong JM, Du GS ( 2007). Study on Wetland Biodiversity in Beijing. Science Press,Beijing. 46-58. |
[ 陈卫, 胡东, 付必谦, 宫兆宁, 高武, 洪剑明, 杜桂森 ( 2007). 北京湿地生物多样性研究. 科学出版社,北京. 46-58.] | |
[4] |
Cooley T, Anderson GP, Felde GW, Hoke ML ( 2002). FLAASH, a MODTRAN4-Based Atmospheric Correction Algorithm, its application and validation. IEEE, Toronto, Canada. DOI: 10.1109/IGARSS.2002.1026134.
DOI URL |
[5] |
Du GS, Wang JT, Zhang WH, Feng LQ, Liu J ( 2004). On the nutrient status of Guanting Reservoir. Journal of Lake Sciences, 16, 277-281.
DOI URL |
[ 杜桂森, 王建厅, 张为华, 冯伶亲, 刘静 ( 2004). 官厅水库水体营养状况分析. 湖泊科学, 16, 277-281.]
DOI URL |
|
[6] |
Foody GM, Mathur A ( 2004). A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on Geoscience & Remote Sensing, 42, 1335-1343.
DOI URL |
[7] |
Guyon I, Weston J, Barnhill S, Vapnik V ( 2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389-422.
DOI URL |
[8] | He TJ ( 1989). Water Environment Indicators. China Environmental Science Press, Beijing. |
[ 合田健 ( 1989). 水环境指标. 中国环境科学出版社,北京.] | |
[9] |
Jia P, Li HT, Lin H, Gu HY, Han YS ( 2008). Research on multi-source remote sensing image classification based on SVM. Science of Surveying and Mapping, 33(4), 21-22.
DOI URL |
[ 贾萍, 李海涛, 林卉, 顾海燕, 韩颜顺 ( 2008). 基于SVM的多源遥感影像分类研究. 测绘科学, 33(4), 21-22. ]
DOI URL |
|
[10] | Li CJ, Liu LY, Wang JH, Wang RC ( 2004). Comparison of two methods of fusing remote sensing images with fidelity of spectral information. Journal of Image & Graphics, 9, 1376-1385. |
[ 李存军, 刘良云, 王纪华, 王人潮 ( 2004). 两种高保真遥感影像融合方法比较. 中国图象图形学报, 9, 1376-1385.] | |
[11] |
Li JS, Wu D, Wu YF, Liu HX, Shen Q, Zhang H ( 2009). Identification of algae-bloom and aquatic macrophytes in Lake Taihu from in-situ measured spectra data. Journal of Lake Sciences, 21, 215-222.
DOI URL |
[ 李俊生, 吴迪, 吴远峰, 刘海霞, 申茜, 张浩 ( 2009). 基于实测光谱数据的太湖水华和水生高等植物识别. 湖泊科学, 21, 215-222.]
DOI URL |
|
[12] | Li Y, Zhang LF, Huang CP, Wang JN, Cen Y ( 2016). Monitor of cyanobacteria bloom in Lake Taihu from 2001 to 2013 based on MODIS temporal spectral data. Spectroscopy and Spectral Analysis, 36, 1406-1411. |
[ 李瑶, 张立福, 黄长平, 王晋年, 岑奕 ( 2016). 基于MODIS植被指数时间谱的太湖2001年—2013年蓝藻爆发监测. 光谱学与光谱分析, 36, 1406-1411.] | |
[13] | Lin C, Gong ZN, Zhao WJ ( 2010). The extraction of wetland hydrophytes types based on medium resolution TM data. Acta Ecologica Sinica, 30, 6460-6469. |
[ 林川, 宫兆宁, 赵文吉 ( 2010). 基于中分辨率TM数据的湿地水生植被提取. 生态学报, 30, 6460-6469.] | |
[14] | Lin C, Gong ZN, Zhao WJ ( 2011). Hyperspectral estimation models for plant community water content at both leaf and canopy levels in Wild Duck Lake wetland. Acta Ecologica Sinica, 31, 6645-6658. |
[ 林川, 宫兆宁, 赵文吉 ( 2011). 叶冠尺度野鸭湖湿地植物群落含水量的高光谱估算模型. 生态学报, 31, 6645-6658.] | |
[15] | Lin C, Gong ZN, Zhao WJ, Fan L ( 2013). Identifying typical plant ecological types based on spectral characteristic variables: A case study in Wild Duck Lake wetland, Beijing. Acta Ecologica Sinica, 33, 1172-1185. |
[ 林川, 宫兆宁, 赵文吉, 樊磊 ( 2013). 基于光谱特征变量的湿地典型植物生态类型识别方法——以北京野鸭湖湿地为例. 生态学报, 33, 1172-1185.] | |
[16] | Liu K, Zhao WJ, Guo XY, Hu DY, Gong ZN, Long J ( 2010). Spectral bands of typical wetland vegetation in the Wild Duck Lake. Acta Ecologica Sinica, 30, 5853-5861. |
[ 刘克, 赵文吉, 郭逍宇, 胡德勇, 宫兆宁, 龙娟 ( 2010). 野鸭湖典型湿地植物光谱特征. 生态学报, 30, 5853-5861.] | |
[17] |
Meer FVD ( 2004). Analysis of spectral absorption features in hyperspectral imagery. International Journal of Applied Earth Observation & Geoinformation, 5, 55-68.
DOI URL |
[18] | Oyama Y, Fukushima T, Matsushita B, Matsuzaki H, Kamiya K, Kobinata H ( 2015). Monitoring levels of cyanobacterial blooms using the visual cyanobacteria index (VCI) and floating algae index (FAI). International Journal of Applied Earth Observations & Geoinformation, 38, 335-348. |
[19] |
Schmidt KS, Skidmore AK ( 2003). Spectral discrimination of vegetation types in a coastal wetland. Remote Sensing of Environment, 85, 92-108.
DOI URL |
[20] | Shi H, Li XW, Niu ZC, Li JY, Li Y, Li N ( 2016). Remote sensing information extraction of aquatic vegetation in Lake Taihu based on Random Forest Model. Journal of Lake Sciences, 28, 635-644. |
[ 侍昊, 李旭文, 牛志春, 李继影, 李杨, 李宁 ( 2016). 基于随机森林模型的太湖水生植被遥感信息提取. 湖泊科学, 28, 635-644.] | |
[21] |
Tang JW, Tian GL, Wang XY, Wang XM, Song QJ ( 2004). The methods of water spectra measurement and analysis I: Above-water method. Journal of Remote Sensing, 8, 37-44.
DOI URL |
[ 唐军武, 田国良, 汪小勇, 王晓梅, 宋庆君 ( 2004). 水体光谱测量与分析I: 水面以上测量法. 遥感学报, 8, 37-44.]
DOI URL |
|
[22] | Tian YC, Cao WX, Jiang D, Zhu Y, Xue LH ( 2005). Relationship between canopy reflectance and plant water content in rice under different soil water and nitrogen conditions. Acta Phytoecologica Sinica, 29, 318-323. |
[ 田永超, 曹卫星, 姜东, 朱艳, 薛利红 ( 2005). 不同水氮条件下水稻冠层反射光谱与植株含水率的定量关系. 植物生态学报, 29, 318-323.] | |
[23] |
Ungar SG, Pearlman JS, Mendenhall JA, Reuter D ( 2003). Overview of the earth observing one (EO-1) mission. IEEE Transactions on Geoscience and Remote Sensing, 41, 1149-1159.
DOI URL |
[24] | Vapnik V, Golowich SE, Smola A ( 1997). Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems, 9, 281-287. |
[25] |
Wang TT, Li SS, Li A, Feng XX, Wu YW ( 2015). Land cover classification in Beijing using Landsat 8 image. Journal of Image and Graphics, 20, 1275-1284.
DOI URL |
[ 王婷婷, 李山山, 李安, 冯旭祥, 吴业炜 ( 2015). 基于Landsat 8卫星影像的北京地区土地覆盖分类. 中国图象图形学报, 20, 1275-1284.]
DOI URL |
|
[26] |
Wang X, Zhang F, Hsiang-Te K, Yu H ( 2017). Spectral response characteristics and identification of typical plant species in Ebinur lake wetland national nature reserve (ELWNNR) under a water and salinity gradient. Ecological Indicators, 81, 222-234.
DOI URL |
[27] | Wetzel RG ( 1983). Limnology. 3rd ed. Academic Press, Cambridge, USA. |
[28] | Wu ZB ( 2011). Aquatic Plants and Water Ecological Restoration. Science Press, Beijing. |
[ 吴振斌 ( 2011). 水生植物与水体生态修复. 科学出版社,北京.] | |
[29] | Xu DL, Zhang DD, Zhang CY, Wan L, Han BP ( 2013). Distribution and change of macrophytes in Luoma Lake for 3 periods. Wetland Science, 11, 320-325. |
[ 徐德兰, 张东东, 张翠英, 万蕾, 韩宝平 ( 2013). 3个时期骆马湖大型水生植物的分布及变化. 湿地科学, 11, 320-325.] | |
[30] | Xu JX ( 2009). Wetland Plants in Beijing. Beijing Science and Technology Press, Beijing. |
[ 徐景先 ( 2009). 北京湿地植物. 北京科学技术出版社,北京.] | |
[31] | Xue W ( 2013). SPSS Statistical Analysis Method and Application. Electronic Industry Press, Beijing. |
[ 薛薇 ( 2013). SPSS统计分析方法及应用. 电子工业出版社,北京.] | |
[32] | Yang QX ( 1998). Ecological functions of aquatic vegetation in East Taihu Lake and its reasonable regulation. Journal of Lake Sciences, 10, 67-72. |
[ 杨清心 ( 1998). 东太湖水生植被的生态功能及调节机制. 湖泊科学, 10, 67-72.] | |
[33] | You HL, Xu LG, Liu GL, Wu YM, Liu LZ, Jiang JH ( 2016). Change of wetland landscape at Poyang Lake and its response to water level fluctuation. Chinese Journal of Ecology, 35, 2487-2493. |
[ 游海林, 徐力刚, 刘桂林, 吴永明, 刘丽贞, 姜加虎 ( 2016). 鄱阳湖湿地景观类型变化趋势及其对水位变动的响应. 生态学杂志, 35, 2487-2493.] | |
[34] | Yu HY, Yan BK, Gan FP, Chi WX, Wu FD ( 2007). Hyperspectral image fusion by an enhanced Gram Schmidt spectral transformation. Geography and Geo-Information Science, 23(5), 39-42. |
[ 于海洋, 闫柏琨, 甘甫平, 迟文学, 武法东 ( 2007). 基于Gram Schmidt变换的高光谱遥感图像改进融合方法. 地理与地理信息科学, 23(5), 39-42.] | |
[35] | Yuan BY ( 2000). Analysis of water quality status and tendency of Guanting Reservoir. Beijing Water, ( 5), 29-31. |
[ 袁博宇 ( 2000). 官厅水库水质现状及趋势分析. 北京水务, ( 5), 29-31.] | |
[36] | Yuan JG, Niu Z, Wang XP ( 2009). Atmospheric correction of Hyperion hyperspectral image based on FLAASH. Spectroscopy and Spectral Analysis, 29, 1181-1185. |
[ 袁金国, 牛铮, 王锡平 ( 2009). 基于FLAASH的Hyperion高光谱影像大气校正. 光谱学与光谱分析, 29, 1181-1185.] | |
[37] |
Zhang M ( 2010). Spectral indices for estimating ecological indicators of karst rocky desertification. International Journal of Remote Sensing, 31, 2115-2122.
DOI URL |
[38] | Zhang SX, Duan HT, Gu XH ( 2008). Remote sensing information extraction of hydrophytes based on the retrieval of water transparency in Lake Taihu. Journal of Lake Sciences, 20, 184-190. |
[ 张寿选, 段洪涛, 谷孝鸿 ( 2008). 基于水体透明度反演的太湖水生植被遥感信息提取. 湖泊科学, 20, 184-190.] | |
[39] | Zhen Z, Gong ZN, Zhao WJ ( 2012). Analysis of hydrophytes for spatial evolution pattern in Guanting Reservoir, China. Journal of Agro-Environment Science, 31, 1586-1595. |
[ 甄姿, 宫兆宁, 赵文吉 ( 2012). 官厅水库库区水生植物演变格局时空变化特征分析. 农业环境科学学报, 31, 1586-1595.] | |
[40] |
Zheng XM, Ding YL, Zhao K, Jiang T, Li XF, Zhang SY, Li YY, Wu LL, Sun J, Ren JH, Zhang XX ( 2014). Estimation of vegetation water content from Landsat 8 OLI data. Spectroscopy and Spectral Analysis, 34, 3385-3390.
DOI URL |
[ 郑兴明, 丁艳玲, 赵凯, 姜涛, 李晓峰, 张世轶, 李洋洋, 武黎黎, 孙建, 任建华, 张宣宣 ( 2014). 基于Landsat 8 OLI数据的玉米冠层含水量反演研究. 光谱学与光谱分析, 34, 3385-3390.]
DOI URL |
|
[41] | Zhu XL, Zhang H, Lei P, Zhang BZ, Shan BQ, Shi MW ( 2016). Historical distribution characteristics of major elements in Guanting Reservoir sediment. Acta Scientiae Circumstantiae, 36, 442-449. |
[ 朱晓磊, 张洪, 雷沛, 张伯镇, 单保庆, 史密伟 ( 2016). 官厅水库沉积物中大量元素的历史分布特征. 环境科学学报, 36, 442-449.] | |
[42] |
Zou WN, Yuan L, Zhang LQ, Chen WY ( 2012). Impacts of coverage and canopy water depth on the spectral characteristics for a submerged plant Cabomba caroliniana. Acta Ecologica Sinica, 32, 706-714.
DOI URL |
[ 邹维娜, 袁琳, 张利权, 陈万逸 ( 2012). 盖度与冠层水深对沉水植物水盾草光谱特性的影响. 生态学报, 32, 706-714.]
DOI URL |
[1] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[2] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[3] | 贺洁, 何亮, 吕渡, 程卓, 薛帆, 刘宝元, 张晓萍. 2001-2020年黄土高原光合植被时空变化及其驱动机制[J]. 植物生态学报, 2023, 47(3): 306-318. |
[4] | 宋春桥, 游松财, 柯灵红, 刘高焕, 钟新科. 藏北高原植被物候时空动态变化的遥感监测研究[J]. 植物生态学报, 2011, 35(8): 853-863. |
[5] | 陈效逑, 韩建伟. 我国东部温带植物群落的季相及其时空变化特征[J]. 植物生态学报, 2008, 32(2): 336-346. |
[6] | 张金恒. 基于连续统去除法的水稻氮素营养光谱诊断[J]. 植物生态学报, 2006, 30(1): 78-82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19