植物生态学报 ›› 2014, Vol. 38 ›› Issue (9): 1008-1018.DOI: 10.3724/SP.J.1258.2014.00095
所属专题: 全球变化与生态系统
收稿日期:
2014-04-01
接受日期:
2014-07-25
出版日期:
2014-04-01
发布日期:
2014-09-22
通讯作者:
潘庆民
基金资助:
ZHANG Bin1,2,ZHU Jian-Jun2,LIU Hua-Min1,PAN Qing-Min2,*()
Received:
2014-04-01
Accepted:
2014-07-25
Online:
2014-04-01
Published:
2014-09-22
Contact:
PAN Qing-Min
摘要:
当前人类活动的加剧显著地影响着全球大气循环的格局。大气循环的多个模型均预测未来全球气候变化的显著特征是极端降水事件和极端干旱事件发生的频率会显著增加。水分是干旱、半干旱区草原植物生长发育的限制性资源, 而草原生态系统是陆地生态系统中对降水格局变化非常敏感的系统。但是, 关于极端降水事件和极端干旱事件对草原生态系统结构和功能的影响还是以分散的个案研究为主, 甚至关于极端气候事件的定义迄今也不尽相同。为此, 该文在分析极端气候事件定义及其研究方法的基础上, 总结了极端降水事件和极端干旱事件对草原生态系统土壤水分和养分状况、植物生长发育和生理特性、群落结构、生产力和碳循环过程的影响, 并提出了未来极端气候事件研究中应重点关注的5个重要方向, 以及控制试验研究的2个关键科学问题, 对开展全球变化背景下草原生态系统对极端气候事件响应机制的研究具有指导意义。
张彬,朱建军,刘华民,潘庆民. 极端降水和极端干旱事件对草原生态系统的影响. 植物生态学报, 2014, 38(9): 1008-1018. DOI: 10.3724/SP.J.1258.2014.00095
ZHANG Bin,ZHU Jian-Jun,LIU Hua-Min,PAN Qing-Min. Effects of extreme rainfall and drought events on grassland ecosystems. Chinese Journal of Plant Ecology, 2014, 38(9): 1008-1018. DOI: 10.3724/SP.J.1258.2014.00095
[1] |
Albert R (1975). Salt regulation in halophytes. Oecologia, 21, 57-71.
URL PMID |
[2] |
Anderson-Teixeira KJ, Delong JP, Fox AM, Brese DA, Litvak ME (2011). Differential responses of production and respiration to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico. Global Change Biology, 17, 410-424.
DOI URL |
[3] |
Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004). Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141, 221-235.
URL PMID |
[4] |
Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
URL PMID |
[5] |
Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140-2153.
DOI URL PMID |
[6] |
Báez S, Collins SL, Pockman WT, Johnson JE, Small EE (2013). Effects of experimental rainfall manipulations on Chihuahuan Desert grassland and shrubland plant communities. Oecologia, 172, 1117-1127.
DOI URL PMID |
[7] |
Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Körner C, Boeck H, Christensen JH, Leuzinger S, Janssens IA, Hansen K (2012). Precipitation manipulation experiments―challenges and recommendations for the future. Ecology Letters, 15, 899-911.
URL PMID |
[8] |
Bernal M, Estiarte M, Peñuelas J (2011). Drought advances spring growth phenology of the Mediterranean shrub Erica multiflora. Plant Biology, 13, 252-257.
DOI URL PMID |
[9] | Bloor JM, Bardgett RD (2012). Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: interactions with plant species diversity and soil nitrogen availability. Perspectives in Plant Ecology, Evolution and Systematics, 14, 193-204. |
[10] | Borken W, Matzner E (2009). Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology, 15, 808-824. |
[11] | Casper BB, Jackson RB (1997). Plant competition underground. Annual Review of Ecology and Systematics, 28, 545-570. |
[12] | Chen LP, Zhao NX, Zhang LH, Gao YB (2013). Responses of two dominant plant species to drought stress and defoliation in the Inner Mongolia Steppe of China. Plant Ecology, 214, 221-229. |
[13] | Chen SP, Bai YF, Han XG, An JL, Guo CF (2004). Variations in foliar carbon isotope composition and adaptive strategies of Carex korshinskyi along a soil moisture gradient. Acta Phytoecologica Sinica, 28, 515-522. (in Chinese with English abstract) |
[ 陈世苹, 白永飞, 韩兴国, 安吉林, 郭富存 (2004). 沿土壤水分梯度黄囊苔草碳同位素组成及其适应策略的变化. 植物生态学报, 28, 515-522.] | |
[14] | Chou WW, Silver WL, Jackson RD, Thompson AW, Allen- Diaz B (2008). The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Global Change Biology, 14, 1382-1394. |
[15] |
Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529-533.
URL PMID |
[16] | Conant RT, Dalla-Betta P, Klopatek CC, Klopatek JM (2004). Controls on soil respiration in semiarid soils. Soil Biology & Biochemistry, 36, 945-951. |
[17] |
Davis SD, Ewers FW, Sperry JS, Portwood KA, Crocker MC, Adams GC (2002). Shoot dieback during prolonged drought in Ceanothus(Rhamnaceae) chaparral of California: a possible case of hydraulic failure. American Journal of Botany, 89, 820-828.
URL PMID |
[18] | Diez JM, D'Antonio CM, Dukes JS, Grosholz ED, Olden JD, Sorte CJB, Blumenthal DM, Bradley BA, Early R, Ibanez I, Jones SJ, Lawler JJ, Miller LP (2012). Will extreme climatic events facilitate biological invasions? Frontiers in Ecology and the Environment, 10, 249-257. |
[19] |
Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000). Climate extremes: observations, modeling, and impacts. Science, 289, 2068-2074.
DOI URL PMID |
[20] | English NB, Weltzin JF, Fravolini A, Thomas L, Williams DG (2005). The influence of soil texture and vegetation on soil moisture under rainout shelters in a semi-desert grassland. Journal of Arid Environments, 63, 324-343. |
[21] | Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL (2000). Altering rainfall timing and quantity in a mesic grassland ecosystem: design and performance of rainfall manipulation shelters. Ecosystems, 3, 308-319. |
[22] |
Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL (2003). Productivity responses to altered rainfall patterns in a C4-dominated grassland. Oecologia, 137, 245-251.
URL PMID |
[23] | Fay PA, Kaufman DM, Nippert JB, Carlisle JD, Harper CW (2008). Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Global Change Biology, 14, 1600-1608. |
[24] | Fierer N, Schimel JP (2002). Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology & Biochemistry, 34, 777-787. |
[25] | Gardner CMK, Robinson DA, Blyth K, Cooper JD (2000). Soil water content. In: Smith KA, Mullins CE eds. Soil Analysis: Physical Methods. Marcel Dekker, New York. 1-74. |
[26] |
Gitlin AR, Sthultz CM, Bowker MA, Stumpf S, Paxton KL, Kennedy K, Munoz A, Bailey JK, Whitham TG (2006). Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conservation Biology, 20, 1477-1486.
DOI URL PMID |
[27] | Gordon H, Haygarth PM, Bardgett RD (2008). Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biology & Biochemistry, 40, 302-311. |
[28] | Gutschick VP, BassiriRad H (2003). Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytologist, 160, 21-42. |
[29] | Hao YB, Wang YF, Cui XY (2010). Drought stress reduces the carbon accumulation of the Leymus chinensis steppe in Inner Mongolia, China. Chinese Journal of Plant Ecology, 34, 898-906. (in Chinese with English abstract) |
[ 郝彦宾, 王艳芬, 崔骁勇 (2010). 干旱胁迫降低了内蒙古羊草草原的碳累积. 植物生态学报, 34, 898-906.] | |
[30] | Harper CW, Blair JM, Fay PA, Knapp AK, Carlisle JD (2005). Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. Global Change Biology, 11, 322-334. |
[31] |
Heisler-White JL, Knapp AK, Kelly EF (2008). Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia, 158, 129-140.
URL PMID |
[32] | IPCC (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York. |
[33] | IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[34] |
Jackson MB, Ram PC (2003). Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Annals of Botany, 91, 227-241.
URL PMID |
[35] | Jentsch A, Kreyling J, Beierkuhnlein C (2007). A new generation of climate-change experiments: events, not trends. Frontiers in Ecology and the Environment, 5, 365-374. |
[36] | Jentsch A, Kreyling J, Boettcher-Treschkow J, Beierkuhnlein C (2009). Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Global Change Biology, 15, 837-849. |
[37] | Jentsch A, Kreyling J, Elmer M, Gellesch E, Glaser B, Grant K, Hein R, Lara M, Mirzae H, Nadler SE, Nagy L, Otieno D, Pritsch K, Rascher U, Schaedler M, Schloter M, Singh BK, Stadler J, Walter J, Wellstein C, Woellecke J, Beier- kuhnlein C (2011). Climate extremes initiate ecosystem- regulating functions while maintaining productivity. Journal of Ecology, 99, 689-702. |
[38] | Kahmen A, Perner J, Buchmann N (2005). Diversity-dependent productivity in semi-natural grasslands following climate perturbations. Functional Ecology, 19, 594-601. |
[39] | Knapp AK, Beier C, Briske DD, Classen AT, Luo Y, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng E (2008). Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience, 58, 811-821. |
[40] |
Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK (2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202-2205.
DOI URL PMID |
[41] |
Knapp AK, Smith MD (2001). Variation among biomes in temporal dynamics of aboveground primary production. Science, 291, 481-484.
DOI URL PMID |
[42] |
Kreyling J, Jentsch A, Beier C (2014). Beyond realism in climate change experiments: gradient approaches identify thresholds and tipping points. Ecology Letters, 17, 125-e1.
DOI URL PMID |
[43] | Kreyling J, Wenigmann M, Beierkuhnlein C, Jentsch A (2008). Effects of extreme weather events on plant productivity and tissue die-back are modified by community composition. Ecosystems, 11, 752-763. |
[44] |
Lefi E, Medrano H, Cifre J (2004). Water uptake dynamics, photosynthesis and water use efficiency in field-grown Medicago arborea and Medicago citrina under prolonged Mediterranean drought conditions. Annals of Applied Biology, 144, 299-307.
DOI URL |
[45] |
Liu X, Wan S, Su B, Hui D, Luo Y (2002). Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem. Plant and Soil, 240, 213-223.
DOI URL |
[46] |
Loik ME (2007). Sensitivity of water relations and photosynthesis to summer precipitation pulses for Artemisia tridentata and Purshia tridentata. Plant Ecology, 191, 95-108.
DOI URL |
[47] |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739.
DOI URL PMID |
[48] |
McDowell NG (2011). Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 155, 1051-1059.
DOI URL PMID |
[49] |
Mearns LO, Schneider SH, Thompson SL, McDaniel LR (1990). Analysis of climate variablity in General- Circulation Modles-comparison with observation and changes in variability in 2 × CO2 experiments. Journal of Geophysical Research-Atmospheres, 95, 20469-20490.
DOI URL |
[50] |
Meehl GA, Tebaldi C (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994-997.
DOI URL PMID |
[51] | Moriana A, Villalobos F, Fereres E (2002). Stomatal and photosynthetic responses of olive ( Olea europaea L.) leaves to water deficits. Plant, Cell & Environment, 25, 395-405. |
[52] | Mou CX, Sun G, Luo P, Wang ZY, Luo GR (2013). Flowering responses of alpine meadow plant in the Qinghai-Tibetan Plateau to extreme drought imposed in different periods. Chinese Journal of Applied and Environmental Biology, 19, 272-279. (in Chinese with English abstract) |
[ 牟成香, 孙庚, 罗鹏, 王志远, 罗光荣 (2013). 青藏高原高寒草甸植物开花物候对极端干旱的响应. 应用与环境生物学报, 19, 272-279.] | |
[53] |
Mueller RC, Scudder CM, Porter ME, Trotter RT, Gehring CA, Whitham TG (2005). Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. Journal of Ecology, 93, 1085-1093.
DOI URL |
[54] |
Noy-Meir I (1973). Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4, 25-51.
DOI URL |
[55] | Peng KQ, Xia ST, Li YS (2001). Effects of complete submergence on some physiological and yield characteristics of early and middle-season rice. Journal of Hunan Agricultural University, 27, 173-176. (in Chinese with English abstract) |
[ 彭克勤, 夏石头, 李阳生 (2001). 涝害对早中稻生理特性及产量的影响. 湖南农业大学学报, 27, 173-176.] | |
[56] |
Pezeshki SR (2001). Wetland plant responses to soil flooding. Environmental and Experimental Botany, 46, 299-312.
DOI URL |
[57] |
Rajan N, Maas SJ, Cui S (2013). Extreme drought effects on carbon dynamics of a semiarid pasture. Agronomy Journal, 105, 1749-1760.
DOI URL |
[58] |
Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, van der Velde M, Vicca S, Walz A, Wattenbach M (2013). Climate extremes and the carbon cycle. Nature, 500, 287-295.
DOI URL PMID |
[59] |
Reynolds JF, Kemp PR, Ogle K, Fernández RJ (2004). Modifying the ‘pulse-reserve’ paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia, 141, 194-210.
DOI URL PMID |
[60] |
Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proceedings of the National Academy of Sciences of the United States of America, 104, 19631-19636.
DOI URL PMID |
[61] |
Sala OE, Lauenroth WK, Parton WJ (1992). Long-term soil water dynamics in the shortgrass steppe. Ecology, 73, 1175-1181.
DOI URL |
[62] |
Sarkar RK, Das S, Ravi I (2001). Changes in certain antioxidative enzymes and growth parameters as a result of complete submergence and subsequent re-aeration of rice cultivars differing in submergence tolerance. Journal of Agronomy and Crop Science, 187, 69-74.
DOI URL |
[63] |
Schwalm CR, Williams CA, Schaefer K, Arneth A, Bonal D, Buchmann N, Chen J, Law BE, Lindroth A, Luyssaert S (2010). Assimilation exceeds respiration sensitivity to drought: A FLUXNET synthesis. Global Change Biology, 16, 657-670.
DOI URL |
[64] |
Shafran-Nathan R, Svoray T, Perevolotsky A (2013). Continuous droughts’ effect on herbaceous vegetation cover and productivity in rangelands: results from close-range photography and spatial analysis. International Journal of Remote Sensing, 34, 6263-6281.
DOI URL |
[65] |
Shi Z, Thomey M, Mowll W, Litvak M, Brunsell N, Collins S, Pockman W, Smith M, Knapp A, Luo Y (2014). Differential effects of extreme drought on production and respiration: synthesis and modeling analysis. Biogeosciences, 11, 621-633.
DOI URL |
[66] |
Smith MD (2011a). The ecological role of climate extremes: current understanding and future prospects. Journal of Ecology, 99, 651-655.
DOI URL |
[67] | Smith MD (2011b). An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. Journal of Ecology, 99, 656-663. |
[68] |
Smith MD, Knapp AK, Collins SL (2009). A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 90, 3279-3289.
DOI URL PMID |
[69] |
Sponseller RA (2007). Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Global Change Biology, 13, 426-436.
DOI URL |
[70] |
Sun Y, Ding YH (2009). A projection of future changes in summer precipitation and monsoon in East Asia. Science in China: Earth Sciences, 53, 284-300.
DOI URL |
[71] |
Suttle K, Thomsen MA, Power ME (2007). Species interactions reverse grassland responses to changing climate. Science, 315, 640-642.
DOI URL PMID |
[72] |
Thibault KM, Brown JH (2008). Impact of an extreme climatic event on community assembly. Proceedings of the National Academy of Sciences of the United States of America, 105, 3410-3415.
DOI URL PMID |
[73] |
Tian H, Hall CAS, Qi Y (1998). Modeling primary productivity of the terrestrial biosphere in changing environments: toward a dynamic biosphere model. Critical Reviews in Plant Sciences, 17, 541-557.
DOI URL |
[74] | van Straaten O, Veldkamp E, Köhler M, Anas I (2010). Spatial and temporal effects of drought on soil CO2 efflux in a cacao agroforestry system in Sulawesi, Indonesia. Bio- geosciences, 7, 1223-1235. |
[75] | Walter H (1971). Natural savannahs as a transition to the arid zone. In: Ecology of Tropical and Subtropical Vegetation. Oliver and Boyd, Edinburgh. 238-265. |
[76] |
Walter J, Jentsch A, Beierkuhnlein C, Kreyling J (2013). Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environmental and Experimental Botany, 94, 3-8.
DOI URL |
[77] | Wang BX, Zeng YH, Wang DY, Zhao R, Xu X (2010). Responses of leaf stomata to environmental stresses in distribution and physiological characteristics. Agricultural Research in the Arid Areas, 28, 122-126. (in Chinese) |
[ 王碧霞, 曾永海, 王大勇, 赵蓉, 胥晓 (2010). 叶片气孔分布及生理特征对环境胁迫的响应. 干旱地区农业研究, 28, 122-126.] | |
[78] |
Wang SM, Wan CG, Wang YR, Chen H, Zhou ZY, Fu H, Sosebee RE (2004). The characteristics of Na+, K+ and free proline distribution in several drought-resistant plants of the Alxa Desert, China. Journal of Arid Environments, 56, 525-539.
DOI URL |
[79] | Wang YL, Xu ZH, Zhou GS (2004). Changes in biomass allocation and gas exchange characteristics of Leymus chinensis in response to soil water stress. Acta Phytoecologica Sinica, 28, 803-809. (in Chinese with English abstract) |
[ 王云龙, 许振柱, 周广胜 (2004). 水分胁迫对羊草光合产物分配及其气体交换特征的影响. 植物生态学报, 28, 803-809.] | |
[80] |
Wang ZY, Sun G, Luo P, Mou CX, Wang J (2013). A study of soil-dynamics based on a simulated drought in an alpine meadow on the Tibetan Plateau. Journal of Mountain Science, 10, 833-844.
DOI URL |
[81] |
Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin GH, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC (2003). Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience, 53, 941-952.
DOI URL |
[82] | Weltzin JF, McPherson GR (2003). Changing Precipitation Regimes and Terrestrial Ecosystems: a North American Perspective University of Arizona Press, Tucson a North American Perspective. University of Arizona Press, Tucson. |
[83] |
Wu Z, Dijkstra P, Koch GW, Penuelas J, Hungate BA (2011). Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology, 17, 927-942.
DOI URL |
[84] |
Yahdjian L, Sala OE (2002). A rainout shelter design for intercepting different amounts of rainfall. Oecologia, 133, 95-101
DOI URL PMID |
[85] |
Yu QA, Elser JJ, He NP, Wu HH, Chen QS, Zhang GM, Han XG (2011). Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 166, 1-10.
DOI URL PMID |
[86] |
Zhang L, Guo HD, Jia GS, Wylie B, Gilmanov T, Howard D, Ji L, Xiao JF, Li J, Yuan WP, Zhao TB, Chen SP, Zhou GS, Kato T (2014). Net ecosystem productivity of temperate grasslands in northern China: an upscaling study. Agricultural and Forest Meteorology, 184, 71-81.
DOI URL |
[1] | 席念勋 张原野 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 樊凡, 赵联军, 马添翼, 熊心雨, 张远彬, 申小莉, 李晟. 川西王朗亚高山暗针叶林25.2 hm2动态监测样地物种组成与群落结构特征[J]. 植物生态学报, 2022, 46(9): 1005-1017. |
[3] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[4] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[5] | 谢育杭, 贾璞, 郑修坛, 李金天, 束文圣, 王宇涛. 驯化对作物微生物组多样性和群落结构的影响及作用途径[J]. 植物生态学报, 2022, 46(3): 249-266. |
[6] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[7] | 周亮, 杨君珑, 杨虎, 窦建德, 黄维, 李小伟. 宁夏蒙古扁桃群落特征与分类[J]. 植物生态学报, 2022, 46(2): 243-248. |
[8] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[9] | 臧永新 马剑英 周晓兵 陶冶 尹本丰 沙亚古丽·及格尔 张元明. 极端干旱和降水对沙垄不同坡位、坡向短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[10] | 黄侩侩 胡刚 庞庆玲 张贝 何业涌 胡聪 徐超昊 张忠华. 放牧对中国亚热带喀斯特山地灌草丛物种组成与群落结构的影响[J]. 植物生态学报, 2022, 46(11): 1350-1363. |
[11] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[12] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
[13] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
[14] | 高德才, 白娥. 冻融循环期间土壤氧化亚氮排放影响因素[J]. 植物生态学报, 2021, 45(9): 1006-1023. |
[15] | 贺忠权, 刘长成, 蔡先立, 郭柯. 黔中高原喀斯特常绿与落叶阔叶混交林类型及群落特征[J]. 植物生态学报, 2021, 45(6): 670-680. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19