植物生态学报 ›› 2014, Vol. 38 ›› Issue (4): 343-354.DOI: 10.3724/SP.J.1258.2014.00031
肖群英1,2, 尹春英1,*(), 濮晓珍1,2, 乔明锋1,2, 刘庆1
收稿日期:
2013-11-04
接受日期:
2014-02-07
出版日期:
2014-11-04
发布日期:
2014-04-08
通讯作者:
尹春英
作者简介:
*(E-mail:yincy@cib.ac.cn)基金资助:
XIAO Qun-Ying1,2, YIN Chun-Ying1,*(), PU Xiao-Zhen1,2, QIAO Ming-Feng1,2, LIU Qing1
Received:
2013-11-04
Accepted:
2014-02-07
Online:
2014-11-04
Published:
2014-04-08
Contact:
YIN Chun-Ying
摘要:
川西亚高山森林存在明显的季节性冻土现象, 该地区的土壤经历着初冬冻融、深冬冻结、早春冻融等过程, 同时,该区域冬季受气候变化的影响强烈。为了全面地认识亚高山森林的生态过程, 该研究以川西亚高山针叶林两种主要树种——岷江冷杉(Abies fargesii var. faxoniana)和云杉(Picea asperata)为材料, 研究其叶片及细根内丙二醛含量、渗透调节物质的含量、组织含水量、过氧化物酶活性以及硝酸还原酶活性在季节性冻土期的变化, 同时还比较了冻土期和冻融期细根的比根长, 比表面积, 直径以及组织密度的变化。研究结果显示: 在季节性冻土期, 土壤温度昼夜波动幅度小于空气温度波动幅度, 细根却表现出更强的过氧化物酶活性以及更高的渗透调节物质含量, 说明细根较叶片对季节性冻土更为敏感。与冻结期相比, 冻融期土壤温度、空气温度以及空气相对湿度昼夜波动幅度增加, 促使云杉叶片可溶性糖含量以及两针叶树种叶片内过氧化物酶活性、脯氨酸含量显著增加, 而细根的组织含水量显著降低, 脯氨酸、可溶性蛋白质及可溶性糖含量均显著增加, 表明冻融期对两针叶树种的影响较冻结期更为强烈。岷江冷杉和云杉的过氧化物酶活性及渗透调节物质含量具有相同的变化趋势, 但叶片和细根的膜脂过氧化程度及酶活性变化并不一致, 就岷江冷杉而言, 细根的丙二醛含量显著增加, 而叶片、细根的硝酸还原酶活性均显著降低, 云杉仅叶片的丙二醛含量发生变化, 且显著降低, 说明云杉更能忍耐冻融循环造成的胁迫。研究还发现细根形态在季节性冻土期无显著变化。
肖群英, 尹春英, 濮晓珍, 乔明锋, 刘庆. 川西亚高山季节性冻土期针叶林主要树种叶片和细根的生态生理特征. 植物生态学报, 2014, 38(4): 343-354. DOI: 10.3724/SP.J.1258.2014.00031
XIAO Qun-Ying, YIN Chun-Ying, PU Xiao-Zhen, QIAO Ming-Feng, LIU Qing. Ecophysiological characteristics of leaves and fine roots in dominant tree species in a subalpine coniferous forest of western Sichuan during seasonal frozen soil period. Chinese Journal of Plant Ecology, 2014, 38(4): 343-354. DOI: 10.3724/SP.J.1258.2014.00031
图1 实验样地内的气温、地表温度、土壤温度(地下5 cm)以及空气相对湿度昼夜波动。
Fig. 1 Daily fluctuation of air temperature, ground surface temperature, soil temperature at 5 cm soil depth and air relative humidity in the sample plot.
图2 季节性冻土期岷江冷杉(A)和云杉(B)叶片、细根丙二醛含量变化(平均值±标准偏差, n = 5)。 误差线上方不同的小写字母表示叶片在冻结期和冻融期差异显著(p < 0.05); 误差线上方不同的大写字母表示细根在冻结期和冻融期差异显著(p < 0.05)。星号表示细根和叶在相同时期的差异性(***, p < 0.005; **, p < 0.01; *, p < 0.05)。
Fig. 2 Changes in malondialdehyde (MDA) content in leaves and fine roots of Abies fargesii var. faxoniana (A) and Picea asperata (B) during seasonal frozen soil period (mean ± SD, n = 5). Different lowercase letters above the error bars indicate significant differences in leaves between the freezing and freezing-thawing periods (p < 0.05); different capital letters above the error bars indicate significant differences in fine roots between the freezing and freezing-thawing periods (p < 0.05). Asterisks indicate significant differences between leaves and fine roots over the same period (***, p < 0.005; **, p < 0.01; *, p < 0.05).
图3 季节性冻土期岷江冷杉(A)和云杉(B)叶片、细根过氧化物酶活性变化(平均值±标准偏差, n = 5)。 误差线上方不同的小写字母表示叶片冻结期和冻融期差异显著(p < 0.05); 误差线上方相同的大写字母表示细根冻结期和冻融期差异不显著(p > 0.05); 星号表示细根和叶在相同时期差异性(***, p < 0.005; **, p < 0.01; *, p < 0.05)。
Fig. 3 Changes in peroxidase (POD) activity in leaves and fine roots of Abies fargesii var. faxoniana (A) and Picea asperata (B) during seasonal frozen soil period (mean ± SD, n = 5). Different lowercase letters above the error bars indicate significant differences in leaves between the freezing and freezing-thawing periods (p < 0.05); the same capital letters above the error bars indicate no significant differences in fine roots between the freezing and freezing-thawing periods (p > 0.05). Asterisks indicate significant differences between leaves and fine roots over the same period (***, p < 0.005; **, p < 0.01; *, p < 0.05).
图4 季节性冻土期叶片和细根渗透调节物的含量变化(平均值±标准偏差, n = 5)。 A, 岷江冷杉脯氨酸含量。B, 云杉脯氨酸含量。C, 岷江冷杉可溶性蛋白含量。D, 云杉可溶性蛋白含量。E, 岷江冷杉可溶性糖含量。F, 云杉可溶性糖含量。误差线上方不同的小写字母表示叶片冻结期和冻融期差异显著(p < 0.05); 误差线上方不同的大写字母表示细根冻结期和冻融期差异显著(p < 0.05); 星号表示细根和叶在相同时期差异性(***, p < 0.005; **, p < 0.01; *, p < 0.05)。
Fig. 4 Changes in the contents of osmoregulation substance in leaves and fine roots during seasonal frozen soil period (mean ± SD, n = 5). A, Proline content in Abies fargesii var. faxoniana. B, Proline content in Picea asperata. C, Soluble protein content in Abies fargesii var. faxoniana. D, Soluble protein content in Picea asperata. E, Soluble sugar content in Abies fargesii var. faxoniana. F, Soluble sugar content in Picea asperata. Different lowercase letters above the error bars indicate significant differences in leaves between the freezing and freezing-thawing periods (p < 0.05); different capital letters above the error bars indicate significant differences in fine roots between the freezing and freezing-thawing periods (p < 0.05). Asterisks indicate significant differences between leaves and fine roots over the same period (***, p < 0.005; **, p < 0.01; *, p < 0.05).
图5 季节性冻土期叶片和细根的生理变化(平均值±标准偏差, n = 5)。 A, 岷江冷杉硝酸还原酶活性。B, 云杉硝酸还原酶活性。C, 岷江冷杉水分含量。D, 云杉水分含量。误差线上方不同的小写字母表示叶片冻结期和冻融期差异显著(p < 0.05); 误差线上方不同的大写字母表示细根冻结期和冻融期差异显著(p < 0.05); 星号表示根和叶在相同时期差异性(***, p < 0.005; **, p < 0.01; *, p < 0.05)。
Fig. 5 Physiological changes in leaves and fine roots during seasonal frozen soil period (mean ± SD, n = 5). A, Nitrate reductase activity in Abies fargesii var. faxoniana. B, Nitrate reductase activity in Picea asperata. C, Water content of Abies fargesii var. faxoniana. D, Water content in Picea asperata. Different lowercase letters above the error bars indicate significant differences in leaves between the freezing and freezing-thawing periods (p < 0.05); different capital letters above the error bars indicate significant differences in fine roots between the freezing and soil freezing-thawing periods (p < 0.05). Asterisks indicate significant differences between leaves and fine roots over the same period (***, p < 0.005; **, p < 0.01; *, p < 0.05).
图6 季节性冻土期云杉和岷江冷杉细根形态变化(平均值±标准偏差, n = 5)。 A, 比根长。B, 比表面积。C, 直径。D, 组织密度。误差线上方相同的小写字母表示岷江冷杉细根形态冻结期和冻融期差异不显著(p > 0.05); 误差线上方相同的大写字母表示云杉细根形态冻结期和冻融期差异不显著(p > 0.05)。
Fig. 6 Morphological changes in fine roots of Abies fargesii var. faxoniana and Picea asperata during seasonal frozen soil period (mean ± SD, n = 5). A, Specific root length. B, Specific surface area. C, Diameter. D, Tissue density. The same lowercase letters above the error bars indicate no significant differences in the morphology of fine roots in Abies fargesii var. faxoniana between the freezing and freezing-thawing periods (p > 0.05); the same capital letters above the error bars indicate no significant differences in the of fine roots morphology in Picea asperata between the freezing and freezing-thawing periods (p > 0.05).
[1] |
Bates LS, Waldren RP, Teare ID (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.
DOI URL |
[2] |
Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
URL PMID |
[3] |
Campbell JL, Mitchell MJ, Groffman PM, Christenson LM, Hardy JP (2005). Winter in northeastern North America: a critical period for ecological processes. Frontiers in Ecology and the Environment, 3, 314-322.
DOI URL |
[4] |
Castillo FJ, Penel C, Greppin H (1984). Peroxidase release induced by ozone in Sedum album leaves: involvement of Ca 2+. Plant Physiology, 74, 846-851.
URL PMID |
[5] | Chang WJ, Guo DL (2008). Variation in root diameter among 45 common tree species in temperate, subtropical and tropical forests in China. Journal of Plant Ecology (Chinese Version), 32, 1248-1257. (in Chinese with English abstract) |
[ 常文静, 郭大立 (2008). 中国温带、亚热带和热带森林45个常见树种细根直径变异. 植物生态学报, 32, 1248-1257.] | |
[6] | de Vos CHR, Schat H, Waal MAM, Vooijs R, Ernst WHO (1991). Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiologia Plantarum, 82, 523-528. |
[7] |
Fernàndez-Martínez J, Zacchini M, Elena G, Fernández-Marín B, Fleck I (2013). Effect of environmental stress factors on ecophysiological traits and susceptibility to pathogens of five Populus clones throughout the growing season. Tree Physiology, 33, 618-627.
DOI URL PMID |
[8] | Fitter AH (1982). Morphometric analysis of root systems: application of the technique and influence of soil fertility on root system development in two herbaceous species. Plant, Cell & Environment, 5, 313-322. |
[9] | Fitzhugh RD, Driscoll CT, Groffman PM, Tierney GL, Fahey TJ, Hardy JP (2001). Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeo- chemistry, 56, 215-238. |
[10] | Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Tierney GL (2001a). Colder soils in a warmer world: A snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry, 56, 135-150. |
[11] | Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Tierney GL (2001b). Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. Biogeochemistry, 56, 191-213. |
[12] | Haei M, Öquist MG, Buffam I, Ågren A, Blomkvist P, Bishop K, Löfvenius MO, Laudon H (2010). Cold winter soils enhance dissolved organic carbon concentrations in soil and stream water. Geophysical Research Letters, 37, L08501, doi: 10.1029/2010GL042821. |
[13] | Halliwell B, Gutteridge JMC (1989). Free Radicals in Biology and Medicine. 2nd edn. Oxford University Press, New York. |
[14] |
Hansen J, Møller I (1975). Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Analytical Biochemistry, 68, 87-94.
URL PMID |
[15] | Henry HAL (2008). Climate change and soil freezing dynamics: historical trends and projected changes. Climate Change, 87, 421-434. |
[16] | Hodges DM, Delong JM, Forney CF, Prange RK (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604-611. |
[17] | IPCC (Intergovernmental Panel on Climate Change) (2007). Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA eds. Climate Change in 2007: Mitigation. Cambridge University Press, Cambridge, UK. |
[18] | Jones HG (2001). Snow Ecology: an Interdisciplinary Examination of Snow-Covered Ecosystems. Cambridge University Press, Cambridge, UK. 1-302. |
[19] | Joseph G, Henry HAL (2008). Soil nitrogen leaching losses in response to freeze-thaw cycles and pulsed warming in a temperate old field. Soil Biology & Biochemistry, 40, 1947-1953. |
[20] |
Kreyling J (2010). Winter climate change: a critical factor for temperate vegetation performance. Ecology, 91, 1939-1948.
URL PMID |
[21] | Kreyling J, Beierkuhnlein C, Pritsch K, Schloter M, Jentsch A (2008). Recurrent soil freeze-thaw cycles enhance grassland productivity. New Phytologist, 177, 938-945. |
[22] | Kreyling J, Henry HAL (2011). Vanishing winters in Germany: soil frost dynamics and snow cover trends, and ecological implications. Climate Research, 46, 269-276. |
[23] | Lee G, Carrow RN, Duncan RR, Eiteman MA, Rieger MW (2008). Synthesis of organic osmolytes and salt tolerance mechanisms inPaspalum vaginatum. Environmental and Experimental Botany, 63, 19-27. |
[24] | Liu Q, Wu Y, He H (2001). Ecological problems of subalpine coniferous forest in the southwest of China. World Sci-Tech Research and Development, 23(2), 63-69. (in Chinese with English abstract) |
[ 刘庆, 吴彦, 何海 (2001). 中国西南亚高山针叶林的生态学问题. 世界科技研究与发展, 23(2), 63-69.] | |
[25] | Ma YX, Cai TJ, Song LP, Yu XL (2007). Changes in contents of MDA and osmoregulatory substances during snow cover for Pyrola dahurica. Acta Ecologica Sinica, 27, 4596-4602. (in Chinese with English abstract) |
[ 马玉心, 蔡体久, 宋丽萍, 喻晓丽 (2007). 兴安鹿蹄草(Pyrola dahurica (H. Andr.) Kom.)雪盖前后丙二醛及渗透调节物质含量的变化. 生态学报, 27, 4596-4602.] | |
[26] | Matzner E, Borken W (2008). Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review. European Journal of Soil Science, 59, 274-284. |
[27] | Nielsen CB, Groffman PM, Hamburg SP, Driscoll CT, Fahey TJ, Hardy JP (2001). Freezing effects on carbon and nitrogen cycling in northern hardwood forest soils. Soil Science Society of America Journal, 65, 1723-1730. |
[28] |
Olsson PQ, Sturm M, Racine CH, Romanovsky V, Liston GE (2003). Five stages of the Alaskan Arctic cold season with ecosystem implications. Arctic, Antarctic, and Alpine Research, 35, 74-81.
DOI URL |
[29] |
Oztas T, Fayetorbay F (2003). Effect of freezing and thawing processes on soil aggregate stability. Catena, 52, 1-8.
DOI URL |
[30] | Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309. |
[31] | Rosa ES, Heaney RK, Portas CM, Fenwick GR (1996). Changes in glucosinolate concentrations inBrassica crops(B. oleracea and B. napus) throughout growing seasons. Journal of the Science of Food and Agriculture, 71, 237-244. |
[32] | Schaberg PG, Hennon PE, D’amore DV, Hawley GJ (2008). Influence of simulated snow cover on the cold tolerance and freezing injury of yellow-cedar seedlings. Global Change Biology, 14, 1282-1293. |
[33] | Schimel JP, Clein JS (1996). Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biology & Bio- chemistry, 28, 1061-1066. |
[34] | Tan B, Wu FZ, Yang WQ, Yu S, Liu L, Wang A (2011). The dynamics pattern of soil carbon and nutrients as soil thawing proceeded in the alpine/subalpine forest. Acta Agriculturae Scandinavica, Section B―Soil & Plant Science, 61, 670-679. |
[35] | Taylor BR, Parkinson D (1988). Does repeated freezing and thawing accelerate decay of leaf litter? Soil Biology & Biochemistry, 20, 657-665. |
[36] | Tierney GL, Fahey TJ, Groffman PM, Hardy JP, Fitzhugh RD, Driscoll CT (2001). Soil freezing alters fine root dynamics in a northern hardwood forest. Biogeochemistry, 56, 175-190. |
[37] | Wang KY (2004). Processes of Subalpine Forest Ecosystem in Western Sichuan. Sichuan Science and Technology Press, Chengdu. (in Chinese) |
[ 王开运 (2004). 川西亚高山森林群落生态系统过程. 四川科学技术出版社, 成都.] | |
[38] | Wu FZ, Yang WQ, Zhang J, Deng RJ (2010). Litter decom- position in two subalpine forests during the freeze-thaw season. Acta Oecologica, 36, 135-140. |
[39] | Xia MX, Guo DL, Pregitzer KS (2010). Ephemeral root modules in Fraxinus mandshurica. New Phytologist, 188, 1065-1074. |
[40] |
Xu ZZ, Zhou GS (2006). Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta, 224, 1080-1090.
DOI URL PMID |
[41] | Yang CW, Shi DC, Wang DL (2008). Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca(Bge.). Plant Growth Regulation, 56, 179-190. |
[42] | Zhang T, Barry RG, Knowles K, Ling F, Armstrong RL (2003). Distribution of seasonally and perennially frozen ground in the Northern Hemisphere. In: Phillips M, Springman SM, Arenson LU eds. Permafrost: Proceedings of the Eighth International Conference on Permafrost. A. A. Balkema Publishers, Zurich, Switzerland. 1289-1294. |
[43] | Zhang ZL, Qu WQ (2003). The Experimental Guide for Plant Physiology. Higher Education Press, Beijing. 41-42. (in Chinese) |
[ 张志良, 瞿伟菁 (2003). 植物生理学实验指导. 高等教育出版社, 北京. 41-42.] | |
[44] | Zhao CZ, Liu Q (2012). Effects of soil warming and nitrogen fertilization on leaf physiology of Pinus tabulaeformis seedlings. Acta Physiologiae Plantarum, 34, 1837-1846. |
[1] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[2] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[3] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[4] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[5] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[6] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[7] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[8] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[9] | 姚萌, 康荣华, 王盎, 马方园, 李靳, 台子晗, 方运霆. 利用15N示踪技术研究木荷与马尾松幼苗叶片对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 114-122. |
[10] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[11] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[12] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[13] | 翟江维, 林馨慧, 武瑞哲, 徐义昕, 靳豪豪, 金光泽, 刘志理. 小兴安岭不同功能型阔叶植物的柄叶权衡[J]. 植物生态学报, 2022, 46(6): 700-711. |
[14] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[15] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19