植物生态学报 ›› 2012, Vol. 36 ›› Issue (6): 530-538.DOI: 10.3724/SP.J.1258.2012.00530
收稿日期:
2011-12-15
接受日期:
2011-04-05
出版日期:
2012-12-15
发布日期:
2012-06-04
通讯作者:
程晓莉
作者简介:
*(E-mail:xlcheng@fudan.edu.cn)
LI Ming1,2, ZHU Li-Chuan1,2, ZHANG Quan-Fa1, CHENG Xiao-Li1,*()
Received:
2011-12-15
Accepted:
2011-04-05
Online:
2012-12-15
Published:
2012-06-04
Contact:
CHENG Xiao-Li
摘要:
氮(N)素是陆地生态系统净初级生产力的重要限制因子, 土地利用类型的变化对生态系统氮循环过程有着重要的影响。采用PVC顶盖埋管原位培养的方法, 对丹江口库区清塘河流域相邻的侧柏(Platycladus orientalis)人工林、人工种植灌木林地和农田3种土地利用类型的氮素矿化和硝化作用进行了研究。结果表明, 侧柏人工林、灌木林地和农田的NH4+-N浓度(mg·kg-1)依次为1.33 ± 0.20、1.67 ± 0.17和1.62 ± 0.13, 不同土地利用类型间的NH4+-N浓度无显著性差异; 而3种土地利用类型下土壤NO3--N浓度(mg·kg-1)差异显著, 农田NO3--N浓度(9.00 ± 0.73)显著高于侧柏人工林(1.27 ± 0.18)和灌木林地(3.51 ± 0.11)。NO3--N在灌木林地和农田中分别占土壤无机氮库的67.8%和84.8%, 是土壤无机氮库的主要存在形式; 而侧柏人工林中NO3--N和NH4+-N浓度则基本相等。土壤硝化速率(mg·kg-1·30 d-1)从农田(7.13 ± 2.19)、灌木林地(2.56 ± 1.07)到侧柏人工林(0.85 ± 0.10)显著性降低。侧柏人工林、灌木林地和农田的矿化速率(mg·kg-1·30 d-1)依次为0.98 ± 0.12、2.52 ± 1.25和6.58 ± 2.29。矿化速率和硝化速率显著正相关, 但是矿化速率在不同的土地利用类型间差异不显著。培养过程中灌木林地和农田NH4+-N的消耗大于积累, 氨化速率为负值, 导致灌木林地和农田矿化速率小于硝化速率。氮素的矿化和硝化作用受土壤含水量和土壤温度的影响, 并对土壤含水量更为敏感。土壤C:N与土壤矿化和硝化速率显著负相关。研究结果表明: 土地利用类型的变化会改变土壤微环境和土壤C:N, 进而会影响到土壤氮循环过程。
李铭, 朱利川, 张全发, 程晓莉. 不同土地利用类型对丹江口库区土壤氮矿化的影响. 植物生态学报, 2012, 36(6): 530-538. DOI: 10.3724/SP.J.1258.2012.00530
LI Ming, ZHU Li-Chuan, ZHANG Quan-Fa, CHENG Xiao-Li. Impacts of different land use types on soil nitrogen mineralization in Danjiangkou Reservoir Area, China. Chinese Journal of Plant Ecology, 2012, 36(6): 530-538. DOI: 10.3724/SP.J.1258.2012.00530
理化性质 Physical and chemical properties | 人工林 Afforestation | 灌木林地 Shrubland | 农田 Cropland |
---|---|---|---|
有机碳 Organic C (g·kg-1) | 10.43 ±1.41a | 8.70 ± 0.47ab | 4.07 ± 0.15b |
总氮 Total N (g·kg-1) | 6.83 ± 0.78a | 7.53 ± 0.43a | 5.87 ± 0.43a |
C:N | 15.21 ± 0.56a | 11.69 ± 1.22b | 7.03 ± 0.67c |
微生物生物量碳 Microbial biomass C (mg·kg-1) | 290.84 ± 37.46a | 291.34 ± 37.64a | 135.02 ± 27.85a |
微生物生物量氮 Microbial biomass N (mg·kg-1) | 48.41 ± 5.76a | 45.49 ± 5.77a | 18.84 ± 0.68b |
土壤含水量 Soil water content (%) | 8.66 ± 0.95b | 11.99 ± 1.32ab | 13.84 ± 1.03a |
土壤温度 Soil temperature (℃) | 15.2 ± 0.3b | 19.5 ± 0.8a | 19.0 ± 1.0a |
pH | 7.57 ± 0.05b | 7.93 ± 0.07a | 8.04 ± 0.04a |
容重 Bulk density (g·cm-3) | 1.42 ± 0.06a | 1.56 ± 0.07a | 1.44 ± 0.02a |
表1 不同土地利用类型土壤(0-10 cm)的理化性质(平均值±标准误差, n = 15)
Table 1 Soil physical and chemical properties (0-10 cm) under different land use types (mean ± SE, n = 15)
理化性质 Physical and chemical properties | 人工林 Afforestation | 灌木林地 Shrubland | 农田 Cropland |
---|---|---|---|
有机碳 Organic C (g·kg-1) | 10.43 ±1.41a | 8.70 ± 0.47ab | 4.07 ± 0.15b |
总氮 Total N (g·kg-1) | 6.83 ± 0.78a | 7.53 ± 0.43a | 5.87 ± 0.43a |
C:N | 15.21 ± 0.56a | 11.69 ± 1.22b | 7.03 ± 0.67c |
微生物生物量碳 Microbial biomass C (mg·kg-1) | 290.84 ± 37.46a | 291.34 ± 37.64a | 135.02 ± 27.85a |
微生物生物量氮 Microbial biomass N (mg·kg-1) | 48.41 ± 5.76a | 45.49 ± 5.77a | 18.84 ± 0.68b |
土壤含水量 Soil water content (%) | 8.66 ± 0.95b | 11.99 ± 1.32ab | 13.84 ± 1.03a |
土壤温度 Soil temperature (℃) | 15.2 ± 0.3b | 19.5 ± 0.8a | 19.0 ± 1.0a |
pH | 7.57 ± 0.05b | 7.93 ± 0.07a | 8.04 ± 0.04a |
容重 Bulk density (g·cm-3) | 1.42 ± 0.06a | 1.56 ± 0.07a | 1.44 ± 0.02a |
土壤理化性质 Soil physical and chemical properties | F | p |
---|---|---|
硝态氮 NO3--N (mg·kg-1) | 81.14 | <0.001 |
铵态氮 NH4+-N (mg·kg-1) | 1.16 | 0.376 |
无机氮 Inorganic N (mg·kg-1) | 96.38 | <0.001 |
矿化速率 Mineralization rate (mg·kg-1·30 d-1) | 3.97 | 0.09 |
硝化速率 Nitrification rate (mg·kg-1·30 d-1) | 5.32 | 0.047 |
氨化速率 Ammonification rate (mg·kg-1·30 d-1) | 6.13 | 0.035 |
有机碳 Organic C (g·kg-1) | 14.61 | 0.005 |
总氮 Total N (g·kg-1) | 1.50 | 0.296 |
C:N | 22.55 | 0.002 |
微生物生物量碳 Microbial biomass C (mg·kg-1) | 3.59 | 0.094 |
微生物生物量氮 Microbial biomass N (mg·kg-1) | 7.78 | 0.022 |
土壤含水量 Soil water content (%) | 5.60 | 0.042 |
土壤温度 Soil temperature (℃) | 8.93 | 0.016 |
pH | 18.97 | 0.03 |
容重 Bulk density (g·cm-3) | 1.94 | 0.224 |
表2 土地利用类型对土壤理化性质的影响
Table 2 Impact of land use type on soil physical and chemical properties
土壤理化性质 Soil physical and chemical properties | F | p |
---|---|---|
硝态氮 NO3--N (mg·kg-1) | 81.14 | <0.001 |
铵态氮 NH4+-N (mg·kg-1) | 1.16 | 0.376 |
无机氮 Inorganic N (mg·kg-1) | 96.38 | <0.001 |
矿化速率 Mineralization rate (mg·kg-1·30 d-1) | 3.97 | 0.09 |
硝化速率 Nitrification rate (mg·kg-1·30 d-1) | 5.32 | 0.047 |
氨化速率 Ammonification rate (mg·kg-1·30 d-1) | 6.13 | 0.035 |
有机碳 Organic C (g·kg-1) | 14.61 | 0.005 |
总氮 Total N (g·kg-1) | 1.50 | 0.296 |
C:N | 22.55 | 0.002 |
微生物生物量碳 Microbial biomass C (mg·kg-1) | 3.59 | 0.094 |
微生物生物量氮 Microbial biomass N (mg·kg-1) | 7.78 | 0.022 |
土壤含水量 Soil water content (%) | 5.60 | 0.042 |
土壤温度 Soil temperature (℃) | 8.93 | 0.016 |
pH | 18.97 | 0.03 |
容重 Bulk density (g·cm-3) | 1.94 | 0.224 |
图1 不同土地利用类型下土壤NH4+-N、NO3--N和无机氮浓度(平均值±标准误差, n = 15)。 同一指标下不同字母表示不同土地利用类型间差异显著(p < 0.05)。
Fig. 1 Concentrations of NH4+-N; NO3--N and inorganic nitrogen under different land use types (mean ± SE, n = 15). Different letters under the same index indicate significant differences (p < 0.05) among the different land use types.
净矿化速率 Net mineralization rate (mg·kg-1·30 d-1) | 硝化速率 Nitrification rate (mg·kg-1·30 d-1) | 氨化速率 Ammonification rate (mg·kg-1·30 d-1) | |
---|---|---|---|
硝态氮 NO3--N (mg·kg-1) | 0.819** | 0.869** | -0.784* |
铵态氮 NH4+-N (mg·kg-1) | 0.181 | 0.201 | -0.249 |
无机氮 Inorganic N (mg·kg-1) | 0.813** | 0.864** | -0.785* |
有机碳 Organic C (g·kg-1) | -0.749* | -0.787* | 0.653 |
总氮 Total N (g·kg-1) | -0.200 | -0.243 | 0.493 |
C:N | -0.828** | -0.863** | 0.644 |
微生物生物量碳 Microbial biomass C (mg·kg-1) | -0.743* | -0.774* | 0.580 |
微生物生物量氮 Microbial biomass N (mg·kg-1) | -0.689* | -0.738* | 0.732* |
土壤含水量 Soil water content (%) | 0.682* | 0.694* | -0.373 |
土壤温度 Soil temperature (℃) | 0.287 | 0.316 | -0.382 |
pH | 0.619 | 0.651 | -0.534 |
容重 Bulk density (g·cm-3) | 0.069 | 0.039 | 0.265 |
氨化速率 Ammonification rate (mg·kg-1·30 d-1) | -0.337 | -0.429 | |
硝化速率 Nitrification rate (mg·kg-1·30 d-1) | 0.995** |
表3 土壤氮素净矿化、硝化以及氨化速率与土壤理化性质间的Pearson相关关系(r)
Table 3 Pearson correlation coefficients (r) among soil nitrogen net mineralization rate, nitrification rate, ammonification rate and soil physical and chemical properties
净矿化速率 Net mineralization rate (mg·kg-1·30 d-1) | 硝化速率 Nitrification rate (mg·kg-1·30 d-1) | 氨化速率 Ammonification rate (mg·kg-1·30 d-1) | |
---|---|---|---|
硝态氮 NO3--N (mg·kg-1) | 0.819** | 0.869** | -0.784* |
铵态氮 NH4+-N (mg·kg-1) | 0.181 | 0.201 | -0.249 |
无机氮 Inorganic N (mg·kg-1) | 0.813** | 0.864** | -0.785* |
有机碳 Organic C (g·kg-1) | -0.749* | -0.787* | 0.653 |
总氮 Total N (g·kg-1) | -0.200 | -0.243 | 0.493 |
C:N | -0.828** | -0.863** | 0.644 |
微生物生物量碳 Microbial biomass C (mg·kg-1) | -0.743* | -0.774* | 0.580 |
微生物生物量氮 Microbial biomass N (mg·kg-1) | -0.689* | -0.738* | 0.732* |
土壤含水量 Soil water content (%) | 0.682* | 0.694* | -0.373 |
土壤温度 Soil temperature (℃) | 0.287 | 0.316 | -0.382 |
pH | 0.619 | 0.651 | -0.534 |
容重 Bulk density (g·cm-3) | 0.069 | 0.039 | 0.265 |
氨化速率 Ammonification rate (mg·kg-1·30 d-1) | -0.337 | -0.429 | |
硝化速率 Nitrification rate (mg·kg-1·30 d-1) | 0.995** |
图2 不同土地利用类型下土壤氮素净矿化、硝化和氨化速率(平均值±标准误差, n = 15)。 同一指标下不同字母表示不同土地利用类型间差异显著(p < 0.05)。
Fig. 2 Soil net nitrogen mineralization, nitrification and ammonification rate under different land use types (mean ± SE, n = 15). Different letters under the same index indicate the significant differences (p < 0.05) among the different land use types.
[1] |
Adams MA, Attiwill PM (1986). Nutrient cycling and nitrogen mineralization in eucalypt forests of southeastern Australia II. Indexes of nitrogen mineralization. Plant and Soil, 92, 341-362.
DOI URL |
[2] |
Beck T, Joergensen RG, Kandeler E, Makeschin F, Nuss E, Oberholzer HR, Scheu S (1997). An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biology & Biochemistry, 29, 1023-1032.
DOI URL |
[3] | Binkley D, Hart SC (1989). The components of nitrogen availability assessments in forest soils. Advances in Soil Science, 10, 57-112. |
[4] | Booth MS, Stark JM, Rastetter E (2005). Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecological Monographs, 75, 139-157. |
[5] |
Bregliani MM, Ros GH, Temminghoff EJM, van Riemsdijk WH (2010). Nitrogen mineralization in soils related to initial extractable organic nitrogen: effect of temperature and time. Communications in Soil Science and Plant Analysis, 41, 1383-1398.
DOI URL |
[6] | Brookes PC, Landman A, Pruden G, Jenkinson DS (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 17, 837-842. |
[7] | Chapin FS III, Matson PA, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York. |
[8] | Dalias P, Anderson JM, Bottner P, Coûteaux MM (2002). Temperature responses of net nitrogen mineralization and nitrification in conifer forest soils incubated under standard laboratory conditions. Soil Biology & Biochemistry, 34, 691-701. |
[9] |
de Boer W, Kowalchuk GA (2001). Nitrification in acid soils: micro-organisms and mechanisms. Soil Biology & Biochemistry, 33, 853-866.
DOI URL |
[10] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI URL PMID |
[11] | Fu MJ ( 傅民杰), Wang CK ( 王传宽), Wang Y ( 王颖), Liu S ( 刘实) (2009). Temporal and spatial patterns of soil nitrogen mineralization and nitrification in four temperate forests. Acta Ecologica Sinica (生态学报), 29, 3747-3758. (in Chinese with English abstract) |
[12] | Grenon F, Bradley RL, Titus BD (2004). Temperature sensitivity of mineral N transformation rates, and heterotrophic nitrification: possible factors controlling the post-disturbance mineral N flush in forest floors. Soil Biology & Biochemistry, 36, 1465-1474. |
[13] |
Guntiñas M, Leirós MC, Trasar-Cepeda C, Gil-Sotres F (2011). Effects of moisture and temperature on net soil nitrogen mineralization: a laboratory study. European Journal of Soil Biology, 48, 73-80.
DOI URL |
[14] | Knoepp JD, Swank WT (1998). Rates of nitrogen mineralization across an elevation and vegetation gradient in the southern Appalachians. Plant and Soil, 204, 235-241. |
[15] | Knoepp JD, Swank WT (2002). Using soil temperature and moisture to predict forest soil nitrogen mineralization. Biology and Fertility of Soils, 36, 177-182. |
[16] | Li SY, Cheng XL, Xu ZF, Han HY, Zhang QF (2009). Spatial and temporal patterns of the water quality in the Danjiangkou Reservoir, China. Hydrological Sciences Journal, 54, 124-134. |
[17] | Liu GS ( 刘光崧), Jiang NH ( 蒋能慧), Zhang LD ( 张连弟), Liu ZL ( 刘兆礼) (1996). Soil Physical and Chemical Analysis and Description of Soil Profile (土壤理化分析与剖面描述). Standards Press of China, Beijing. 34-35. (in Chinese) |
[18] | Liu WZ, Liu GH, Li SY, Zhang QF (2010). Phosphorus sorption and desorption characteristics of wetland soils from a subtropical reservoir. Marine and Freshwater Research, 61, 507-512. |
[19] | Lovett GM, Weathers KC, Arthur MA, Schultz JC (2004). Nitrogen cycling in a northern hardwood forest: do species matter? Biogeochemistry, 67, 289-308. |
[20] | Meng Y ( 孟盈), Xue JY ( 薛敬意), Sha LQ ( 沙丽清), Tang JW ( 唐建维) (2001). Variations of soil NH4+-N, NO3--N and N mineralization under different forests in Xishuangbanna, southwest China. Acta Phytoecologica Sinica (植物生态学报), 25, 99-104. (in Chinese with English abstract) |
[21] | Mikan CJ, Schimel JP, Doyle AP (2002). Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biology & Biochemistry, 34, 1785-1795. |
[22] | Quideau SA, Chadwick OA, Benesi A, Graham RC, Anderson MA (2001). A direct link between forest vegetation type and soil organic matter composition. Geoderma, 104, 41-60. |
[23] |
Rabalais NN (2002). Nitrogen in aquatic ecosystems. AMBIO, 31, 102-112.
DOI URL PMID |
[24] | Raison RJ, Connell MJ, Khanna PK (1987). Methodology for studying fluxes of soil mineral-N in-situ. Soil Biology & Biochemistry, 19, 521-530. |
[25] | Ross DS, Lawrence GB, Fredriksen G (2004). Minerali- zation and nitrification patterns at eight northeastern USA forested research sites. Forest Ecology and Management, 188, 317-335. |
[26] | Sierra J (1997). Temperature and soil moisture dependence of N mineralization in intact soil cores. Soil Biology & Biochemistry, 29, 1557-1563. |
[27] | State Forestry Administration(国家林业局) (1999). LY/T1230-1999 Forestry Industry Standards of the People’s Republic of China (中华人民共和国林业行业标准). Standards Press of China, Beijing. 81-83. (in Chinese) |
[28] |
Ste-Marie C, Paré D (1999). Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biology & Biochemistry, 31, 1579-1589.
DOI URL |
[29] | Sun ZG ( 孙志高), Liu JS ( 刘景双), Li XH ( 李新华) (2008). Changes of nitrogen storage in soil under different land uses in the Sanjiang Plain. System Sciences and Comprehensive Studies in Agriculture (农业系统科学与综合研究), 24, 270-274. (in Chinese with English abstract) |
[30] |
Templer PH, Groffman PM, Flecker AS, Power AG (2005). Land use change and soil nutrient transformations in the Los Haitises region of the Dominican Republic. Soil Biology & Biochemistry, 37, 215-225.
DOI URL |
[31] | Uri V, Lõhmus K, Kund M, Tullus H (2008). The effect of land use type on net nitrogen mineralization on abandoned agricultural land: silver birch stand versus grassland. Forest Ecology and Management, 255, 226-233. |
[32] | Usman S, Singh SP, Rawat YS (2000). Nitrification mineralisation and inorganic-N uptake in evergreen forests of the central Himalayas. European Journal of Soil Biology, 36, 65-71. |
[33] | Verchot LV, Holmes Z, Mulon L, Groffman PM, Lovett GM (2001). Gross vs net rates of N mineralization and nitrification as indicators of functional differences between forest types. Soil Biology & Biochemistry, 33, 1889-1901. |
[34] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737-750. |
[35] | Vitousek PM, Howarth RW (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeo- chemistry, 13, 87-115. |
[36] | Wang CH, Wan SQ, Xing XR, Zhang L, Han XG (2006). Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biology & Biochemistry, 38, 1101-1110. |
[37] | Wang CH ( 王常慧), Xing XR ( 邢雪荣), Han XG ( 韩兴国) (2004). The effects of temperature and moisture on the soil net nitrogen mineralization in an Aneulolepidium chinensis grassland, Inner Mongolia, China. Acta Ecologica Sinica (生态学报), 24, 2472-2476. (in Chinese with English abstract) |
[38] |
Wei XR, Shao MG, Fu XL, Ågren GI, Yin XQ (2011). The effects of land use on soil N mineralization during the growing season on the northern Loess Plateau of China. Geoderma, 160, 590-598.
DOI URL |
[39] | Wu JS ( 吴金水), Lin QM ( 林启美), Huang QY ( 黄巧云), Xiao HA ( 肖和艾) (2006). Soil Microbial Biomass- Methods and Applications (土壤微生物生物量测定方法及其应用). China Meteorological Press, Beijing. (in Chinese) |
[40] |
Yan ER, Wang XH, Huang JJ, Li GY, Zhou W (2008). Decline of soil nitrogen mineralization and nitrification during forest conversion of evergreen broad-leaved forest to plantations in the subtropical area of Eastern China. Biogeochemistry, 89, 239-251.
DOI URL |
[41] | Yu L ( 余泺), Gao M ( 高明), Ci E ( 慈恩), Wang ZF ( 王子芳), Wei CF ( 魏朝富), Xu C ( 徐畅) (2010). Study on the characteristics of mineralization and nitrification in different cultivation modes. Ecology and Environ- mental Sciences (生态环境学报), 19, 733-738. (in Chinese with English abstract) |
[42] |
Zhang M ( 张敏), Zou XM ( 邹晓明) (2009). Comparison of soil C and N in rubber plantation and seasonal rain forest. Chinese Journal of Applied Ecology (应用生态学报), 20, 1013-1019. (in Chinese with English abstract)
URL PMID |
[43] |
Zhang QF, Xu ZF, Shen ZH, Li SY, Wang SS (2009). The Han River watershed management initiative for the South-to-North Water Transfer project (Middle Route) of China. Environmental Monitoring and Assessment, 148, 369-377.
DOI URL PMID |
[44] | Zhang XL, Wang QB, Li LH, Han XG (2008). Seasonal variations in nitrogen mineralization under three land use types in a grassland landscape. Acta Oecologica, 34, 322-330. |
[45] | Zhou CP ( 周才平), Ouyang H ( 欧阳华) (2001). Tem- perature and moisture effects on soil nitrogen mineralization in deciduous broad-leaved forest. Acta Phytoecologica Sinica (植物生态学报), 25, 204-209. (in Chinese with English abstract) |
[46] | Zhu MM ( 朱明勇), Tan SD ( 谭淑端), Gu S ( 顾胜), Zhang QF ( 张全发) (2010). Characteristics of soil erodibility in the Danjiangkou Reservoir region, Hubei Province. Chinese Journal of Soil Science (土壤通报), 41, 434-436. (in Chinese with English abstract) |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 刘攀, 王文颖, 周华坤, 毛旭锋, 刘艳方. 青藏高原人工草地土壤可溶性氮组分与植被生产力动态变化过程[J]. 植物生态学报, 2021, 45(5): 562-572. |
[3] | 徐小惠, 刁华杰, 覃楚仪, 郝杰, 申颜, 董宽虎, 王常慧. 华北盐渍化草地土壤净氮矿化速率对不同水平氮添加的响应[J]. 植物生态学报, 2021, 45(1): 85-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19