植物生态学报 ›› 2008, Vol. 32 ›› Issue (5): 1072-1083.DOI: 10.3773/j.issn.1005-264x.2008.05.012
所属专题: 青藏高原植物生态学:生理生态学
尹华军1, 赖挺1, 程新颖1, 蒋先敏2, 刘庆1,*()
收稿日期:
2008-02-22
接受日期:
2008-05-30
出版日期:
2008-02-22
发布日期:
2008-09-30
通讯作者:
刘庆
作者简介:
*(liuqing@cib.ac.cn)基金资助:
YIN Hua-Jun1, LAI Ting1, CHENG Xin-Ying1, JIANG Xian-Min2, LIU Qing1,*()
Received:
2008-02-22
Accepted:
2008-05-30
Online:
2008-02-22
Published:
2008-09-30
Contact:
LIU Qing
摘要:
川西亚高山针叶林是青藏高原东部高寒林区的重要组成部分, 也是研究全球变化对森林生态系统影响的重要森林类型。开展亚高山针叶林不同树种对气候变暖响应差异的研究, 可为预测未来气候变暖背景下亚高山针叶林植被组成和森林动态提供科学依据。我们以川西亚高山针叶林两种主要树种——红桦(Betula albo-sinensis)和岷江冷杉(Abies faxoniana)为研究材料, 采用开顶式增温法(Open-top chamber, OTC)模拟气候变暖, 研究了增温对全光条件和林下低光环境中(约为全光的10%)生长的红桦和岷江冷杉幼苗生长和生理的影响。在人工林环境下, OTC使增温框内平均气温和地表温度分别升高了0.51和0.33 ℃; 而在林外空地处, OTC使二者分别升高了0.69和0.41 ℃。研究结果显示, 增温总体上促进了两种幼苗的生长和生理过程, 并促使幼苗将更多的生物量投入到其同化部位——叶, 使幼苗的根冠比(R/S)显著降低。增温通过增加叶片的光合色素含量和表观量子效率等光合参数, 促进了幼苗的光合过程和生长。然而, 增温对两种幼苗生长和生理的影响效果与植物种类及其所处的光环境有关。增温仅在林外全光条件下显著影响红桦幼苗的生长和生理过程。岷江冷杉幼苗对增温的响应与红桦相反, 即增温仅在林下低光环境下对岷江冷杉幼苗的生长和生理过程有明显促进作用。这种响应差异可能赋予这两种植物在未来气候变暖背景下面对外界环境变化时具有不同的适应能力和竞争优势, 从而对亚高山针叶林生态系统物种组成和森林动态产生潜在影响。
尹华军, 赖挺, 程新颖, 蒋先敏, 刘庆. 增温对川西亚高山针叶林内不同光环境下红桦和岷江冷杉幼苗生长和生理的影响. 植物生态学报, 2008, 32(5): 1072-1083. DOI: 10.3773/j.issn.1005-264x.2008.05.012
YIN Hua-Jun, LAI Ting, CHENG Xin-Ying, JIANG Xian-Min, LIU Qing. WARMING EFFECTS ON GROWTH AND PHYSIOLOGY OF SEEDLINGS OF BETULA ALBO-SINENSIS AND ABIES FAXONIANA UNDER TWO CONTRASTING LIGHT CONDITIONS IN SUBALPINE CONIFEROUS FOREST OF WESTERN SICHUAN, CHINA. Chinese Journal of Plant Ecology, 2008, 32(5): 1072-1083. DOI: 10.3773/j.issn.1005-264x.2008.05.012
月份 Month | 林外空地 Forest opening | 60年人工林 The 60-year plantation | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tair (℃) | Tsoil (℃) | 空气相对湿度 Air relative humidity (%) | Tair (℃) | Tsoil (℃) | 空气相对湿度 Air relative humidity (%) | |||||||||
4月 | OTC | 5.78 | 3.87 | 69.12 | 5.20 | 3.63 | 81.32 | |||||||
Apr. | Con. | 5.30 | 3.43 | 79.58 | 5.00 | 3.39 | 88.42 | |||||||
5月 | OTC | 9.01 | 7.11 | 82.35 | 8.41 | 6.79 | 94.83 | |||||||
May | Con. | 8.30 | 6.89 | 92.24 | 8.15 | 6.61 | 100 | |||||||
6月 | OTC | 11.74 | 10.28 | 78.97 | 11.25 | 9.92 | 91.08 | |||||||
Jun. | Con. | 11.09 | 10.05 | 88.68 | 10.82 | 9.74 | 98.54 | |||||||
7月 | OTC | 15.67 | 14.54 | 73.35 | 15.04 | 13.43 | 85.94 | |||||||
Jul. | Con. | 14.85 | 13.49 | 84.92 | 14.57 | 13.28 | 94.35 | |||||||
8月 | OTC | 15.64 | 13.72 | 89.16 | 14.89 | 13.15 | 100 | |||||||
Aug. | Con. | 14.89 | 13.52 | 97.07 | 14.44 | 13.14 | 100 | |||||||
9月 | OTC | 11.32 | 10.92 | 81.31 | 10.68 | 10.54 | 95.90 | |||||||
Sept. | Con. | 10.39 | 10.69 | 93.65 | 10.08 | 10.43 | 100 | |||||||
平均 | OTC | 11.52 | 10.06 | 70.40 | 10.92 | 9.67 | 81.56 | |||||||
Average | Con. | 10.83 | 9.65 | 78.16 | 10.41 | 9.34 | 86.84 |
表1 2006年4~9月两种光环境下增温框内与框外气温、土壤温度和空气相对湿度对比
Table 1 Mean air temperature at 15 cm aboveground, soil surface temperature, and air relative humidity inside the open-top chamber (OTC) and at the control plot under two contrasting light conditions from April to September of 2006
月份 Month | 林外空地 Forest opening | 60年人工林 The 60-year plantation | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tair (℃) | Tsoil (℃) | 空气相对湿度 Air relative humidity (%) | Tair (℃) | Tsoil (℃) | 空气相对湿度 Air relative humidity (%) | |||||||||
4月 | OTC | 5.78 | 3.87 | 69.12 | 5.20 | 3.63 | 81.32 | |||||||
Apr. | Con. | 5.30 | 3.43 | 79.58 | 5.00 | 3.39 | 88.42 | |||||||
5月 | OTC | 9.01 | 7.11 | 82.35 | 8.41 | 6.79 | 94.83 | |||||||
May | Con. | 8.30 | 6.89 | 92.24 | 8.15 | 6.61 | 100 | |||||||
6月 | OTC | 11.74 | 10.28 | 78.97 | 11.25 | 9.92 | 91.08 | |||||||
Jun. | Con. | 11.09 | 10.05 | 88.68 | 10.82 | 9.74 | 98.54 | |||||||
7月 | OTC | 15.67 | 14.54 | 73.35 | 15.04 | 13.43 | 85.94 | |||||||
Jul. | Con. | 14.85 | 13.49 | 84.92 | 14.57 | 13.28 | 94.35 | |||||||
8月 | OTC | 15.64 | 13.72 | 89.16 | 14.89 | 13.15 | 100 | |||||||
Aug. | Con. | 14.89 | 13.52 | 97.07 | 14.44 | 13.14 | 100 | |||||||
9月 | OTC | 11.32 | 10.92 | 81.31 | 10.68 | 10.54 | 95.90 | |||||||
Sept. | Con. | 10.39 | 10.69 | 93.65 | 10.08 | 10.43 | 100 | |||||||
平均 | OTC | 11.52 | 10.06 | 70.40 | 10.92 | 9.67 | 81.56 | |||||||
Average | Con. | 10.83 | 9.65 | 78.16 | 10.41 | 9.34 | 86.84 |
生长参数 Growth parameters | 处理 Treatment | ||||||
---|---|---|---|---|---|---|---|
U | U+T | O | O+T | T | L | T*L | |
红桦 Betula albo-sinensis | |||||||
株高 Plant height (cm) | 55.22±2.31c | 56.22±1.31c | 72.25±3.36b | 97.33±1.54a | ** | ** | ** |
地径 Root collar diameter (mm) | 7.86±0.51c | 8.44±0.45c | 13.16±0.84b | 15.14±0.54a | ** | ** | * |
总生物量 Total biomass (g) | 11.57±1.13c | 12.54±1.08c | 56.28±3.62b | 78.21±4.02a | ** | ** | * |
叶重 Leaf mass (g) | 0.49±0.08c | 0.52±0.06c | 7.36±1.65b | 18.77±1.46a | NS | ** | ** |
根重 Root mass (g) | 5.44±0.78b | 5.71±0.61b | 24.41±1.26a | 26.89±1.81a | NS | * | NS |
茎重 Stem mass (g) | 5.64±0.46c | 6.31±0.39c | 24.51±1.63b | 32.55±1.33a | NS | * | NS |
岷江冷杉 Abies faxoniana | |||||||
株高 Plant height (cm) | 13.83±1.70b | 15.36±1.47a | 12.33±1.92b | 13.33±1.49b | * | ** | * |
地径 Root collar diameter (mm) | 4.35±0.19b | 4.87±0.23a | 3.79±0.32c | 3.95±0.44c | * | ** | * |
总生物量 Total biomass (g) | 2.17±0.27b | 3.44±0.40a | 1.75±0.17b | 1.84±0.16b | ** | ** | * |
叶重 Leaf mass (g) | 0.63±0.04b | 1.20±0.12a | 0.32±0.09c | 0.36±0.08c | NS | *** | NS |
根重 Root mass (g) | 0.65±0.06b | 0.93±0.09a | 0.60±0.07b | 0.64±0.08b | NS | * | NS |
茎重 Stem mass (g) | 0.89±0.09b | 1.35±0.11a | 0.83±0.08b | 0.84±0.07b | NS | ** | NS |
表2 增温对两种不同光环境下生长的红桦和岷江冷杉幼苗各生长参数的影响
Table 2 The effects of warming on the growth, biomass accumulation and allocation of Betula albo-sinensis and Abies faxoniana seedlings grown under two contrasting light regimes
生长参数 Growth parameters | 处理 Treatment | ||||||
---|---|---|---|---|---|---|---|
U | U+T | O | O+T | T | L | T*L | |
红桦 Betula albo-sinensis | |||||||
株高 Plant height (cm) | 55.22±2.31c | 56.22±1.31c | 72.25±3.36b | 97.33±1.54a | ** | ** | ** |
地径 Root collar diameter (mm) | 7.86±0.51c | 8.44±0.45c | 13.16±0.84b | 15.14±0.54a | ** | ** | * |
总生物量 Total biomass (g) | 11.57±1.13c | 12.54±1.08c | 56.28±3.62b | 78.21±4.02a | ** | ** | * |
叶重 Leaf mass (g) | 0.49±0.08c | 0.52±0.06c | 7.36±1.65b | 18.77±1.46a | NS | ** | ** |
根重 Root mass (g) | 5.44±0.78b | 5.71±0.61b | 24.41±1.26a | 26.89±1.81a | NS | * | NS |
茎重 Stem mass (g) | 5.64±0.46c | 6.31±0.39c | 24.51±1.63b | 32.55±1.33a | NS | * | NS |
岷江冷杉 Abies faxoniana | |||||||
株高 Plant height (cm) | 13.83±1.70b | 15.36±1.47a | 12.33±1.92b | 13.33±1.49b | * | ** | * |
地径 Root collar diameter (mm) | 4.35±0.19b | 4.87±0.23a | 3.79±0.32c | 3.95±0.44c | * | ** | * |
总生物量 Total biomass (g) | 2.17±0.27b | 3.44±0.40a | 1.75±0.17b | 1.84±0.16b | ** | ** | * |
叶重 Leaf mass (g) | 0.63±0.04b | 1.20±0.12a | 0.32±0.09c | 0.36±0.08c | NS | *** | NS |
根重 Root mass (g) | 0.65±0.06b | 0.93±0.09a | 0.60±0.07b | 0.64±0.08b | NS | * | NS |
茎重 Stem mass (g) | 0.89±0.09b | 1.35±0.11a | 0.83±0.08b | 0.84±0.07b | NS | ** | NS |
图1 增温对两种不同光环境下生长的红桦(A)和岷江冷杉(B)幼苗生物量分配的影响 U、U+T、O、O+T: 同表2 See Table 2 平均值±标准偏差, 4个重复, 每个重复5株幼苗 Values are means ± SD of four replicates (n=5 per replicate) 柱状图上方不同字母表示两者间在0.05水平上差异显著 The bars with different letters are significantly different between treatments (p<0.05) LMR: 叶重比 Leaf mass ratio RMR: 根重比 Root mass ratio SMR: 茎重比 Stem mass ratio R/S: 根冠比 Root/shoot ratio
Fig. 1 Effects of warming on the biomass allocation of Betula albo-sinensis(A) and Abies faxoniana (B) seedlings grown under two contrasting light regimes
图2 增温对两种不同光环境下生长的红桦(A)和岷江冷杉(B)幼苗光合色素含量的影响 U、U+T、O、O+T: 同表2 See Table 2 平均值±标准偏差, 4个重复, 每个重复3株幼苗 Values are means ± SD of four replicates (n=3 per replicate) 柱状图上方不同字母表示两者间在0.05水平上差异显著 The bars with different letters are significantly different between treatments (p<0.05) Chl a: 叶绿素a含量 Chlorophyll a Chl b: 叶绿素b含量 Chlorophyll b Chl (a+b): 总叶绿素含量 Total chlorophyll Car: 类胡萝卜素含量 Carotenoid
Fig. 2 Effects of warming on photosynthetic pigment concentrations in the leaves of Betula albo-sinensis (A) and Abies faxoniana (B) seedlings grown under two contrasting light regimes
光合参数 Photosynthetic parameters | 处理 Treatment | ||||||
---|---|---|---|---|---|---|---|
U | U+T | O | O+T | T | L | T*L | |
红桦 Betula albo-sinensis | |||||||
Pn(μmol?m-2?s-1) | 2.18±0.32c | 2.46±0.36c | 6.28±1.16b | 8.45±1.57a | * | *** | ** |
Tr(mmol?m-2?s-1) | 0.84±0.05c | 0.86±0.04c | 2.78±0.32b | 4.05±0.93a | NS | ** | NS |
Ci (μmol?mol-1) | 310..5±9.8a | 289.4±6.5a | 196.4±8.3b | 122.6±8.9c | NS | * | NS |
Pmax(μmol?m-2?s-1) | 6.61±0.14c | 7.22±0.20c | 15.42±1.17b | 18.65±1.56a | ** | ** | * |
Φ (mol CO2?mmol-1) | 0.04±0.02b | 0.05±0.01a | 0.06±0.02a | 0.06±0.02a | NS | * | NS |
Rd (μmol?m-2?s-1) | 0.87±0.06c | 0.94±0.10c | 1.38±0.12b | 1.97±0.17a | NS | * | NS |
LCP (μmol?m-2?s-1) | 24.32±2.12b | 24.13±3.10b | 68.51±3.83a | 56.53±2.93a | NS | *** | * |
岷江冷杉 Abies faxoniana | |||||||
Pn(μmol?m-2?s-1) | 2.14±0.15b | 2.34±0.17a | 1.95±0.15b | 2.03±0.14b | NS | ** | * |
Tr(mmol?m-2?s-1) | 0.84±0.07b | 0.92±0.08b | 1.25±0.07a | 1.28±0.09a | NS | ** | NS |
Ci (μmol?mol-1) | 268.3±14.8a | 256.5±15.9a | 228.6±18.3b | 218.3±15.6b | NS | * | NS |
Pmax(μmol?m-2?s-1) | 3.15±0.28c | 3.98±0.21b | 4.23±0.45a | 4.47±0.49a | * | ** | * |
Φ (mol CO2?mmol-1) | 0.05±0.02a | 0.06±0.01a | 0.02±0.00b | 0.03±0.01b | NS | * | NS |
Rd (μmol?m-2?s-1) | 0.27±0.03b | 0.29±0.03b | 0.92±0.09a | 0.96±0.10a | NS | ** | * |
LCP (μmol?m-2?s-1) | 20.64±2.14b | 18.46±2.07b | 39.26±3.47a | 38.45±3.45a | NS | ** | NS |
表3 增温对两种不同光环境下生长的红桦和岷江冷杉幼苗光合参数的影响
Table 3 The effects of warming on photosynthetic parameters of Betula albo-sinensis and Abies faxoniana seedlings grown under two contrasting light regimes
光合参数 Photosynthetic parameters | 处理 Treatment | ||||||
---|---|---|---|---|---|---|---|
U | U+T | O | O+T | T | L | T*L | |
红桦 Betula albo-sinensis | |||||||
Pn(μmol?m-2?s-1) | 2.18±0.32c | 2.46±0.36c | 6.28±1.16b | 8.45±1.57a | * | *** | ** |
Tr(mmol?m-2?s-1) | 0.84±0.05c | 0.86±0.04c | 2.78±0.32b | 4.05±0.93a | NS | ** | NS |
Ci (μmol?mol-1) | 310..5±9.8a | 289.4±6.5a | 196.4±8.3b | 122.6±8.9c | NS | * | NS |
Pmax(μmol?m-2?s-1) | 6.61±0.14c | 7.22±0.20c | 15.42±1.17b | 18.65±1.56a | ** | ** | * |
Φ (mol CO2?mmol-1) | 0.04±0.02b | 0.05±0.01a | 0.06±0.02a | 0.06±0.02a | NS | * | NS |
Rd (μmol?m-2?s-1) | 0.87±0.06c | 0.94±0.10c | 1.38±0.12b | 1.97±0.17a | NS | * | NS |
LCP (μmol?m-2?s-1) | 24.32±2.12b | 24.13±3.10b | 68.51±3.83a | 56.53±2.93a | NS | *** | * |
岷江冷杉 Abies faxoniana | |||||||
Pn(μmol?m-2?s-1) | 2.14±0.15b | 2.34±0.17a | 1.95±0.15b | 2.03±0.14b | NS | ** | * |
Tr(mmol?m-2?s-1) | 0.84±0.07b | 0.92±0.08b | 1.25±0.07a | 1.28±0.09a | NS | ** | NS |
Ci (μmol?mol-1) | 268.3±14.8a | 256.5±15.9a | 228.6±18.3b | 218.3±15.6b | NS | * | NS |
Pmax(μmol?m-2?s-1) | 3.15±0.28c | 3.98±0.21b | 4.23±0.45a | 4.47±0.49a | * | ** | * |
Φ (mol CO2?mmol-1) | 0.05±0.02a | 0.06±0.01a | 0.02±0.00b | 0.03±0.01b | NS | * | NS |
Rd (μmol?m-2?s-1) | 0.27±0.03b | 0.29±0.03b | 0.92±0.09a | 0.96±0.10a | NS | ** | * |
LCP (μmol?m-2?s-1) | 20.64±2.14b | 18.46±2.07b | 39.26±3.47a | 38.45±3.45a | NS | ** | NS |
图3 增温对不同光环境下生长的红桦(A)和岷江冷杉(B)幼苗最大光化学效率(Fv/Fm)日变化的影响 U、U+T、O、O+T: 同表2 See Table 2 平均值±标准偏差, 4个重复, 每个重复随机取1株幼苗 Values are means ± SD of four replicates (n=1 per replicate)
Fig. 3 Effects of warming on diurnal change of maximal PSⅡ efficiency (Fv/Fm) in leaves of Betula albo-sinensis(A) and Abies faxoniana (B) seedlings grown under two contrasting light regimes
[1] | Aerts R, Cornelissen JHC, Dorrepaal E (2006). Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology, 182,65-77. |
[2] | Aiken RM, Smucker AJM (1996). Root system regulation of whole plant growth. Review of Phytopathology, 25,325-346. |
[3] |
Awada T, Radoglou K, Fotelli MN, Constantinidou HIA (2003). Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes. Tree Physiology, 23,33-41.
DOI URL PMID |
[4] |
Bilger W, Fisahn J, Brummet W (1995). Violaxanthin cycle pigment contents in potato and tobacco plants with genetically reduced photosynthetic capacity. Plant Physiology, 108,1479-1486.
URL PMID |
[5] | Björkman O (1981). Responses to different quantum flux densities. In: Lange OL, Nobe PS, Ziegler Heds. Encyclopedia of Plant Physiology. Springer-Verlag, Berlin,57-106. |
[6] |
Cai TB, Dang QL (2002). Effects of soil temperature on parameters for a coupled photosynthesis-stomatal conductance model. Tree Physiology, 22,819-829.
DOI URL PMID |
[7] |
Camm EL, Harper GJ (1991). Temporal variations in cold sensitivity of root growth in cold-stored white spruce seedlings. Tree Physiology, 9,425-431.
DOI URL PMID |
[8] | Cornelissen JHC, Castro Diez P, Hunt R (1996). Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. Journal of Ecology, 84,755-765. |
[9] | Danby RK, Hik DS (2007). Responses of white spruce ( Picea glauca) to experimental warming at a subarctic alpine treeline. Global Change Biology, 13,437-451. |
[10] | Domisch T, Finér L, Lehto T (2002). Growth, carbohydrate and nutrient allocation of Scots pine seedlings after exposure to simulated low soil temperature in spring. Plant and Soil, 246,75-86. |
[11] | Havranek WM, Tranquillini W (1995). Physiological processes during winter dormancy and their ecological significance. In: Smith WK, Hinckley TM eds. Ecophysiology of Coniferous Forests. Academic Press, San Diego, CA, USA, 95-124. |
[12] | Hirose T, Werger MJA (1987). Nitrogen use efficiency in instantaneous and daily photosynthesis of leaves in the canopy of a Solodago alissima stand. Physiologia Plantarum, 70,215-222. |
[13] |
Hollister RD, Webber PJ (2000). Biotic validation of small open-top chambers in a tundra ecosystem. Global Change Biology, 6,835-842.
DOI URL |
[14] | IPCC Intergovernmental Panel on Climate Change (2007). Contribution of working group Ⅲ to the fourth assessment report of the intergovernmental panel on climate change. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA eds. Climate Change in 2007: Mitigation. Cambridge University Press, Cambridge, UK. |
[15] |
Kauppi P, Posch M (1985). Sensitivity of boreal forests to possible climatic warming. Climatic Change, 7,45-54.
DOI URL |
[16] |
Kennedy AD (1995). Simulated climate change: are passive greenhouses a valid microcosm for testing the biological effects of environmental perturbations? Global Change Biology, 1,29-42.
DOI URL |
[17] | Kolek J, Kozinka V (1991). Physiology of the Plant Root System. Kluwer Academic Publishers, Dordrecht, 26. |
[18] | Krause GH, Weis E (1991). Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42,313-349. |
[19] |
Kullman L (2002). Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. Journal of Ecology, 90,68-77.
DOI URL |
[20] |
Lewis JD, Olszyk D, Tingey DT (1999). Seasonal patterns of photosynthetic light responses in Douglas-fir seedlings subjected to elevated atmospheric CO 2 and temperature. Tree Physiology, 19,243-252.
URL PMID |
[21] | Lichtenthaler HK (1987). Chlorophylls and carotenoids:pigments of photosynthetic biomembranes. In: Colowick SP, Kaplan NO eds. Methods in Enzymology. Academic Press, New York, 350-381. |
[22] | Liu Q (刘庆) (2002). Ecological Research on Subalpine Coniferous Forests in China(亚高山针叶林生态学研究). Sichuan University Press,Chengdu. (in Chinese) |
[23] | Liu XD, Chen BD (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20,1729-1742. |
[24] | Lloret F, Peñuelas J, Estiarte M (2004). Experimental evidence of reduced diversity of seedlings due to climate modification in a Mediterranean-type community. Global Change Biology, 10,248-258. |
[25] | Lopushinsky W, Max TA (1990). Effect of soil temperature on root and shoot growth and on budburst timing in conifer seedling transplants. New Forests, 4,107-124. |
[26] | Marion GM, Henry GHR, Freckman DW, Johstone J, Jones G, Jones MH, Levesque E, Molau U, Parsons AN, Svoboda J, Virginia RA (1997). Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology, 3 (Suppl. 1),20-30. |
[27] |
Maxwell K, Johnson GN (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51,659-668.
DOI URL PMID |
[28] | Mitchell AK, Arnott JT (1995). Effects of shade on the morphology and physiology of amabilis fir and western hemlock seedlings. New Forests, 10,79-98. |
[29] | Mortensen LV (1994). Effect of carbon dioxide concentration on assimilation partitioning, photosynthesis and transpiration of Betula pendula. Roth and Picea abies (L.) Karst. seedlings at two temperatures. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 44,164-169. |
[30] | Ormrod D, Lesser VM, Olszyk DM, Tingey DT (1999). Elevated temperature and carbon dioxide affect chlorophyll and carotenoids in Douglas-fir seedlings. International Journal of Plant Sciences, 160,529-534. |
[31] | Saxe H, Cannel MGR, Johnsen O, Ryan MG, Vourlitis G (1998). Tree and forest functioning in an enriched CO 2 atmosphere. New Phytologist, 139,369-400. |
[32] | Taiz L, Zeiger E (1998). Plant Physiology 2nd edn.Sinauer Associates Inc. Publishers, Sunderland, Massachusetts, USA, 518. |
[33] | Usami T, Lee J, Oikawa T (2001). Interactive effects of increased temperature and CO 2 on the growth of Quercus myrsinaefolia saplings. Plant, Cell and Environment, 24,1007-1019. |
[34] | Wang KY, Kellomäki S, Zha T (2003). Modifications in photosynthetic pigments and chlorophyll fluorescence in 20-year-old pine trees after a four-year exposure to carbon dioxide and temperature elevation. Photosynthetica, 41,167-175. |
[35] | Yin HJ (尹华军), Liu Q (刘庆) (2005). Seed rain and soil seed banks of Picea asperata in subalpine spruce forests, western Sichuan, China. Acta Phytoecologica Sinica (植物生态学报), 29,108-115. (in Chinese with English abstract) |
[36] | Yin HJ, Liu Q, Lai T (2008). Warming effects on growth and physiology in the seedlings of the two conifers Picea asperata and Abies faxoniana under two contrasting light conditions. Ecological Research, 23,459-469. |
[1] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[2] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[3] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[4] | 于海英, 杨莉琳, 付素静, 张志敏, 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应[J]. 植物生态学报, 2022, 46(12): 1573-1584. |
[5] | 罗林, 黄艳, 梁进, 汪恩涛, 胡君, 贺合亮, 赵春章. 西南亚高山针叶林主要树种互作及增温对根区土壤微生物群落的影响[J]. 植物生态学报, 2020, 44(8): 875-884. |
[6] | 李雪莹, 朱文泉, 李培先, 谢志英, 赵涔良. 气候变暖背景下青藏高原草本植物物候变化空间换时间预测[J]. 植物生态学报, 2020, 44(7): 742-751. |
[7] | 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020, 44(5): 494-514. |
[8] | 牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 2020, 44(5): 449-460. |
[9] | 蔡琴, 丁俊祥, 张子良, 胡君, 汪其同, 尹明珍, 刘庆, 尹华军. 青藏高原东缘主要针叶树种叶片碳氮磷化学计量分布格局及其驱动因素[J]. 植物生态学报, 2019, 43(12): 1048-1060. |
[10] | 王冠钦, 李飞, 彭云峰, 陈永亮, 韩天丰, 杨贵彪, 刘莉, 周国英, 杨元合. 土壤含水量调控高寒草原生态系统N2O排放对增温的响应[J]. 植物生态学报, 2018, 42(1): 105-115. |
[11] | 王军, 王冠钦, 李飞, 彭云峰, 杨贵彪, 郁建春, 周国英, 杨元合. 短期增温对紫花针茅草原土壤微生物群落的影响[J]. 植物生态学报, 2018, 42(1): 116-125. |
[12] | 常永兴, 陈振举, 张先亮, 白学平, 赵学鹏, 李俊霞, 陆旭. 气候变暖下大兴安岭落叶松径向生长对温度的响应[J]. 植物生态学报, 2017, 41(3): 279-289. |
[13] | 邹婷婷, 张子良, 李娜, 袁远爽, 郑东辉, 刘庆, 尹华军. 川西亚高山针叶林主要树种对土壤中不同形态氮素的吸收差异[J]. 植物生态学报, 2017, 41(10): 1051-1059. |
[14] | 李晓红, 徐健程, 肖宜安, 胡文海, 曹裕松. 武功山亚高山草甸群落优势植物野古草和芒异速生长对气候变暖的响应[J]. 植物生态学报, 2016, 40(9): 871-882. |
[15] | 王丹, 乔匀周, 董宝娣, 葛静, 杨萍果, 刘孟雨. 昼夜不对称性与对称性升温对大豆产量和水分利用的影响[J]. 植物生态学报, 2016, 40(8): 827-833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19