植物生态学报 ›› 2011, Vol. 35 ›› Issue (1): 35-44.DOI: 10.3724/SP.J.1258.2011.00035
尹华军1,2, 程新颖1,2, 赖挺1, 林波1,2, 刘庆1,2,*()
收稿日期:
2010-04-14
接受日期:
2010-06-03
出版日期:
2011-04-14
发布日期:
2011-01-24
通讯作者:
刘庆
作者简介:
*E-mail: liuqing@cib.ac.cn
YIN Hua-Jun1,2, CHENG Xin-Ying1,2, LAI Ting1, LIN Bo1,2, LIU Qing1,2,*()
Received:
2010-04-14
Accepted:
2010-06-03
Online:
2011-04-14
Published:
2011-01-24
Contact:
LIU Qing
摘要:
川西亚高山人工针叶林已成为亚高山森林的重要组成部分, 它们是否具有持续的自然更新能力, 是决定川西亚高山针叶林群落演替方向和维持该区针叶林大面积存在的基础。以川西米亚罗亚高山人工云杉(Picea asperata)林(65 a)为研究对象, 对种子雨量年际变化、土壤种子库动态、种子萌发和幼苗定居等更新过程的关键环节进行了连续7年(2002-2008年)的野外观测, 以研究人工云杉林更新潜力及影响其更新的限制因素。结果表明: 该区云杉林种子雨一般从每年的10月初开始下落, 一直到翌年的1月底或2月初结束; 云杉种子散落存在明显的大小年现象, 种子散落周期为4年, 且大小年之间种子产量差异极大; 云杉种子从下落到土壤到种子完全失去活力不到1年时间, 属于Thompson和Grime定义的第II类土壤种子库类型。腐烂死亡和动物取食是土壤种子库损耗的主要因素, 而种子通过萌发真正转化为幼苗的比例非常低, 仅占2002年下落种子总量的3.6%。种子萌发后, 环境筛的作用导致云杉幼苗大量死亡, 尤其是在种子萌发后的一个生长季节内, 其死亡率高达78%。凋落物和苔藓是构成人工云杉林下地表的两种主要地被物类型, 二者占所有调查幼苗数量的93%左右; 两种地被物类型上0-2 cm层幼苗存活率最高, 分别占存活幼苗总数的76.07%和86.72%, 随地被物厚度增加, 幼苗存活率呈明显下降趋势, 而幼苗死亡率呈明显升高的趋势, 表明林下地被物厚度也是影响云杉幼苗定居的重要因素。两种地被物对幼苗生长的影响不同, 除株高之外, 分布在苔藓上的云杉幼苗生长参数(地径、分枝数、干重以及干重年增长率)明显高于分布于凋落物上的幼苗, 表明苔藓地被物更有利于云杉幼苗定居。尽管该区大量云杉种子下落, 但由于种子的高损耗率、幼苗的低输出率以及萌发幼苗的高死亡率, 使得人工云杉林下种子通过萌发转为实生幼苗的数量非常少, 最终真正能补充到云杉种群的个体数量非常有限。
尹华军, 程新颖, 赖挺, 林波, 刘庆. 川西亚高山65年人工云杉林种子雨、种子库和幼苗定居研究. 植物生态学报, 2011, 35(1): 35-44. DOI: 10.3724/SP.J.1258.2011.00035
YIN Hua-Jun, CHENG Xin-Ying, LAI Ting, LIN Bo, LIU Qing. Seed rain, soil seed bank and seedling regeneration in a 65-year Picea asperata plantation in subalpine coniferous, western Sichuan, China. Chinese Journal of Plant Ecology, 2011, 35(1): 35-44. DOI: 10.3724/SP.J.1258.2011.00035
图1 川西65年人工云杉林2002年(A)和2006年(B)种子雨扩散动态(平均值±标准偏差, n = 20)。
Fig. 1 The dispersal dynamics of Picea asperata seeds collected in the year of 2002 (A) and 2006 (B) beneath the 65-year spruce plantation of western Sichuan, China (mean ± SD, n = 20). SRI, seed rain intensity.
年份 Year | 组分 Component | |||
---|---|---|---|---|
种子雨总量 Total number of seed rain | 活力种子 Viable seeds | 腐烂种子 Decayed seeds | 空粒种子 Empty seeds | |
2002 | 1 088.16 ± 52.34Aa | 768.06 ± 37.94Ab (70.58%) | 33.90 ± 5.21Ad (3.12%) | 286.20 ± 11.19Ac (26.31%) |
2003 | 2.35 ± 1.02C | - | - | - |
2004 | 2.17 ± 0.98C | - | - | - |
2005 | 3.44 ± 1.26C | - | - | - |
2006 | 704.28 ± 48.86Ba | 454.04 ± 28.95Bb (64.47%) | 30.40 ± 5.47Bc (4.31%) | 219.84 ± 10.48Bb (31.22%) |
2007 | 2.89 ± 1.08Ca | - | - | - |
表1 2002-2007年65年人工云杉林种子雨强度和种子类型的数量变化(粒·m-2) (平均值±标准偏差, n = 20)
Table 1 The seed rain densities (seeds·m-2) and seed types of Picea asperata in the 65-year plantation in 2002-2007 (mean ± SD, n = 20)
年份 Year | 组分 Component | |||
---|---|---|---|---|
种子雨总量 Total number of seed rain | 活力种子 Viable seeds | 腐烂种子 Decayed seeds | 空粒种子 Empty seeds | |
2002 | 1 088.16 ± 52.34Aa | 768.06 ± 37.94Ab (70.58%) | 33.90 ± 5.21Ad (3.12%) | 286.20 ± 11.19Ac (26.31%) |
2003 | 2.35 ± 1.02C | - | - | - |
2004 | 2.17 ± 0.98C | - | - | - |
2005 | 3.44 ± 1.26C | - | - | - |
2006 | 704.28 ± 48.86Ba | 454.04 ± 28.95Bb (64.47%) | 30.40 ± 5.47Bc (4.31%) | 219.84 ± 10.48Bb (31.22%) |
2007 | 2.89 ± 1.08Ca | - | - | - |
年份 Year | 种子总数 Total number of seeds | 活力种子 Viable seeds | 腐烂种子 Decayed seeds | 空粒种子 Empty seeds |
---|---|---|---|---|
2003 | ||||
3月 March | 1 065.6 ± 88.06Aa | 609.6 ± 55.23Ba (57.20%) | 139.6 ± 15.31Cc (13.04%) | 316.4 ± 25.00Ca (29.76%) |
8月 August | 872.8 ± 77.12Aa | 0Cc | 564.5 ± 55.16Aa (66.68%) | 308.3 ± 26.56Ba (33.32%) |
2007 | ||||
3月 March | 649. 4 ± 65.44Ab | 365.1 ± 38.18Bb (56.35%) | 92.2 ± 14.89 Cc (14.15%) | 192.1 ± 20.59BCb (29.59%) |
8月 August | 480.5 ± 44.54 Ab | 0 Cc | 302.8 ± 26.98 ABb (63.01%) | 177.7 ± 19.62 Bb (36.99%) |
表2 65年人工云杉林土壤种子库密度和种子类型在两次取样中所占的数量及比例(粒·m-2) (平均值±标准偏差, n = 20)
Table 2 The soil seed bank densities and seed types of Picea asperata in March 2003 and 2007 (after seed rain) and August 2003 and 2007 (after soil seed germination) in the 65-year plantation, respectively (mean ± SD, n = 20)
年份 Year | 种子总数 Total number of seeds | 活力种子 Viable seeds | 腐烂种子 Decayed seeds | 空粒种子 Empty seeds |
---|---|---|---|---|
2003 | ||||
3月 March | 1 065.6 ± 88.06Aa | 609.6 ± 55.23Ba (57.20%) | 139.6 ± 15.31Cc (13.04%) | 316.4 ± 25.00Ca (29.76%) |
8月 August | 872.8 ± 77.12Aa | 0Cc | 564.5 ± 55.16Aa (66.68%) | 308.3 ± 26.56Ba (33.32%) |
2007 | ||||
3月 March | 649. 4 ± 65.44Ab | 365.1 ± 38.18Bb (56.35%) | 92.2 ± 14.89 Cc (14.15%) | 192.1 ± 20.59BCb (29.59%) |
8月 August | 480.5 ± 44.54 Ab | 0 Cc | 302.8 ± 26.98 ABb (63.01%) | 177.7 ± 19.62 Bb (36.99%) |
图3 65年人工云杉林的林窗、林窗边缘、林冠下3种生境下云杉幼苗的分布。
Fig. 3 Seedling distribution in relation to canopy cover in the 65-year plantation of Picea asperata. n = 104 for in gap, 147 for canopy edge and 412 for under canopy.
林窗 In gap | 林窗边缘 Canopy edge | 林冠下 Under canopy | |
---|---|---|---|
活力种子 Viable seeds | 80 ± 33.78a (19.75%) | 121 ± 52.6ab (17.36%) | 207 ± 87.54b (24.47%) |
腐烂种子 Decayed seeds | 160 ± 24a (39.51%) | 321 ± 90.2b (46.1%) | 332 ± 71.11b (39.24%) |
空粒种子 Empty seeds | 165 ± 40.58a (40.74%) | 255 ± 101.1a (36.59%) | 307 ± 97.07a (36.29%) |
种子总数 Total number of seeds | 405 ± 42.51a | 697 ± 83.74b | 846 ± 190.48b |
表3 2007年65年人工云杉林林冠、林窗、林窗边缘3种生境下的土壤种子库密度及种子类型的数量及比例(粒·m-2) (平均值±标准偏差, n = 20)
Table 3 The soil seed bank densities of Picea asperata with the position in relation to canopy cover in the 65-year spruce plantation in 2007 (mean ± SD, n = 20)
林窗 In gap | 林窗边缘 Canopy edge | 林冠下 Under canopy | |
---|---|---|---|
活力种子 Viable seeds | 80 ± 33.78a (19.75%) | 121 ± 52.6ab (17.36%) | 207 ± 87.54b (24.47%) |
腐烂种子 Decayed seeds | 160 ± 24a (39.51%) | 321 ± 90.2b (46.1%) | 332 ± 71.11b (39.24%) |
空粒种子 Empty seeds | 165 ± 40.58a (40.74%) | 255 ± 101.1a (36.59%) | 307 ± 97.07a (36.29%) |
种子总数 Total number of seeds | 405 ± 42.51a | 697 ± 83.74b | 846 ± 190.48b |
图4 65年人工云杉林内地被物类型分布及其与云杉幼苗萌发的关系。
Fig. 4 Seedling occurrence in relation to ground cover type in the 65-year plantation of Picea asperata. Total plot area = 200 m2, total seedling number = 1 770.
地被物类型 Ground coner type | 存活幼苗 Survived seedlings | 自然死亡幼苗 Natural seedling mortality | 破坏幼苗死亡 Destroyed seedlings | 土壤湿度 Soil moisture (%) |
---|---|---|---|---|
凋落物厚度 Litter thickness | ||||
0-2 cm | 321 (76.07%) | 22 (5.80%) | 10 (6.37%) | 15.41% |
2-4 cm | 97 (22.99%) | 242 (63.85%) | 78 (49.68%) | 9.30% |
> 4 cm | 4 (0.95%) | 115 (30.34%) | 69 (43.95%) | 7.16% |
幼苗总数 Total number of seedlings | 422 | 379 | 157 | - |
苔藓厚度 Moss thickness | ||||
0-2 cm | 307 (86.72%) | 52 (20.39%) | 30 (22.56%) | 11.72% |
2-4 cm | 35 (9.88%) | 80 (31.37%) | 38 (28.57%) | 11.30% |
> 4 cm | 12 (3.39%) | 123 (48.33%) | 65 (48.72%) | 10.02% |
幼苗总数 Total number of seedlings | 354 | 255 | 133 | - |
表4 苔藓和凋落物两种地被物类型厚度及其水分含量对当年生萌发云杉幼苗存活的影响(2007年7月至11月)
Table 4 Effects of thickness and water content of ground cover types (i.e. litter and moss) on seedling survivorship from July to November 2007 in the 65-year-old coniferous plantation forest of Picea asperata (total plot area = 200 m2)
地被物类型 Ground coner type | 存活幼苗 Survived seedlings | 自然死亡幼苗 Natural seedling mortality | 破坏幼苗死亡 Destroyed seedlings | 土壤湿度 Soil moisture (%) |
---|---|---|---|---|
凋落物厚度 Litter thickness | ||||
0-2 cm | 321 (76.07%) | 22 (5.80%) | 10 (6.37%) | 15.41% |
2-4 cm | 97 (22.99%) | 242 (63.85%) | 78 (49.68%) | 9.30% |
> 4 cm | 4 (0.95%) | 115 (30.34%) | 69 (43.95%) | 7.16% |
幼苗总数 Total number of seedlings | 422 | 379 | 157 | - |
苔藓厚度 Moss thickness | ||||
0-2 cm | 307 (86.72%) | 52 (20.39%) | 30 (22.56%) | 11.72% |
2-4 cm | 35 (9.88%) | 80 (31.37%) | 38 (28.57%) | 11.30% |
> 4 cm | 12 (3.39%) | 123 (48.33%) | 65 (48.72%) | 10.02% |
幼苗总数 Total number of seedlings | 354 | 255 | 133 | - |
生长参数 Growth parameter | 株高 Height (cm) | 地径 Diameter at ground height (mm) | 分枝数 Number of green shoots | 干重预测值 Estimated dry weight (mg) | 干重年增长率 Annual dry weight increment (%) | 株高年增长率 Annual height increment (%) |
---|---|---|---|---|---|---|
2006年10月 October, 2006 | ||||||
苔藓 Moss (n = 304) | 3.59 ± 1.86 | 0.61 ± 0.35 | 0.07 ± 0.12 | 61.98 ± 32.34 | - | - |
凋落物 Litter (n = 158) | 3.72 ± 1.42 | 0.59 ± 0.39 | 0.06 ± 0.16 | 56.85 ± 29.90 | - | - |
2007年10月 October, 2007 | ||||||
苔藓 Moss (n = 202) | 4.82 ± 1.95 | 0.69 ± 0.42 | 0.22 ± 0.89 | 65.39 ± 35.27 | 5.50% | 34.27% |
凋落物 Litter (n = 111) | 4.92 ± 1.75 | 0.63 ± 0.37 | 0.13 ± 0.68 | 59.46 ± 32.16 | 4.59% | 32.25% |
2008年10月 October, 2008 | ||||||
苔藓 Moss (n = 131) | 5.08 ± 1.86 | 0.80 ± 0.49 | 0.52 ± 0.47 | 79.72 ± 45.38 | 21.91% | 5.39% |
凋落物 Litter (n = 66) | 5.23 ± 1.92 | 0.66 ± 0.48 | 0.36 ± 0.82 | 65.43 ± 40.06 | 9.89% | 6.30% |
表5 65年年人工云杉林下苔藓和凋落物两种地被物类型幼苗生长参数(平均值±标准偏差)
Table 5 Seedling growth parameters in relation to ground cover type (i.e. litter and moss) in the 65-year plantation of Picea asperata (mean ± SD)
生长参数 Growth parameter | 株高 Height (cm) | 地径 Diameter at ground height (mm) | 分枝数 Number of green shoots | 干重预测值 Estimated dry weight (mg) | 干重年增长率 Annual dry weight increment (%) | 株高年增长率 Annual height increment (%) |
---|---|---|---|---|---|---|
2006年10月 October, 2006 | ||||||
苔藓 Moss (n = 304) | 3.59 ± 1.86 | 0.61 ± 0.35 | 0.07 ± 0.12 | 61.98 ± 32.34 | - | - |
凋落物 Litter (n = 158) | 3.72 ± 1.42 | 0.59 ± 0.39 | 0.06 ± 0.16 | 56.85 ± 29.90 | - | - |
2007年10月 October, 2007 | ||||||
苔藓 Moss (n = 202) | 4.82 ± 1.95 | 0.69 ± 0.42 | 0.22 ± 0.89 | 65.39 ± 35.27 | 5.50% | 34.27% |
凋落物 Litter (n = 111) | 4.92 ± 1.75 | 0.63 ± 0.37 | 0.13 ± 0.68 | 59.46 ± 32.16 | 4.59% | 32.25% |
2008年10月 October, 2008 | ||||||
苔藓 Moss (n = 131) | 5.08 ± 1.86 | 0.80 ± 0.49 | 0.52 ± 0.47 | 79.72 ± 45.38 | 21.91% | 5.39% |
凋落物 Litter (n = 66) | 5.23 ± 1.92 | 0.66 ± 0.48 | 0.36 ± 0.82 | 65.43 ± 40.06 | 9.89% | 6.30% |
[1] | Aizen MA, Woodcock H (1996). Effects of acorn size on seedling survival and growth in Quercus rubra following simulated spring freeze. Canadian Journal of Botany, 74, 308-314. |
[2] | An SQ (安树青), Lin XY (林向阳), Hong BG (洪必恭) (1996). A preliminary study on the soil banks of the dominant vegetation forms on Baohua mountain. Acta Phytoecologica Sinica (植物生态学报), 20, 41-50. (in Chinese with English abstract) |
[3] | Bonfil C (1998). The effect of seed size, cotyledon reserves and herbivory on seedling survival and growth in Quercus rugosa and Q. laurina (Fagaceace). Journal of Ecology, 85, 79-85. |
[4] | Collaborating Group for Vegetation of Sichuan (四川植被协作组) (1980). Vegetation of Sichuan (四川植被. Sichuan People’s Press, Chengdu. (in Chinese) |
[5] |
Ellsworth JW, Harrington RA, Fownes JH (2004). Seedling emergence, growth and allocation of oriental bittersweet: effects of seed input, seed bank, and forest floor litter. Forest Ecology and Management, 190, 255-264.
DOI URL |
[6] | FAO (Food and Agriculture Organization of the United Nations) (2001). State of the World’s Forests. http://www.fao.org/docrep/003/y0900e/y0900e00.htm. Cited April 2010 |
[7] |
Feller MC (1998). Influence of ecological conditions on Engelmann spruce Picea engelmannii) and subalpine fir (Abies lasiocarpa) germinant survival and initial seedling growth in south-central British Columbia. Forest Ecology and Management, 107, 55-69.
DOI URL |
[8] | Grime JP, Simpson RL (1989). Ecology of Soil Seed Bank. Academic Press, USA. 1-21. |
[9] | Guariguata MR, Pinard MA (1998). Ecological knowledge of regeneration from seed in neotropical forest trees: implications for natural forest management. Forest Ecology and Management, 112, 87-99. |
[10] | Hanssen KH (2003). Natural regeneration of Picea abies on small clear-cuts in SE Norway. Forest Ecology and Management, 170, 199-213. |
[11] | Howlett BE, Davidson DW (2003). Effects of seed availability, site conditions, and herbivory on pioneer recruitment after logging in Sabah, Malaysia. Forest Ecology and Management, 184, 369-383. |
[12] | Hu R (胡蓉), Lin B (林波), Liu Q (刘庆) (2010). The effects of forest gap and litter on the early regeneration of Picea asperata plantations. Chinese Journal of Applied Ecology (应用生态学报), in press. (in Chinese with English abstract) |
[13] | Hunziker U, Brang P (2005). Microsite patterns of conifer seedling establishment and growth in a mixed stand in the Southern Alps. Forest Ecology and Management, 210, 67-79. |
[14] |
Ito S, Ishigami S, Mitsuda Y, Buckley GP (2006). Factors affecting the occurrence of woody plants in understory of sugi ( Cryptomeria japonica D. Don) plantations in a warm-temperate region in Japan. Journal Forest Research, 11, 243-251.
DOI URL |
[15] | Kitajima K, Fenner M (2000). Ecology of seedling regeneration. In: Fenner M ed. The Ecology of Regeneration in Plant Communities. CAB International, Wallingford, UK. 331-359. |
[16] | Kjersti HH (2003). Natural regeneration of Picea abies on small clear-cuts in SE Norway. Forest Ecology and Management, 180, 199-213. |
[17] | Li CB (李承彪) (1990). Ecological Study of Sichuan Forest (四川森林生态学研究). Sichuan Publishing House of Science & Technology, Chengdu. (in Chinese) |
[18] | Liu Q (刘庆) (2002). Ecological Research on Subalpine Coniferous Forests in China (亚高山针叶林生态学研究). Sichuan University Press, Chengdu. (in Chinese) |
[19] |
Mary T, Kalin AA, Lohengrin C (1999). Persistent soil seed bank and standing vegetation at a high alpine site in the central Chilean Andes. Oecologia, 119, 126-132.
URL PMID |
[20] | Masaki T, Tanaka H, Shibata M, Nakashizuka T (1998). The seed bank dynamics of Cornus controversa and their role in regeneration. Seed Science Research, 8, 53-63. |
[21] |
Mori A, Mizumachi E, Osono T, Doi Y (2004). Substrate- associated seedling recruitment and establishment of major conifer species in an old-growth subalpine forest in central Japan. Forest Ecology and Management, 196, 287-297.
DOI URL |
[22] | Peng SL (彭少麟), Shao H (邵华) (2001). Research significance and foreground of allelopathy. Chinese Journal of Applied Ecology (应用生态学报), 12, 780-786. (in Chinese with English abstract) |
[23] | Wu Y (吴彦), Liu Q (刘庆), He H (何海), Lin B (林波), Yin HJ (尹华军) (2004). Effects of light and temperature on seed germination of Picea asperata and Betula albosinensis. Chinese Journal of Applied Ecology (应用生态学报), 15, 2229-2232. (in Chinese with English abstract) |
[24] | Yang YP (杨玉坡) (1983). The spruce in China. Journal of Sichuan Forestry Science and Technology (四川林业科技), (4), 28-32. (in Chinese) |
[25] | Yin HJ (尹华军), Liu Q (刘庆) (2005). Seed rain and soil seed bank of Picea asperata in subalpine spruce forests, Western Sichuan, China. Acta Phytoecologica Sinica (植物生态学报) 29, 108-115. (in Chinese with English abstract) |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[3] | 王燕玲, 招礼军, 朱栗琼, 莫若果, 林婷, 赵小雨. 广西天然红鳞蒲桃种群幼苗数量特征及动态分析[J]. 植物生态学报, 2023, 47(9): 1278-1286. |
[4] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[5] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[6] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[7] | 石荡, 郭传超, 蒋南林, 唐莹莹, 郑凤, 王瑾, 廖康, 刘立强. 新疆野杏天然更新幼株的个体特征及空间分布格局[J]. 植物生态学报, 2023, 47(4): 515-529. |
[8] | 范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274. |
[9] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[10] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[11] | 赵长兴, 赵维俊, 张兴林, 刘思敏, 牟文博, 刘金荣. 祁连山排露沟流域青海云杉种群种内竞争与促进作用分析[J]. 植物生态学报, 2022, 46(9): 1027-1037. |
[12] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[13] | 张敏, 朱教君. 光温条件对不同种源红松种子萌发的影响[J]. 植物生态学报, 2022, 46(6): 613-623. |
[14] | 黄冬柳, 项伟, 李忠国, 朱师丹. 南亚热带10种造林树种的水力结构和水力安全[J]. 植物生态学报, 2022, 46(5): 602-612. |
[15] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19