植物生态学报 ›› 2014, Vol. 38 ›› Issue (11): 1226-1240.DOI: 10.3724/SP.J.1258.2014.00118
所属专题: 稳定同位素生态学
收稿日期:
2014-04-18
接受日期:
2014-08-25
出版日期:
2014-04-18
发布日期:
2014-11-17
通讯作者:
朱林
基金资助:
ZHU Lin1,*(),QI Ya-Shu2,XU Xing1
Received:
2014-04-18
Accepted:
2014-08-25
Online:
2014-04-18
Published:
2014-11-17
Contact:
ZHU Lin
摘要:
紫苜蓿(Medicago sativa)是一种经济和生态价值较高的优良牧草, 但其耗水量大, 在西北半干旱地区仅靠天然降水难以满足紫苜蓿的正常生长发育。宁夏盐池北部地处毛乌素沙地南缘, 地下水埋深较浅, 地下水有可能成为紫苜蓿的潜在水源, 弥补天然降水的不足。本试验在地势平坦的缓坡丘陵梁地和丘间低地, 选择8年生旱地紫苜蓿试验地作为研究对象, 采用稳定同位素技术, 研究了不同海拔的4个坡位(海拔自低到高分别为: 坡1、坡2、坡3和坡4)紫苜蓿的水分来源及其生长生理表现。结果表明: 坡位对0-300 cm土壤剖面含水量有显著影响, 海拔最低的坡1土壤含水量最高。土壤水和植物茎秆水δ 18O-δD坐标点大部分位于中国西北地区地方大气降水线(LMWL)的右侧, 说明植物利用的水源氢氧同位素组成受到蒸发的影响而发生了富集作用。0-450 cm土壤剖面水δ 18O值随着海拔高度的增加而增大。同一坡位土壤水δ 18O值随着土壤深度的增加逐渐下降。深层土壤水δ 18O值与地下水δ 18O相近, 说明地下水通过土壤毛细管上升而补充其上层土壤水分。0-40 cm土壤水δ 18O值随季节波动较大, 270 cm以下土壤水δ 18O值较为稳定。4、7、8月份坡1紫苜蓿茎秆水δ 18O值显著低于其他3个坡位(p < 0.001)。在4、6、7三个月, 坡位1紫苜蓿对深层土壤水(270 cm以下)的利用率最高。而在8月份, 坡1、坡3、坡4紫苜蓿主要利用150-270 cm、270-450 cm土层土壤水以及地下水, 坡2对表层(0-20 cm)土壤水利用率最高。坡1紫苜蓿的产量、整株Δ 13C值及气孔导度显著高于其他3个坡位。本研究表明: 在平均年降水量只有280 mm的西北半干旱地区种植旱地紫苜蓿要尽量选择地势较低的滩地, 使其能够利用到埋深较浅地下水, 以满足植物生长发育的需要并取得较好的生态和经济效益。
朱林,祁亚淑,许兴. 宁夏盐池不同坡位旱地紫苜蓿水分来源. 植物生态学报, 2014, 38(11): 1226-1240. DOI: 10.3724/SP.J.1258.2014.00118
ZHU Lin,QI Ya-Shu,XU Xing. Water sources of Medicago sativa grown in different slope positions in Yanchi County of Ningxia. Chinese Journal of Plant Ecology, 2014, 38(11): 1226-1240. DOI: 10.3724/SP.J.1258.2014.00118
海拔 Altitude (m) | 地下水位 Groundwater table (m) | 生境类型 Type of habitat | 土层深度 Soil depth (cm) | 土壤机械组成 Soil mechanical composition | 0-300 cm土壤 体积含水量 Soil volumetric water content (%) | |
---|---|---|---|---|---|---|
坡1 Slope position 1 | 1 317 | 3.2-3.7 | 丘间低地 Lowland on the foothill | 0-20 | 砂粒 Sand 60.5%, 粉粒 Silt 20.1%, 黏粒 Clay 19.4% | 9.6-12.4 |
20-300 | 砂粒 Sand 49.1%, 粉粒 Silt 22.4%, 黏粒 Clay 28.5% | |||||
>300 | 砂粒 Sand 42.4%, 粉粒 Silt 26.4%, 黏粒 Clay 31.2% | |||||
坡2 Slope position 2 | 1 322 | 4.8-5.5 | 丘间低地 Lowland on the foothill | 0-20 | 砂粒 Sand 71.7%, 粉粒 Silt 12.9%, 黏粒 Clay 15.4% | 6.8-8.4 |
20-300 | 石砾 Gravel 15.3%, 砂粒 Sand 46.2%, 粉粒 Silt 20.6%, 黏粒 Clay 17.9% | |||||
>300 | 石砾 Gravel 9.6%, 砂粒 Sand 49.8%, 粉粒 Silt 18.5%, 黏粒 Clay 22.1% | |||||
坡3 Slope position 3 | 1 324 | 5.5-6.0 | 丘间低地 Lowland on the foothill | 0-20 | 砂粒 Sand 77.5%, 粉粒 Silt 11.9%, 黏粒 Clay 10.6% | 5.8-6.8 |
20-300 | 石砾 Gravel 5.3%, 砂粒 Sand 61.1%, 粉粒 Silt 24.5%, 黏粒 Clay 9.1% | |||||
>300 | 石砾 Gravel 3.1%, 砂粒 Sand 62.3%, 粉粒 Silt 21.5%, 黏粒 Clay 13.1% | |||||
坡4 Slope position 4 | 1 328 | >6.0 | 缓坡丘陵梁地 Flat hilly highland | 0-20 | 砂粒 Sand 67.5%, 粉粒 Silt 21.9%, 黏粒 Clay 10.6% | 5.6-7.8 |
20-300 | 砂粒 Sand 63.3%, 粉粒 Silt 25.5%, 黏粒 Clay 11.2% | |||||
>300 | 砂粒 Sand 46.8%, 粉粒 Silt 38.5%, 黏粒 Clay 14.7% |
表1 试验地基本情况
Table 1 Information on experimental sites
海拔 Altitude (m) | 地下水位 Groundwater table (m) | 生境类型 Type of habitat | 土层深度 Soil depth (cm) | 土壤机械组成 Soil mechanical composition | 0-300 cm土壤 体积含水量 Soil volumetric water content (%) | |
---|---|---|---|---|---|---|
坡1 Slope position 1 | 1 317 | 3.2-3.7 | 丘间低地 Lowland on the foothill | 0-20 | 砂粒 Sand 60.5%, 粉粒 Silt 20.1%, 黏粒 Clay 19.4% | 9.6-12.4 |
20-300 | 砂粒 Sand 49.1%, 粉粒 Silt 22.4%, 黏粒 Clay 28.5% | |||||
>300 | 砂粒 Sand 42.4%, 粉粒 Silt 26.4%, 黏粒 Clay 31.2% | |||||
坡2 Slope position 2 | 1 322 | 4.8-5.5 | 丘间低地 Lowland on the foothill | 0-20 | 砂粒 Sand 71.7%, 粉粒 Silt 12.9%, 黏粒 Clay 15.4% | 6.8-8.4 |
20-300 | 石砾 Gravel 15.3%, 砂粒 Sand 46.2%, 粉粒 Silt 20.6%, 黏粒 Clay 17.9% | |||||
>300 | 石砾 Gravel 9.6%, 砂粒 Sand 49.8%, 粉粒 Silt 18.5%, 黏粒 Clay 22.1% | |||||
坡3 Slope position 3 | 1 324 | 5.5-6.0 | 丘间低地 Lowland on the foothill | 0-20 | 砂粒 Sand 77.5%, 粉粒 Silt 11.9%, 黏粒 Clay 10.6% | 5.8-6.8 |
20-300 | 石砾 Gravel 5.3%, 砂粒 Sand 61.1%, 粉粒 Silt 24.5%, 黏粒 Clay 9.1% | |||||
>300 | 石砾 Gravel 3.1%, 砂粒 Sand 62.3%, 粉粒 Silt 21.5%, 黏粒 Clay 13.1% | |||||
坡4 Slope position 4 | 1 328 | >6.0 | 缓坡丘陵梁地 Flat hilly highland | 0-20 | 砂粒 Sand 67.5%, 粉粒 Silt 21.9%, 黏粒 Clay 10.6% | 5.6-7.8 |
20-300 | 砂粒 Sand 63.3%, 粉粒 Silt 25.5%, 黏粒 Clay 11.2% | |||||
>300 | 砂粒 Sand 46.8%, 粉粒 Silt 38.5%, 黏粒 Clay 14.7% |
图1 2013年3月1日至9月1日北王圈日降水量。实心柱表示日降水量, 空心五角星表示雨水的氧同位素组成, 箭头指示的是土壤水、植物水及地下水采样时间。
Fig. 1 Daily rainfall from 1 March to 1 September, 2013 in Beiwangjuan. Solid columns represent daily precipitation. The symbol of asterisk represents δ18O of rain water. Arrow points to the data when soil water, groundwater, plant xylem water was sampled.
图2 2013年1月至12月北王圈地上2 m平均月气温和相对湿度。实心柱表示平均月气温, 折线表示平均月大气相对湿度。
Fig. 2 Mean monthly air temperature and relative moisture at 2 m above ground from January to December 2013 in Beiwangjuan. Solid columns represent mean monthly air temperatures. Line represents mean monthly air relative humidity.
图3 北王圈4个坡位不同时期0-300 cm土壤含水量(平均值±标准偏差)。 A, 4月28日。B, 6月2日。C, 7月19日。D, 8月19日。
Fig. 3 Soil water content in the 0-300 cm profile in four slope positions in Beiwangjuan (mean ± SD). A, 28 April. B, 2 June. C, 19 July. D, 19 August.
图4 北王圈不同坡位紫苜蓿茎秆水与各土层土壤水氧同位素组成(δ18O)的比较。 A, 4月28日。B, 6月2日。C, 7月19日。D, 8月19日。
Fig. 4 δ18O of soil water, groundwater and plant stem xylem water in Beiwangjuan. A, 28 April. B, 2 June. C, 19 July. D, 19 August.
图5 试验点土壤水、植物木质部水的δ18O和δD及其与中国西北干旱地区地方大气降水线(LMWL)(δD = 7.56δ18O + 5.05 (黄天明等, 2008))的关系。 A, 坡位1。B, 坡位2。C, 坡位3。D, 坡位4。
Fig. 5 δ18O and δD of soil water, plant xylem water sampled at the field site and their relationship with arid Northwest China local meteoric water line (LMWL) (δD = 7.56δ18O + 5.05; (Huang et al., 2008)). A, Slope position 1. B, Slope position 2. C, Slope position 3. D, Slope position 4.
图6 试验点雨水、地下水的δ18O和δD及其与中国西北干旱地区地方大气降水线(LMWL) (δD = 7.56δ18O + 5.05; 黄天明等, 2008)的关系。
Fig. 6 δ18O and δD of rain water, groundwater sampled at the field site and their relationship with arid Northwest China local meteoric water line (LMWL) (δD = 7.56δ18O + 5.05; Huang et al., 2008).
图7 不同时期4个坡位整株碳同位素分辨率(Δ13C) (平均值±标准偏差)。 不同小写字母表示同一时期不同坡位紫苜蓿整株Δ13C差异显著(p < 0.05); 不同大写字母表示同一坡位不同时期紫苜蓿整株Δ13C差异显著(p < 0.05)。
Fig. 7 Carbon isotope discrimination (Δ13C) of whole plant in four slope positions analyzed in different periods (mean ± SD). Different capital letters and lowercase letters represent significant differences among different measurement times and different slope positions (p < 0.05), respectively.
图8 不同时期4个坡位气孔导度(Gs) (平均值±标准偏差)。 不同小写字母表示同一时期不同坡位紫苜蓿叶片气孔导度差异显著(p < 0.05); 不同大写字母表示同一坡位不同时期紫苜蓿叶片气孔导度差异显著(p < 0.05)。
Fig. 8 Leaf stomatal conductance (Gs) in four slope positions analyzed in different periods (mean ± SD). Different capital letters and lowercase letters represent significant differences among different measurement times and different slope positions (p < 0.05), respectively.
图9 不同时期4个坡位紫苜蓿茎秆水势(平均值±标准偏差)。 不同小写字母表示同一时期不同坡位紫苜蓿茎秆水势差异显著(p < 0.05); 不同大写字母表示同一坡位不同时期紫苜蓿茎秆水势差异显著(p < 0.05)。
Fig. 9 Xylem water potentials in four slope positions analyzed in different periods (mean ± SD). Different capital letters and lowercase letters represent significant differences among different measurement times and different slope positions (p < 0.05), respectively.
采样时间 Sampling time | 产量 Yield (kg·hm-2) | 株高 Plant height (m) | 茎叶比 Ratio of stem to leaf | |
---|---|---|---|---|
坡1 Slope position 1 | 6月2日 2 June | 1 368.60 ± 89.24aA | 48.67 ± 1.53aB | 1.25 ± 0.33aA |
8月19日19 August | 1 933.85 ± 40.66aA | 63.33 ± 1.64aA | 1.35 ± 0.21aA | |
坡2 Slope position 2 | 6月2日 2 June | 806.20 ± 162.07cA | 44.67 ± 4.51aB | 1.08 ± 0.08aA |
8月19日19 August | 1 752.90 ± 66.61aA | 61.33 ± 2.51aA | 1.22 ± 0.30aA | |
坡3 Slope position 3 | 6月2日 2 June | 1 039.95 ± 122.26bB | 47.00 ± 3.61aB | 1.15 ± 0.19aB |
8月19日19 August | 1 885.80 ± 116.39aA | 63.00 ± 2.65aA | 1.40 ± 0.39aA | |
坡4 Slope position 4 | 6月2日 2 June | 928.85 ± 241.05bcA | 43.00 ± 5.29aB | 1.32 ± 0.15aA |
8月19日19 August | 1 401.25 ± 88.32bA | 57.00 ± 4.36aA | 1.59 ± 0.22aA |
表2 北王圈不同坡位两次刈割产量、株高和茎叶比的比较
Table 2 Comparison of yield, plant height and ratio of stem to leaf in Beiwangjuan
采样时间 Sampling time | 产量 Yield (kg·hm-2) | 株高 Plant height (m) | 茎叶比 Ratio of stem to leaf | |
---|---|---|---|---|
坡1 Slope position 1 | 6月2日 2 June | 1 368.60 ± 89.24aA | 48.67 ± 1.53aB | 1.25 ± 0.33aA |
8月19日19 August | 1 933.85 ± 40.66aA | 63.33 ± 1.64aA | 1.35 ± 0.21aA | |
坡2 Slope position 2 | 6月2日 2 June | 806.20 ± 162.07cA | 44.67 ± 4.51aB | 1.08 ± 0.08aA |
8月19日19 August | 1 752.90 ± 66.61aA | 61.33 ± 2.51aA | 1.22 ± 0.30aA | |
坡3 Slope position 3 | 6月2日 2 June | 1 039.95 ± 122.26bB | 47.00 ± 3.61aB | 1.15 ± 0.19aB |
8月19日19 August | 1 885.80 ± 116.39aA | 63.00 ± 2.65aA | 1.40 ± 0.39aA | |
坡4 Slope position 4 | 6月2日 2 June | 928.85 ± 241.05bcA | 43.00 ± 5.29aB | 1.32 ± 0.15aA |
8月19日19 August | 1 401.25 ± 88.32bA | 57.00 ± 4.36aA | 1.59 ± 0.22aA |
水分来源 Water source | δ18O (‰) | 坡位1 Slope position 1 | δ18O (‰) | 坡位2 Slope position 2 | δ18O (‰) | 坡位3 Slope position 3 | δ18O (‰) | 坡位4 Slope position 4 | ||
---|---|---|---|---|---|---|---|---|---|---|
4月28日 28 April | 土壤深度 Soil depth (cm) | 0-20 | -1.17 | 1.3 (0-5) | -2.22 | 37.4 (20-46) | -4.54 | 21.0 (0-46) | -3.65 | 49.1 (32-59) |
20-150 | -7.93 | 8.6 (0-32) | -6.09 | 20.5 (0-70) | -6.15 | 25.4 (0-67) | -7.09 | 17.3 (0-68) | ||
150-270 | -8.91 | 23.3 (0-85) | -7.43 | 15.9 (0-50) | -8.61 | 19.1 (0-67) | -8.56 | 11.6 (0-42) | ||
270-400 | -9.51 | 51.6 (14-88) | -8.17 | 13.9 (0-45) | -9.74 | 15.3 (0-52) | -9.49 | 10.0 (0-35) | ||
地下水 Groundwater | -8.59 | 15.2 (0-54) | -8.59 | 12.2 (0-44) | -8.59 | 19.2 (0-64) | -8.59 | 12.0 (0-45) | ||
6月2日 2-June | 土壤深度 Soil depth (cm) | 0-20 | 1.27 | 0.0 (0-2.9) | -3.19 | 0.6 (0-2) | -0.44 | 7.9 (0-17) | -5.24 | 9.1 (0-35) |
20-150 | -8.07 | 1.3 (0-5) | -6.33 | 2.9 (1-6) | -4.35 | 14.7 (0-36) | -5.05 | 8.6 (0-33) | ||
150-270 | -8.35 | 1.8 (0.4) | -8.87 | 5.3 (0-1.2) | -7.82 | 26.0 (0-83) | -7.58 | 25.0 (0-95) | ||
270-450 | -8.96 | 94.8 (94-96) | -10.39 | 89.5 (85-93) | -8.19 | 25.5 (0-76) | -8.93 | 30.3 (0-65) | ||
地下水 Groundwater | -7.73 | 2.2 (0-4) | -7.73 | 1.7 (0-5) | -7.73 | 26.0 (0-83) | -7.73 | 27.0 (0-95) | ||
7月19日 19-July | 土壤深度 Soil depth (cm) | 0-20 | -6.04 | 2.9 (0-11) | -6.44 | 37.1 (0-84) | -6.63 | 93.0 (86-98) | -6.56 | 31.4 (0-82) |
20-150 | -6.43 | 3.2 (0-12) | -6.29 | 40.8 (0-81) | -6.84 | 6.0 (0-14) | -5.92 | 36.2 (0-63) | ||
150-270 | -8.78 | 11.0 (0-39) | -7.88 | 9.8 (0-32) | -8.10 | 0.6 (0-2) | -8.65 | 9.7 (0-35) | ||
270-450 | -9.91 | 74.4 (59-87) | -9.21 | 5.3 (0-17) | -9.00 | 0.2 (0-1) | -8.10 | 12.3 (0-45) | ||
地下水 Groundwater | -8.47 | 8.4 (0-31) | -8.47 | 7.1 (0-23) | -8.47 | 0.2 (0-1) | -8.47 | 10.4 (0-39) | ||
8月19日 19-August | 土壤深度 Soil depth (cm) | 0-20 | -4.62 | 9.4 (0-31) | -2.82 | 40.5 (21.51) | -5.02 | 7.2 (0-28) | -2.47 | 5.1 (0-17) |
20-150 | -7.27 | 17.4 (0-58) | -6.57 | 20.6 (0-75) | -6.61 | 10.7 (0-4) | -5.59 | 8.9 (0-32) | ||
150-270 | -8.76 | 25.7 (0-91) | -8.12 | 14.5 (0-54) | -10.19 | 31.4 (0-69) | -8.10 | 22.8 (0-82) | ||
270-450 | -10.33 | 22.0 (0-66) | -9.16 | 11.9 (0-46) | -8.50 | 22.8 (0-86) | -9.74 | 32.7 (0-80) | ||
地下水 Groundwater | -8.93 | 25.5 (0-90) | -8.93 | 12.5 (0-48) | -8.93 | 28 (0-92) | -8.93 | 30.5 (0-91) |
表3 4个坡位紫苜蓿对各水源的利用率% (平均值(最小值-最大值))
Table 3 Water uptake rate of potential sources for alfalfa grown in four slope positions (mean (minimum- maximum))
水分来源 Water source | δ18O (‰) | 坡位1 Slope position 1 | δ18O (‰) | 坡位2 Slope position 2 | δ18O (‰) | 坡位3 Slope position 3 | δ18O (‰) | 坡位4 Slope position 4 | ||
---|---|---|---|---|---|---|---|---|---|---|
4月28日 28 April | 土壤深度 Soil depth (cm) | 0-20 | -1.17 | 1.3 (0-5) | -2.22 | 37.4 (20-46) | -4.54 | 21.0 (0-46) | -3.65 | 49.1 (32-59) |
20-150 | -7.93 | 8.6 (0-32) | -6.09 | 20.5 (0-70) | -6.15 | 25.4 (0-67) | -7.09 | 17.3 (0-68) | ||
150-270 | -8.91 | 23.3 (0-85) | -7.43 | 15.9 (0-50) | -8.61 | 19.1 (0-67) | -8.56 | 11.6 (0-42) | ||
270-400 | -9.51 | 51.6 (14-88) | -8.17 | 13.9 (0-45) | -9.74 | 15.3 (0-52) | -9.49 | 10.0 (0-35) | ||
地下水 Groundwater | -8.59 | 15.2 (0-54) | -8.59 | 12.2 (0-44) | -8.59 | 19.2 (0-64) | -8.59 | 12.0 (0-45) | ||
6月2日 2-June | 土壤深度 Soil depth (cm) | 0-20 | 1.27 | 0.0 (0-2.9) | -3.19 | 0.6 (0-2) | -0.44 | 7.9 (0-17) | -5.24 | 9.1 (0-35) |
20-150 | -8.07 | 1.3 (0-5) | -6.33 | 2.9 (1-6) | -4.35 | 14.7 (0-36) | -5.05 | 8.6 (0-33) | ||
150-270 | -8.35 | 1.8 (0.4) | -8.87 | 5.3 (0-1.2) | -7.82 | 26.0 (0-83) | -7.58 | 25.0 (0-95) | ||
270-450 | -8.96 | 94.8 (94-96) | -10.39 | 89.5 (85-93) | -8.19 | 25.5 (0-76) | -8.93 | 30.3 (0-65) | ||
地下水 Groundwater | -7.73 | 2.2 (0-4) | -7.73 | 1.7 (0-5) | -7.73 | 26.0 (0-83) | -7.73 | 27.0 (0-95) | ||
7月19日 19-July | 土壤深度 Soil depth (cm) | 0-20 | -6.04 | 2.9 (0-11) | -6.44 | 37.1 (0-84) | -6.63 | 93.0 (86-98) | -6.56 | 31.4 (0-82) |
20-150 | -6.43 | 3.2 (0-12) | -6.29 | 40.8 (0-81) | -6.84 | 6.0 (0-14) | -5.92 | 36.2 (0-63) | ||
150-270 | -8.78 | 11.0 (0-39) | -7.88 | 9.8 (0-32) | -8.10 | 0.6 (0-2) | -8.65 | 9.7 (0-35) | ||
270-450 | -9.91 | 74.4 (59-87) | -9.21 | 5.3 (0-17) | -9.00 | 0.2 (0-1) | -8.10 | 12.3 (0-45) | ||
地下水 Groundwater | -8.47 | 8.4 (0-31) | -8.47 | 7.1 (0-23) | -8.47 | 0.2 (0-1) | -8.47 | 10.4 (0-39) | ||
8月19日 19-August | 土壤深度 Soil depth (cm) | 0-20 | -4.62 | 9.4 (0-31) | -2.82 | 40.5 (21.51) | -5.02 | 7.2 (0-28) | -2.47 | 5.1 (0-17) |
20-150 | -7.27 | 17.4 (0-58) | -6.57 | 20.6 (0-75) | -6.61 | 10.7 (0-4) | -5.59 | 8.9 (0-32) | ||
150-270 | -8.76 | 25.7 (0-91) | -8.12 | 14.5 (0-54) | -10.19 | 31.4 (0-69) | -8.10 | 22.8 (0-82) | ||
270-450 | -10.33 | 22.0 (0-66) | -9.16 | 11.9 (0-46) | -8.50 | 22.8 (0-86) | -9.74 | 32.7 (0-80) | ||
地下水 Groundwater | -8.93 | 25.5 (0-90) | -8.93 | 12.5 (0-48) | -8.93 | 28 (0-92) | -8.93 | 30.5 (0-91) |
1 | An H, An Y ( 2011). Soil moisture dynamics and water balance of Salix psammophila shrubs in south edge of Mu Us Sandy Land. Chinese Journal of Applied Ecology, 22, 2247-2252. (in Chinese with English abstract) |
[ 安慧, 安钰 ( 2011). 毛乌素沙地南缘沙柳灌丛土壤水分及水量平衡. 应用生态学报, 22, 2247-2252.] | |
2 | Bian JJ, Sun ZY, Zhou AG, Yu SW ( 2009). Advances in the D and 18O isotopes of water source of plants in arid areas . Geological Science and Technology Information, 28(4), 117-120. (in Chinese with English abstract) |
[ 边俊景, 孙自永, 周爱国, 余绍文 ( 2009). 干旱区植物水分来源的D, 18O同位素示踪研究进展 . 地质科技情报, 28(4), 117-120.] | |
3 | Cheng DH, Wang WK, Hou GC, Yang HB, Li Y, Zhang EY ( 2012). Relationship between vegetation and groundwater in Mu Us desert. Journal of Jilin University (Earth Science Edition), 42, 184-189. (in Chinese with English abstract) |
[ 程东会, 王文科, 侯光才, 杨红斌, 李瑛, 张二勇 ( 2012). 毛乌素沙地植被与地下水关系. 吉林大学学报(地球科学版), 42, 184-189.] | |
4 |
Dawson TE ( 1993). Hydraulic lift and water use by plants: implications for water balance, performance and plant- plant interactions. Oecologia, 95, 565-574.
DOI URL |
5 |
Dawson TE, Ehleringer JR ( 1991). Streamside trees that do not use stream water. Nature, 350, 335-337.
DOI URL |
6 |
Ehdaie B, Hall AE, Farquhar GD, Nguyen HT, Waines JG ( 1991). Water-use efficiency and carbon isotope discrimination in wheat. Crop Science, 31, 1282-1288.
DOI URL |
7 | Ehrlinger JR, Dawson TE ( 1992). Water uptake by plants: perspectives from stable isotope composition. Plant, Cell & Environment, 15, 1073-1082. |
8 |
Ellsworth PZ, Williams DG ( 2007). Hydrogen isotope fractionation during water uptake by woody xerophytes. Plant and Soil, 291, 93-107.
DOI URL |
9 |
Farquhar GD, Ehleringer JR, Hubick KT ( 1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503-537.
DOI URL |
10 | Farquhar GD, Richards RA ( 1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology, 11, 539-552. |
11 |
Gazis C, Feng X ( 2004). A stable isotope study of soil water: evidence for mixing and preferential flow paths. Geoderma, 119, 97-111.
DOI URL |
12 | Han JC, Liu YS, Luo LT ( 2012). Research on the core technology of remixing soil by soft rock and sand in the Maowusu sand land region. Chinese Land Science, 26(8), 87-94. (in Chinese with English abstract) |
[ 韩霁昌, 刘彦随, 罗林涛 ( 2012). 毛乌素沙地砒砂岩与沙快速复配成土核心技术研究. 中国土地科学, 26(8), 87-94.] | |
13 | Huang JT, Yin LH, Dong JQ, Zhang J, Ma HY, Wang XY ( 2013). Response of Salix psammophila transpiration to precipitation at shallow groundwater area in Mu Us Desert. Journal of Northwest A & F University (Nature Science Edition), 41(11), 217-228. (in Chinese with English abstract) |
[ 黄金廷, 尹立河, 董佳秋, 张俊, 马洪云, 王晓勇 ( 2013). 毛乌素沙地地下水浅埋区沙柳蒸腾对降水的响应. 西北农林科技大学学报(自然科学版), 41(11), 217-228.] | |
14 | Huang TM, Nie ZQ, Yuan LJ ( 2008). Temperature and geographical effects of hydrogen and oxygen isotopes in precipitation in West of China. Journal of Arid Land Resources and Environment, 22(8), 76-81. (in Chinese with English abstract) |
[ 黄天明, 聂中青, 袁利娟 ( 2008). 西部降水氢氧稳定同位素温度及地理效应. 干旱区资源与环境, 22(8), 76-81.] | |
15 |
Johnson RC, Basset LM ( 1991). Carbon isotope discrimination and water use efficiency in four cool-season grasses. Crop Science, 31, 157-162.
DOI URL |
16 | Kramer PJ, Boyer JS (1995). Water Relations of Plants and Soils. Academic Press, New York, 1911-1917. |
17 | Li FM, Zhang ZW ( 1991). The study on water use of the alfalfa grassland and the Spipa bungeana grassland in Ningxia Yanchi. Acta Phytoecologica et Geobotanica Sinica, 15, 319-329. (in Chinese with English abstract) |
[ 李凤民, 张振万 ( 1991). 宁夏盐池长芒草草原和苜蓿人工草地水分利用研究. 植物生态学与地植物学学报, 15, 319-329.] | |
18 | Li HB, Gao YY, Zhang JW, Liu CH, Yu YC, Xi LF ( 2006). Summary of researching on the dynamic regulation of water consumption of alfalfa. Agricultural Research in the Arid Areas, 24(6), 163-167. (in Chinese with English abstract) |
[ 李浩波, 高云英, 张景武, 刘春和, 余有成, 惠临风 ( 2006). 紫花苜蓿耗水规律及其用水效率研究. 干旱地区农业研究, 24(6), 163-167.] | |
19 | Li YS ( 2002). Productivity dynamic of alfalfa and its effects on water eco-environment. Acta Pedologica Sinica, 39, 404-411. (in Chinese with English abstract) |
[ 李玉山 ( 2002). 苜蓿生产力动态及其水分生态环境效应. 土壤学报, 39, 404-411.] | |
20 |
Liu PS, Jia ZK, Li J, Wang JP, Li YP, Liu SX ( 2009). Moisture distribution characteristics and the time-space dynamics of the soil dry layer in alfalfa farm lands in arid regions of Southern Ningxia. Journal of Natural Resources, 24, 663-673. (in Chinese with English abstract)
DOI URL |
[ 刘沛松, 贾志宽, 李军, 王俊鹏, 李永平, 刘世新 ( 2009). 宁南旱区紫苜蓿土壤干层水分特征及时空动态. 自然资源学报, 24, 663-673.]
DOI URL |
|
21 | Liu ZM, Shan L, Deng XP ( 1993). Study on grass (grain crop rotation system in south ningxia hilly area) field water balance under different crop rotation system. Journal of Soil and Water Conservation, 7(4), 67-71. |
22 | Ma HY, Gong JD, Wang GX, Cheng GD ( 2005). Study on the characteristics of space-time change on soil moisture in arid region. Research of Soil and Water Conservation, 12(6), 231-234. (in Chinese with English abstract) |
[ 马海艳, 龚家栋, 王根绪, 程国栋 ( 2005). 干旱区不同荒漠植被土壤水分的时空变化特征分析. 水土保持研究, 12(6), 231-234.] | |
23 |
Meinzer FC, Clearwater MJ, Goldstein G ( 2001). Water transport in trees: current perspectives, new insights and some controversies. Environmental and Experimental Botany, 45, 239-262.
DOI URL |
24 |
Merah O, Monneveux P, Deléens E ( 2001). Relationships between flag leaf carbon isotope discrimination and several morpho-physiological traits in durum wheat genotypes under Mediterranean conditions. Environmental and Experimental Botany, 45, 63-71.
DOI URL |
25 |
Misra SC, Randive R, Rao VS, Sheshshayee MS, Serraj R, Monneveux P ( 2006). Relationship between carbon isotope discrimination, ash content and grain yield in wheat in the peninsular zone of India. Journal of Agronomy and Crop Science, 192, 352-362.
DOI URL |
26 | Pan ZB, Yu F, Wang ZJ, Li SB, Zhang YR ( 2010). Effects of slope aspect and position on temporal and spatial variation of soil water content on alfalfa land in Loess hilly region of South Ningxia Hui Autonomous Region. Research of Soil and Water Conservation, 17(2), 141-144. (in Chinese with English abstract) |
[ 潘占兵, 余峰, 王占军, 李生宝, 张源润 ( 2010). 宁南黄土丘陵区坡向、坡位对苜蓿地土壤含水量时空变异的影响. 水土保持研究, 17(2), 141-144.] | |
27 |
Phillips DL, Gregg JW ( 2003). Source partitioning using stable isotopes: coping with too many sources. Oecologia, 136, 261-269.
DOI URL |
28 |
Picon-Cochard C, Nsourou-Obame A, Collet C, Guehl JM, Ferhi A ( 2001). Competition for water between walnut seedlings ( Juglans regia) and rye grass( Lolium perenne) assessed by carbon isotope discrimination and δ 18O enrichment. Tree Physiology, 21, 183-191.
DOI URL PMID |
29 | Qu XN, Wang HR ( 2007). Climate change analysis in Yanchi County of Ningxia since recent 50 years. Ningxia Engineering Technology, 5, 321-322. (in Chinese with English abstract) |
[ 璩向宁, 王惠荣 ( 2007). 宁夏盐池县近50年气候变化特征分析. 宁夏工程技术, 5, 321-322.] | |
30 | Shan L, Zhang SQ, Li WR ( 2008). Productivity and drought resistance of alfalfa. Journal of Agricultural Science and Technology, 10, 12-17. (in Chinese with English abstract) |
[ 山仑, 张岁岐, 李文娆 ( 2008). 论苜蓿的生产力与抗旱性. 中国农业科技导报, 10, 12-17.] | |
31 | Sun HL, Lü ZY, Guo KZ, Xu B, Ma L ( 2008). Preliminary study on the effect of groundwater to artificial pasture SPAC system with shallow water table. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 29(2), 148-153. |
[ 孙海龙, 吕志远, 郭克贞, 徐冰, 马丽 ( 2008). 浅埋条件下地下水对人工草地SPAC系统影响初探. 内蒙古农业大学学报(自然科学版), 29(2), 148-153.] | |
32 | Thorburn PJ, Walker GR, Brunel JP ( 1993). Extraction of water from Eucalyptus trees for analysis of deuterium and oxygen-18: laboratory and field techniques. Plant, Cell & Environment, 16, 269-277. |
33 | Wang ZQ, Liu YB, Lu BJ ( 2003). A study on water restoration of dry soil layers in the semi-arid area of Loess Plateau. Acta Ecologica Sinica, 23, 1944-1950. (in Chinese with English abstract) |
[ 王志强, 刘宝元, 路炳军 ( 2003). 黄土高原半干旱区土壤干层水分恢复研究. 生态学报, 23, 1944-1950.] | |
34 | Wei WL, Cheng JM, Gao Y, Liu W ( 2010). Effects of different site conditions on alfalfa field and path analysis in arid area of Northern Weihe River Basin. Bulletin of Soil and Water Conservation, 30(5), 73-78. (in Chinese with English abstract) |
[ 魏婉玲, 程积民, 高阳, 刘伟 ( 2010). 渭北旱塬区不同立地条件对紫花苜蓿产量的影响与通径分析. 水土保持通报, 30(5), 73-78.] | |
35 |
Xu X, Yuan HM, Li SH, Monneveux P ( 2007). Relationship between carbon isotope discrimination and grain yield in spring wheat under different water regimes and under saline conditions in the Ningxia Province (North-west China). Journal of Agronomy and Crop Science, 193, 422-434.
DOI URL |
36 | Yang YD, Zhang JS, Cai GJ, Mo BR, Chai CS, Wang ZT ( 2008). Soil moisture dynamics of alfalfa pasture at different eco-sites in Gullied Loess Area (2008). Prataculturae Science, 25(10), 25-28. (in Chinese with English abstract) |
[ 杨永东, 张建生, 蔡国军, 莫保儒, 柴春山, 王子婷 ( 2008). 黄土丘陵区不同立地条件下紫花苜蓿地土壤水分动态变化. 草业科学, 25(10), 25-28.] | |
37 | Yu L, Wang YR, Garnett T, Auricht G, Hang DL ( 2006). A study on physiological responses of varieties of Medicago sativa and their relationship with the drought resistance capacity under drought stress. Prataculturae Science, 15(3), 75-85. (in Chinese with English abstract) |
[ 余玲, 王彦荣, Garnett T, Auricht G, 韩德梁 ( 2006). 紫花苜蓿不同品种对干旱胁迫的生理响应. 草业学报, 15(3), 75-85.] | |
38 |
Yuan JJ, Yuan FG, Luo Y, Sun XM, Zhang N ( 2009). Estimation of groundwater use of winter wheat using H2 18O signatures: a preliminary study . Journal of Natural Resources, 24, 360-368. (in Chinese with English abstract)
DOI URL |
[ 苑晶晶, 袁国富, 罗毅, 孙晓敏, 张娜 ( 2009). 利用δ 18O信息分析冬小麦对浅埋深地下水的利用 . 自然资源学报, 24, 360-368.]
DOI URL |
|
39 | Zhang BY, Xu XX, Bai XH ( 2006). A study on soil moisture under different vegetations in loess hilly region. Agricultural Research in the Arid Areas, 24(2), 96-99. (in Chinese with English abstract) |
[ 张北赢, 徐学选, 白晓华 ( 2006). 黄土丘陵区不同土地利用方式下土壤水分分析. 干旱地区农业研究, 24(2), 96-99.] | |
40 | Zhang XH, Wang HM, Xu BC, Li FM ( 2007). Soil water using and consume of three legumes on highland of Loess Plateau. Acta Botanica Boreal-Occidentalia Sinica, 27, 1428-1437. (in Chinese with English abstract) |
[ 张晓红, 王惠梅, 徐炳成, 李凤民 ( 2007). 黄土塬区3种豆科牧草对土壤水分的消耗利用研究. 西北植物学报, 27, 1428-1437.] | |
41 |
Zheng SX, Shangguan ZP ( 2007). Spatial patterns of foliar stable carbon isotope compositions of C3 plant species in the Loess Plateau of China. Ecological Research, 22, 342-353.
DOI URL |
42 |
Zhou YD, Chen SP, Song WM, Lu Q, Lin GH ( 2011). Water- use strategies of two desert plants along a precipitation gradient in northwestern China. Chinese Journal of Plant Ecology, 35, 789-800. (in Chinese with English abstract)
DOI URL |
[ 周雅聃, 陈世苹, 宋维民, 卢琦, 林光辉 ( 2011). 不同降水条件下两种荒漠植物的水分利用策略. 植物生态学报, 35, 789-800.]
DOI URL |
|
43 |
Zhu L, Xu X, Mao GL ( 2012). Water sources of shrubs grown in the northern Ningxia Plain of China characterized by shallow groundwater table. Chinese Journal of Plant Ecology, 36, 618-628. (in Chinese with English abstract)
DOI URL |
[ 朱林, 许兴, 毛桂莲 ( 2012). 宁夏平原北部地下水埋深浅地区不同灌木的水分来源. 植物生态学报, 36, 618-628.]
DOI URL |
[1] | 雷自然 贾国栋 余新晓 刘子赫. 植物水分来源稳定氢氧同位素偏移研究进展[J]. 植物生态学报, 2023, 47(1): 0-0. |
[2] | 李亚飞, 于静洁, 陆凯, 王平, 张一驰, 杜朝阳. 额济纳三角洲胡杨和多枝柽柳水分来源解析[J]. 植物生态学报, 2017, 41(5): 519-528. |
[3] | 朱林, 许兴, 毛桂莲. 宁夏平原北部地下水埋深浅地区不同灌木的水分来源[J]. 植物生态学报, 2012, 36(7): 618-628. |
[4] | 聂云鹏, 陈洪松, 王克林. 石灰岩地区连片出露石丛生境植物水分来源的季节性差异[J]. 植物生态学报, 2011, 35(10): 1029-1037. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19