植物生态学报 ›› 2012, Vol. 36 ›› Issue (7): 618-628.DOI: 10.3724/SP.J.1258.2012.00618
所属专题: 稳定同位素生态学
发布日期:
2012-07-10
通讯作者:
朱林
作者简介:
E-mail: zhulinscience@126.com
ZHU Lin1,2,*(), XU Xing1, MAO Gui-Lian3
Published:
2012-07-10
Contact:
ZHU Lin
摘要:
宁夏平原北部引黄灌区地下水埋深浅是该地区土壤盐碱化的主要原因, 种植耐盐植物可以吸收利用地下水, 在降低地下水位的同时可以减少对地面灌溉的依赖。为了分析银川平原北部4种灌木对不同水源的利用特征, 于2010年生长季测定了灌溉前后20年生多枝柽柳(Tamarix ramosissima)、3年生多枝柽柳、3年生宁夏枸杞(Lycium barbarum)和3年生四翅滨藜(Atriplex canescens)木质部水及不同潜在水源稳定氧、氢同位素组成(δ18O和δD), 应用IsoSource同位素线性混合模型估算了不同灌木对不同水源的利用率。同时测定了0-200 cm土壤剖面的全盐含量、含水量和pH值以及灌溉前后光合气体交换参数。结果表明: 不同深度土壤水δ18O和δD值存在较大差异, 并呈规律性变化。土壤水δ18O和δD值随深度加深呈逐渐降低的趋势。灌溉后80 cm以上土壤水δ18O和δD值低于灌溉前。无论灌溉前还是灌溉后, 20年生多枝柽柳与3年生灌木相比具有更低的δ18O和δD值。灌溉前, 3年生多枝柽柳、宁夏枸杞和四翅滨藜主要利用表层土壤水(70.1%、52.3%和48.9%); 20年生多枝柽柳对地下水的利用率最高(21.5%)。灌溉后, 3年生多枝柽柳和宁夏枸杞对80-140 cm土壤水利用率较高(59.5%和58.8%)。20年生多枝柽柳对地下水的利用率最高(18.3%)。灌溉前, 20年生多枝柽柳净光合速率、气孔导度和蒸腾速率显著高于其他3种灌木, 灌溉后3年生四翅滨藜净光合速率最高。灌溉对3年生多枝柽柳和宁夏枸杞的净光合速率和气孔导度有显著影响。无论灌溉前还是灌溉后, 3年生四翅滨藜瞬间水分利用效率均高于其他3种灌木。研究表明, 不同灌木在不同水分条件下水分利用策略不同, 这主要与植物种类及树龄有关。灌溉前幼龄多枝柽柳凭借其对干旱较强的忍耐能力利用浅层不饱和土壤水, 灌溉后其又转而利用中层土壤水, 表现出潜水湿生植物的特征, 主要吸收利用深层土壤水分, 对灌溉反应不明显。
朱林, 许兴, 毛桂莲. 宁夏平原北部地下水埋深浅地区不同灌木的水分来源. 植物生态学报, 2012, 36(7): 618-628. DOI: 10.3724/SP.J.1258.2012.00618
ZHU Lin, XU Xing, MAO Gui-Lian. Water sources of shrubs grown in the northern Ningxia Plain of China characterized by shallow groundwater table. Chinese Journal of Plant Ecology, 2012, 36(7): 618-628. DOI: 10.3724/SP.J.1258.2012.00618
图1 2010年4月1日至7月10日西大滩降雨量与灌溉量。箭头指示的是土壤水、地下水、植物木质部水的采样时间。
Fig. 1 Daily precipitation and irrigation from 1 April to 5 July, 2010 in Xidatan. Arrow points to the data when soil water, groundwater, plant xylem water was sampled.
图2 西大滩0-200 cm土壤水、地下水、井水以及雨水δ18O (A)和δD值(B)的比较。
Fig. 2 Comparison on δ18O (A) and δD values (B) of soil water (0-200 cm), groundwater, well water, and rainwater in Xidatan.
图3 试验点环境水源(A)及植物木质部水(B)的δ18O和δD及其与中国西北干旱地区地方大气降雨线(ANC LMWL)的关系。
Fig. 3 δ18O and δD of environmental water (A) and plant xylem water (B) sampled at field site and their relationship with arid Northwest China local meteoric water line (ANC LMWL).
土壤水δD Soil water δD 5-28 | 土壤水δ18O Soil water δ18O 5-28 | 土壤水δD Soil water δD 7-4 | 土壤水δ18O Soil water δ18O 7-4 | 土壤含水量 Soil water content 5-28 | 土壤含水量 Soil water content 7-4 | 土壤含盐量 Soil salt content 5-28 | 土壤含盐量 Soil salt content 7-4 | 土壤pH Soil pH 5-28 | 土壤pH Soil pH 7-4 | |
---|---|---|---|---|---|---|---|---|---|---|
土壤水δD Soil water δD 5-28 | 1.00 | |||||||||
土壤水δ18O Soil water δ18O 5-28 | 0.99** | 1.00 | ||||||||
土壤水δD Soil water δD 7-4 | 0.04 | 0.17 | 1.00 | |||||||
土壤水δ18O Soil water δ18O 7-4 | 0.06 | 0.16 | 0.91** | 1.00 | ||||||
土壤含水量 Soil water content 5-28 | -0.66* | -0.69* | -0.23 | -0.16 | 1.00 | |||||
土壤含水量 Soil water content 7-4 | -0.69* | -0.72** | -0.26 | -0.17 | 0.93** | 1.00 | ||||
土壤含盐量 Soil salt content 5-28 | -0.38 | -0.32 | 0.55 | 0.59* | 0.32 | 0.32 | 1.00 | |||
土壤含盐量 Soil salt content 7-4 | 0.02 | 0.08 | 0.58* | 0.59* | 0.27 | 0.12 | 0.71** | 1.00 | ||
土壤pH Soil pH 5-28 | -0.64* | -0.66* | 0.06 | 0.07 | 0.47 | 0.41 | 0.65* | 0.38 | 1.00 | |
土壤pH Soil pH 7-4 | -0.68* | -0.67* | -0.06 | -0.14 | 0.54 | 0.62* | 0.50 | 0.22 | 0.78** | 1.00 |
表1 西大滩灌木林地不同时期土壤水氢氧同位素组成、含水量、含盐量及pH值间的关系
Table 1 Relationship among soil water hydrogen and oxygen composition, soil water content, soil salt content and pH during different periods in Xidatan shrubberies
土壤水δD Soil water δD 5-28 | 土壤水δ18O Soil water δ18O 5-28 | 土壤水δD Soil water δD 7-4 | 土壤水δ18O Soil water δ18O 7-4 | 土壤含水量 Soil water content 5-28 | 土壤含水量 Soil water content 7-4 | 土壤含盐量 Soil salt content 5-28 | 土壤含盐量 Soil salt content 7-4 | 土壤pH Soil pH 5-28 | 土壤pH Soil pH 7-4 | |
---|---|---|---|---|---|---|---|---|---|---|
土壤水δD Soil water δD 5-28 | 1.00 | |||||||||
土壤水δ18O Soil water δ18O 5-28 | 0.99** | 1.00 | ||||||||
土壤水δD Soil water δD 7-4 | 0.04 | 0.17 | 1.00 | |||||||
土壤水δ18O Soil water δ18O 7-4 | 0.06 | 0.16 | 0.91** | 1.00 | ||||||
土壤含水量 Soil water content 5-28 | -0.66* | -0.69* | -0.23 | -0.16 | 1.00 | |||||
土壤含水量 Soil water content 7-4 | -0.69* | -0.72** | -0.26 | -0.17 | 0.93** | 1.00 | ||||
土壤含盐量 Soil salt content 5-28 | -0.38 | -0.32 | 0.55 | 0.59* | 0.32 | 0.32 | 1.00 | |||
土壤含盐量 Soil salt content 7-4 | 0.02 | 0.08 | 0.58* | 0.59* | 0.27 | 0.12 | 0.71** | 1.00 | ||
土壤pH Soil pH 5-28 | -0.64* | -0.66* | 0.06 | 0.07 | 0.47 | 0.41 | 0.65* | 0.38 | 1.00 | |
土壤pH Soil pH 7-4 | -0.68* | -0.67* | -0.06 | -0.14 | 0.54 | 0.62* | 0.50 | 0.22 | 0.78** | 1.00 |
水分来源 Water source | 灌木种类 Species of shrub | |||||||
---|---|---|---|---|---|---|---|---|
水源的同位素组成 Isotopic composition of water (‰) | 20年生多枝柽柳 20-year-old Tamarix ramosissima | 3年生多枝柽柳 3-year-old T. ramosissima | 3年生宁夏枸杞 3-year-old Lycium barbarum | 3年生四翅滨藜 3-year-old Atriplex canescens | ||||
δ18O | δD | |||||||
5月28日 28 May | 土壤深度 Soil depth (cm) | 0-20 | -5.69 | -42.89 | 5.10 (0-20) | 70.10 (58-81) | 52.30 (35-66) | 48.90 (31-63) |
20-80 | -9.26 | -76.79 | 28.70 (0-95) | 6.60 (0-30) | 10.50 (0-47) | 11.30 (0-50) | ||
80-140 | -8.27 | -71.78 | 15.40 (0-60) | 9.30 (0-42) | 14.70 (0-65) | 15.80 (0-69) | ||
140-200 | -9.47 | -77.00 | 29.40 (0-90) | 6.20 (0-29) | 9.90 (0-44) | 10.60 (0-47) | ||
地下水 Groundwater | -8.70 | -65.93 | 21.50 (0-100) | 7.90 (0-36) | 12.60 (0-55) | 13.40 (0-59) | ||
7月4日 4 July | 土壤深度 Soil depth (cm) | 0-20 | -9.79 | -77.72 | 20.40 (0-90) | 11.00 (0-51) | 11.20 (0-52) | 18.40 (0-82) |
20-80 | -10.11 | -78.66 | 17.50 (0-77) | 9.40 (0-44) | 9.60 (0-45) | 15.80 (0-70) | ||
80-140 | -7.78 | -63.37 | 25.00 (10-39) | 59.50 (49-72) | 58.80 (48-71) | 32.40 (18-46) | ||
140-200 | -9.97 | -79.87 | 18.70 (0-82) | 10.10 (0-47) | 10.30 (0-48) | 16.90 (0-75) | ||
地下水 Groundwater | -10.02 | -75.79 | 18.30 (0-81) | 9.90 (0-46) | 10.00 (0-47) | 16.50 (0-73) |
表2 西大滩4种灌木对各潜在水源的利用比例(平均值(最小值-最大值))
Table 2 Water uptake rate of potential sources for four shrubs in Xidatan (mean (minimum-maximum)) (%)
水分来源 Water source | 灌木种类 Species of shrub | |||||||
---|---|---|---|---|---|---|---|---|
水源的同位素组成 Isotopic composition of water (‰) | 20年生多枝柽柳 20-year-old Tamarix ramosissima | 3年生多枝柽柳 3-year-old T. ramosissima | 3年生宁夏枸杞 3-year-old Lycium barbarum | 3年生四翅滨藜 3-year-old Atriplex canescens | ||||
δ18O | δD | |||||||
5月28日 28 May | 土壤深度 Soil depth (cm) | 0-20 | -5.69 | -42.89 | 5.10 (0-20) | 70.10 (58-81) | 52.30 (35-66) | 48.90 (31-63) |
20-80 | -9.26 | -76.79 | 28.70 (0-95) | 6.60 (0-30) | 10.50 (0-47) | 11.30 (0-50) | ||
80-140 | -8.27 | -71.78 | 15.40 (0-60) | 9.30 (0-42) | 14.70 (0-65) | 15.80 (0-69) | ||
140-200 | -9.47 | -77.00 | 29.40 (0-90) | 6.20 (0-29) | 9.90 (0-44) | 10.60 (0-47) | ||
地下水 Groundwater | -8.70 | -65.93 | 21.50 (0-100) | 7.90 (0-36) | 12.60 (0-55) | 13.40 (0-59) | ||
7月4日 4 July | 土壤深度 Soil depth (cm) | 0-20 | -9.79 | -77.72 | 20.40 (0-90) | 11.00 (0-51) | 11.20 (0-52) | 18.40 (0-82) |
20-80 | -10.11 | -78.66 | 17.50 (0-77) | 9.40 (0-44) | 9.60 (0-45) | 15.80 (0-70) | ||
80-140 | -7.78 | -63.37 | 25.00 (10-39) | 59.50 (49-72) | 58.80 (48-71) | 32.40 (18-46) | ||
140-200 | -9.97 | -79.87 | 18.70 (0-82) | 10.10 (0-47) | 10.30 (0-48) | 16.90 (0-75) | ||
地下水 Groundwater | -10.02 | -75.79 | 18.30 (0-81) | 9.90 (0-46) | 10.00 (0-47) | 16.50 (0-73) |
图4 灌溉前(2010年5月28日)后(2010年7月4日) 4种灌木的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和瞬间水分利用效率(Pn/Gs) (平均值±标准偏差; n = 6)。不同小写字母表示灌溉前后差异显著(p < 0.05), 不同大写字母表示灌溉前后差异极显著 (p < 0.01)。
Fig. 4 Net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr) and intrinsic water use efficiency (Pn/Gs) of four shrubs measured before irrigation (28 May) and after irrigation (4 July), 2010 (mean ± SD, n = 6). Different lowercases and capital letters represent significant differences among different measuring time (p < 0.05 and p < 0.01), respectively.
[1] | Allison GB, Hughes MW (1983). The use of natural tracers as indicators of soil-water movement in a temperate semi-arid region. Journal of Hydrology, 60, 157-173. |
[2] |
Busch DE, Ingraham NL, Smith SD (1992). Water uptake in woody riparian phreatophytes of the southwestern United States: a stable isotope study. Ecological Applications, 2, 450-459.
URL PMID |
[3] | Busch DE, Smith SD (1995). Mechanisms associated with decline of woody species in riparian ecosystems of the southwestern U.S. Ecological Monographs, 65, 347-370. |
[4] |
Caldwell MM, Dawson TE, Richards JH (1998). Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia, 113, 151-161.
URL PMID |
[5] | Cheng GY (程广有), Hou J (侯杰), Tang XJ (唐晓杰), Zhou XY (周喜云) (2007). Salt-alkaline tolerance of three species of Lycium by tissue culture. Journal of Northeast Forestry University (东北林业大学学报), 35(11), 47-49. (in Chinese with English abstract) |
[6] | Cheng XL, An SQ, Li B, Chen JQ, Lin GH, Liu YH, Luo YQ, Liu SR (2006). Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China. Plant Ecology, 184, 1-12. |
[7] | Chimner RA, Cooper DJ (2004). Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado U.S.A. Plant and Soil, 260, 225-236. |
[8] |
Dawson TE (1993). Hydraulic lift and water use by plants: implications for water balance, performance and plant- plant interactions. Oecologia, 95, 565-574.
URL PMID |
[9] |
Eggemeyer KD, Awada T, Harvey FE, Wedin DA, Zhou XH, Zanner CW (2009). Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology, 29, 157-169.
DOI URL PMID |
[10] |
Ehleringer JR, Phillips SL, Schuster WSF, Sandquist DR (1991). Differential utilization of summer rains by desert plants. Oecologia, 88, 430-434.
DOI URL PMID |
[11] | Ehleringer JR, Dawson TE (1992). Water uptake by plants: perspectives from stable isotope composition. Plant, Cell & Environment, 15, 1073-1082. |
[12] | Ellsworth PZ, Williams DG (2007). Hydrogen isotope fractionation during water uptake by woody xerophytes. Plant and Soil, 291, 93-107. |
[13] | Gong WC (公维昌), Zhuang L (庄丽), Zhao WQ (赵文勤), Tian ZP (田中平) (2009). Anatomical structure and ecological adaptability of two kinds of halophytes (Haloxylon ammondendron Chenopodiaceae and Tamarix ramosissima Amaranthaceae). Acta Ecologica Sinica (生态学报), 29, 6764-6771. (in Chinese with English abstract) |
[14] | He WS (何文寿), Liu YC (刘阳春), He JY (何进宇) (2010). Relationships between soluble salt content and electrical conductivity for different types of salt-affected soils in Ningxia. Agricultural Research in the Arid Areas (干旱地区农业研究), 28, 111-116. (in Chinese with English abstract) |
[15] |
Hodgkinson KC, Johnson PS, Norton BE (1978). Influence of summer rainfall on root and shoot growth of a cold-winter desert shrub, Atriplex confertifolia. Oecologia, 34, 353-362.
DOI URL PMID |
[16] | Jiang LX (蒋礼学), Li Y (李彦) (2008). Comparison on architecture characteristics of root systems and leaf traits for three desert shrubs adapted to arid habitat. Journal of Desert Research (中国沙漠), 28, 1118-1124. (in Chinese with English abstract) |
[17] | Khan MA, Ungar IA, Showalter AM (2000). Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplex griffithii var. stocksii. Annals of Botany, 85, 225-232. |
[18] | Li PJ (李鹏菊), Liu WJ (刘文杰), Wang PY (王平元), Li JT (李金涛) (2008). Plant water use strategies in a limestone tropical seasonal moist rainforest in Xishuangbanna, SW China. Acta Botanica Yunnanica (云南植物研究), 30, 496-504. (in Chinese with English abstract) |
[19] | Li Q (李茜), Sun ZJ (孙兆军), Qin P (秦萍) (2007). Summary of Ningxia saline status and improved measures. Journal of Anhui Agricultural Sciences (安徽农业科学), 35, 10808-10810, 10813. (in Chinese with English abstract) |
[20] |
Lin GH, Phillips SL, Ehleringer JR (1996). Monosoonal precipitation responses of shrubs in a cold desert community on the Colorado Plateau. Oecologia, 106, 8-17.
URL PMID |
[21] |
Liu JR, Song XF, Sun XM, Yuan GF, Liu X, Wang SQ (2009). Isotopic composition of precipitation over Arid Northwestern China and its implications for the water vapor origin. Journal of Geographical Sciences, 19, 164-174.
DOI URL |
[22] | Liu MS (刘茂松), Lu XZ (鲁小珍), Wang HJ (王汉杰), Deng CH (邓村恒), Ren RR (任蓉蓉), Tang RN (唐荣南) (2001). The environmental effectiveness and countermeasure of human activity in Xidatan of Pingluo in Ningxia Autonomous Region. Journal of Nanjing Forestry University (Natural Sciences Edition) (南京林业大学学报(自然科学版)), 25(3), 83-88. (in Chinese with English abstract) |
[23] | Matoh T, Watanabe J, Takahashi E (1986). Effects of sodium and potassium salts on the growth of a halophyte. Soil Science and Plant Nutrition, 32, 451-459. |
[24] | McKell CM (1994). Salinity tolerance in Atriplex species: fodder shrubs of arid lands. In: Pessarakli P ed. Handbook of Plant and Crop Stress. Marcel Dekker Inc., New York. 497-503. |
[25] |
Meinzer FC, Clearwater MJ, Goldstein G (2001). Water transport in trees: current perspectives, new insights and some controversies. Environmental and Experimental Botany, 45, 239-262.
DOI URL PMID |
[26] | Nie YP (聂云鹏), Chen HS (陈洪松), Wang KL (王克林) (2011). Seasonal variation of water sources for plants growing on continuous rock outcrops in limestone area of Southwest China. Chinese Journal of Plant Ecology (植物生态学报), 35, 1029-1037. (in Chinese with English abstract) |
[27] |
Phillips DL, Gregg JW (2003). Source partitioning using stable isotopes: coping with too many sources. Oecologia, 136, 261-269.
DOI URL PMID |
[28] | Pinay G, Fabre A, Vervier P, Gazelle F (1992). Control of C, N, P distribution in soils of riparian forests. Landscape Ecology, 6, 121-132. |
[29] | Ren W (任葳), Luo TB (罗廷彬), Wang BJ (王宝军), Su FC (苏逢春) (2004). Biological improvement of saline and alkaline land in Xinjiang. Agricultural Research in the Arid Areas (干旱地区农业研究), 22(4), 211-214. (in Chinese with English abstract) |
[30] | Schwinning S, Starr BI, Ehleringer JR (2005). Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part I: Effects on soil water and plant water uptake. Journal of Arid Environments, 60, 547-566. |
[31] | Shafroth PB, Stromberg JC, Patten DT (2000). Woody riparian vegetation response to different alluvial water table regimes. Western North American Naturalist, 60, 66-76. |
[32] | Shan LS (单立山), Zhang XM (张希明), Chai ZP (柴仲平), Wei J (魏疆), Yan HL (闫海龙), Xu H (许浩) (2007). Response of the distribution of roots of Tamarix ramosissima seedlings to irrigation with different volumes. Arid Zone Research (干旱区研究), 24, 213-218. (in Chinese with English abstract) |
[33] | Simonneau T, Habib R (1994). Water uptake regulation in peach trees with split-root systems. Plant, Cell & Environment, 17, 379-388. |
[34] | Sperry JS, Hacke UG (2002). Desert shrub water relations with respect to soil characteristics and plant functional type. Functional Ecology, 16, 367-378. |
[35] | Tang KL, Feng XH (2001). The effect of soil hydrology on the oxygen and hydrogen isotopic compositions of plants’ source water. Earth and Planetary Science Letters, 185, 355-367. |
[36] | Wang HJ (王恒俊), Li SC (李仕成), Zhang SG (张淑光), Lü HM (吕惠民), Xie YS (谢永生) (1989). On the division of land renovation and the major measures in Ningxia Autonomous Region. Acta Conservations Soil et Aquae Sinica (水土保持学报), 3, 60-74. (in Chinese with English abstract) |
[37] | Wang YK (王玉魁), Yan YX (闫艳霞), Ci LJ (慈龙骏), Wang BP (王保平), Cui LJ (崔令军), Yang CW (杨超伟) (2007). Anatomical structure and C4 photosynthetic characteristics of seven Atriplex species. Scientia Silvae Sinicae (林业科学), 43(A01), 72-76. |
[38] | Xu GQ (徐贵青), Li Y (李彦) (2009). Roots distribution of three desert shrubs and their response to precipitation under co-occurring conditions. Acta Ecologica Sinica (生态学报), 29, 130-137. |
[39] | Xu H (许皓), Li Y (李彦) (2005). Water use strategies and corresponding leaf physiological performance of three desert shrubs. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 25, 1309-1316. (in Chinese with English abstract) |
[40] | Zhang LB (张立宾), Song RR (宋日荣), Wu X (吴霞) (2008). Salt tolerance capability of Tamarix chinensis and the effects on the improvement of coastal saline soil. Journal of Anhui Agricultural Sciences (安徽农业科学), 36, 5424-5426. (in Chinese with English abstract) |
[41] | Zhang YH (张永宏) (2005). Desalination effects of salttolerant plants growing in alkali-saline soil in Ningxia. Gansu Agricultural Science and Technology (甘肃农业科技), (3), 48-49. (in Chinese with English abstract) |
[42] | Zhao KF (赵可夫), Fan H (范海), Jiang XY (江行玉), Song J (宋杰) (2002). Improvement and utilization of saline soil by planting halophytes. Chinese Journal of Applied and Environmental Biology (应用与环境生物学报), 8, 31-35. (in Chinese with English abstract) |
[43] | Zhou YD (周雅聃), Chen SP (陈世苹), Song WM (宋维民), Lu Q (卢琦), Lin GH (林光辉) (2011). Water-use strategies of two desert plants along a precipitation gradient in northwestern China. Chinese Journal of Plant Ecology (植物生态学报), 35, 789-800. (in Chinese with English abstract) |
[1] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[2] | 雷自然, 贾国栋, 余新晓, 刘子赫. 植物水分来源稳定氢氧同位素偏移研究进展[J]. 植物生态学报, 2023, 47(1): 25-40. |
[3] | 祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[4] | 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健. 森林与灌丛的灌木性状揭示不同的生活策略[J]. 植物生态学报, 2020, 44(7): 715-729. |
[5] | 敬洪霞,孙宁骁,Muhammad UMAIR,刘春江,杜红梅. 滇南喀斯特地区不同季节土壤和灌木叶片化学计量特征及对水分添加的响应[J]. 植物生态学报, 2020, 44(1): 56-69. |
[6] | 陈旭, 刘洪凯, 赵春周, 王强, 王延平. 山东滨海盐碱地11个造林树种叶解剖特征对土壤条件的响应[J]. 植物生态学报, 2019, 43(8): 697-708. |
[7] | 薛晶月, 王丽华, 谢雨, 高景, 贺俊东, 吴彦. 西南地区草地群落灌木植物盖度对生态系统碳库的影响[J]. 植物生态学报, 2019, 43(4): 365-373. |
[8] | 杨文高, 字洪标, 陈科宇, 阿的鲁骥, 胡雷, 王鑫, 王根绪, 王长庭. 青海森林生态系统中灌木层和土壤生态化学计量特征[J]. 植物生态学报, 2019, 43(4): 352-364. |
[9] | 宁志英, 李玉霖, 杨红玲, 张子谦. 科尔沁沙地优势固沙灌木叶片氮磷化学计量内稳性[J]. 植物生态学报, 2019, 43(1): 46-54. |
[10] | 高趁光, 乔鲜果, 王孜, 陆帅志, 侯东杰, 刘长成, 赵利清, 郭柯. 中国百里香草原的分布、群落特征和分类[J]. 植物生态学报, 2018, 42(9): 971-976. |
[11] | 莫雪丽, 戴晓琴, 王辉民, 付晓莉, 寇亮. 中亚热带典型人工林常见乔灌木根际效应——以江西泰和千烟洲为例[J]. 植物生态学报, 2018, 42(7): 723-733. |
[12] | 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰. 中亚热带植被恢复对土壤有机碳含量、碳密度的影响[J]. 植物生态学报, 2018, 42(5): 595-608. |
[13] | 张静, 刘耘华, 盛建东, 柴强, 李瑞霞, 赵丹. 新疆北部草地典型灌木的碳氮特征[J]. 植物生态学报, 2018, 42(3): 307-316. |
[14] | 王亚林, 龚容, 吴凤敏, 范文武. 2001-2013年中国灌木生态系统净初级生产力的时空变化特征及其对气候变化的响应[J]. 植物生态学报, 2017, 41(9): 925-937. |
[15] | 罗永开, 方精云, 胡会峰. 山西芦芽山14种常见灌木生物量模型及生物量分配[J]. 植物生态学报, 2017, 41(1): 115-125. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19