植物生态学报 ›› 2017, Vol. 41 ›› Issue (1): 115-125.DOI: 10.17521/cjpe.2016.0131
所属专题: 中国灌丛生态系统碳储量的研究
收稿日期:
2016-04-11
接受日期:
2016-07-23
出版日期:
2017-01-10
发布日期:
2017-01-23
通讯作者:
胡会峰
作者简介:
* 通信作者Author for correspondence (E-mail:基金资助:
Yong-Kai LUO1,2, Jing-Yun FANG1, Hui-Feng HU1,*()
Received:
2016-04-11
Accepted:
2016-07-23
Online:
2017-01-10
Published:
2017-01-23
Contact:
Hui-Feng HU
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
灌木生物量模型是估算灌木生物量的重要方法, 而灌木生物量在各器官间的分配是其适应周围环境的重要体现。基于对山西芦芽山地区14种常见灌木的各器官(根、茎和叶)、地上和总生物量, 以及基径、树高、冠幅的测定, 建立了各器官、地上及总生物量的最优估算模型, 探究了各器官生物量与总生物量(如叶质比、茎质比及根质比)及地上-地下生物量(根冠比)的关系。结果表明: (1)总体而言, 幂函数和线性函数对这些灌木生物量的估测效果较好。(2)生长低矮、分枝数多的灌木种采用冠幅面积估测生物量效果较好; 生长直立或分枝数少的灌木种采用总基径的平方与茎干高度乘积估测生物量效果较好; 其他介于两者之间的灌木种采用冠幅体积估测生物量效果较好。(3) 14种灌木的平均根冠比是0.61, 叶质比0.17, 茎质比0.48, 根质比0.35; 此外, 带刺灌木种除叶质比显著大于不带刺灌木种外, 茎质比、根质比和根冠比都显著小于不带刺灌木种。
罗永开, 方精云, 胡会峰. 山西芦芽山14种常见灌木生物量模型及生物量分配. 植物生态学报, 2017, 41(1): 115-125. DOI: 10.17521/cjpe.2016.0131
Yong-Kai LUO, Jing-Yun FANG, Hui-Feng HU. Biomass estimation models and allocation patterns of 14 shrub species in Mountain Luya, Shanxi, China. Chinese Journal of Plant Ecology, 2017, 41(1): 115-125. DOI: 10.17521/cjpe.2016.0131
物种 Species | 经度 Longitude (E) | 纬度 Latitude (N) | 海拔 Elevation (m) | 科 Family | 属 Genus | 是否带刺 Thorn |
---|---|---|---|---|---|---|
沙棘 Hippophae rhamnoides | 112.01° | 38.68° | 1 499.8 | 胡颓子科 Elaeagnaceae | 沙棘属 Hippophae | 是 Yes |
三裂绣线菊 Spiraea trilobata | 111.99° | 38.69° | 1 535.6 | 蔷薇科 Rosaceae | 绣线菊属 Spiraea | 否 No |
黄刺玫 Rosa xanthina | 111.99° | 38.69° | 1 535.6 | 蔷薇科 Rosaceae | 蔷薇属 Rosa | 是 Yes |
虎榛子 Ostryopsis davidiana | 111.99° | 38.69° | 1 535.6 | 桦木科 Betulaceae | 虎榛子属 Ostryopsis | 否 No |
榛 Corylus heterophylla | 111.99° | 38.69° | 1 535.6 | 桦木科 Betulaceae | 榛属 Corylus | 否 No |
土庄绣线菊 Spiraea pubescens | 111.98° | 38.72° | 1 659.9 | 蔷薇科 Rosaceae | 绣线菊属 Spiraea | 否 No |
金花忍冬 Lonicera chrysantha | 111.92° | 38.65° | 1 778.4 | 忍冬科 Caprifoliaceae | 忍冬属 Lonicera | 否 No |
蒙古荚蒾 Viburnum mongolicum | 111.92° | 38.65° | 1 780.0 | 忍冬科 Caprifoliaceae | 荚迷属 Viburnum | 否 No |
唐古特忍冬 Lonicera tangutica | 111.92° | 38.65° | 1 780.0 | 忍冬科 Caprifoliaceae | 忍冬属 Lonicera | 否 No |
复盆子 Rubus idaeus | 111.92° | 38.65° | 1 780.0 | 蔷薇科 Rosaceae | 悬钩子属 Rubus | 是 Yes |
银露梅 Potentilla glabra | 111.96° | 38.72° | 1 812.2 | 蔷薇科 Rosaceae | 委陵菜属 Potentilla | 否 No |
山刺玫 Rosa davurica | 111.95° | 38.71° | 1 874.3 | 蔷薇科 Rosaceae | 蔷薇属 Rosa | 是 Yes |
刺果茶藨子 Ribes burejense | 111.95° | 38.71° | 1 891.1 | 虎耳草科 Saxifragaceae | 茶藨子属 Ribes | 是 Yes |
鬼箭锦鸡儿 Caragana jubata | 111.86° | 38.73° | 2 602.2 | 豆科 Leguminosae | 锦鸡儿属 Caragana | 是 Yes |
表1 芦芽山14种灌木调查基本信息表
Table 1 The basic information of 14 shrub species in Mountain Luya
物种 Species | 经度 Longitude (E) | 纬度 Latitude (N) | 海拔 Elevation (m) | 科 Family | 属 Genus | 是否带刺 Thorn |
---|---|---|---|---|---|---|
沙棘 Hippophae rhamnoides | 112.01° | 38.68° | 1 499.8 | 胡颓子科 Elaeagnaceae | 沙棘属 Hippophae | 是 Yes |
三裂绣线菊 Spiraea trilobata | 111.99° | 38.69° | 1 535.6 | 蔷薇科 Rosaceae | 绣线菊属 Spiraea | 否 No |
黄刺玫 Rosa xanthina | 111.99° | 38.69° | 1 535.6 | 蔷薇科 Rosaceae | 蔷薇属 Rosa | 是 Yes |
虎榛子 Ostryopsis davidiana | 111.99° | 38.69° | 1 535.6 | 桦木科 Betulaceae | 虎榛子属 Ostryopsis | 否 No |
榛 Corylus heterophylla | 111.99° | 38.69° | 1 535.6 | 桦木科 Betulaceae | 榛属 Corylus | 否 No |
土庄绣线菊 Spiraea pubescens | 111.98° | 38.72° | 1 659.9 | 蔷薇科 Rosaceae | 绣线菊属 Spiraea | 否 No |
金花忍冬 Lonicera chrysantha | 111.92° | 38.65° | 1 778.4 | 忍冬科 Caprifoliaceae | 忍冬属 Lonicera | 否 No |
蒙古荚蒾 Viburnum mongolicum | 111.92° | 38.65° | 1 780.0 | 忍冬科 Caprifoliaceae | 荚迷属 Viburnum | 否 No |
唐古特忍冬 Lonicera tangutica | 111.92° | 38.65° | 1 780.0 | 忍冬科 Caprifoliaceae | 忍冬属 Lonicera | 否 No |
复盆子 Rubus idaeus | 111.92° | 38.65° | 1 780.0 | 蔷薇科 Rosaceae | 悬钩子属 Rubus | 是 Yes |
银露梅 Potentilla glabra | 111.96° | 38.72° | 1 812.2 | 蔷薇科 Rosaceae | 委陵菜属 Potentilla | 否 No |
山刺玫 Rosa davurica | 111.95° | 38.71° | 1 874.3 | 蔷薇科 Rosaceae | 蔷薇属 Rosa | 是 Yes |
刺果茶藨子 Ribes burejense | 111.95° | 38.71° | 1 891.1 | 虎耳草科 Saxifragaceae | 茶藨子属 Ribes | 是 Yes |
鬼箭锦鸡儿 Caragana jubata | 111.86° | 38.73° | 2 602.2 | 豆科 Leguminosae | 锦鸡儿属 Caragana | 是 Yes |
物种名 Species | 最佳方程 Best model | 最佳变量 Best variable | 参数a Parameter variable a | 参数b Parameter variable b | 平均预估误差Mean prediction error (MPE) (%) | 估计值的标准误差 Standard error of estimate (SEE) | R2 | p |
---|---|---|---|---|---|---|---|---|
沙棘 Hippophae rhamnoides | WTotal = aDt2H + b | Dt2H | 0.002 0 | 52.34 | 15.48 | 94.78 | 0.91 | <0.001 |
WAboveground = aDt2H + b | Dt2H | 0.002 0 | 40.77 | 17.42 | 85.18 | 0.90 | <0.001 | |
WRoot = aDt2H + b | Dt2H | 0.000 4 | 11.58 | 12.24 | 15.12 | 0.93 | <0.001 | |
WStem = aDt2H + b | Dt2H | 0.001 0 | 30.06 | 18.10 | 69.05 | 0.89 | <0.001 | |
WLeaf = aDt2H + b | Dt2H | 0.000 4 | 10.71 | 17.27 | 18.55 | 0.88 | <0.001 | |
三裂绣线菊 Spiraea trilobata | WTotal = aVb | V | 0.049 0 | 0.66 | 0.40 | 0.83 | 0.45 | <0.001 |
WAboveground = aVb | V | 0.022 0 | 0.69 | 0.64 | 0.85 | 0.46 | <0.001 | |
WRoot = aVb | V | 0.030 0 | 0.60 | 1.17 | 0.86 | 0.39 | <0.001 | |
WStem = aVb | V | 0.012 0 | 0.72 | 0.95 | 0.96 | 0.42 | <0.001 | |
WLeaf = aVb | V | 0.005 0 | 0.70 | 2.57 | 0.85 | 0.46 | <0.001 | |
黄刺玫 Rosa xanthina | WTotal = aVb | V | 0.005 0 | 0.88 | 0.07 | 0.34 | 0.90 | <0.001 |
WAboveground = aVb | V | 0.003 0 | 0.88 | 0.11 | 0.32 | 0.93 | <0.001 | |
WRoot = aVb | V | 0.005 0 | 0.77 | 0.29 | 0.50 | 0.80 | <0.001 | |
WStem= aVb | V | 0.002 0 | 0.89 | 0.16 | 0.35 | 0.92 | <0.001 | |
WLeaf = aVb | V | 0.001 0 | 0.86 | 0.40 | 0.33 | 0.92 | <0.001 | |
虎榛子 Ostryopsis davidiana | WTotal = aV + b | V | 0.001 0 | 9.28 | 13.66 | 29.28 | 0.90 | <0.001 |
WAboveground = aV + b | V | 0.000 8 | 6.25 | 12.87 | 19.43 | 0.91 | <0.001 | |
WRoot = aV + b | V | 0.000 2 | 3.03 | 16.66 | 10.56 | 0.86 | <0.001 | |
WStem = aV + b | V | 0.000 6 | 2.93 | 16.70 | 17.86 | 0.87 | <0.001 | |
WLeaf = aV + b | V | 0.000 2 | 3.32 | 9.14 | 4.03 | 0.94 | <0.001 | |
榛 Corylus heterophylla | WTotal = a(Dt2H) b | Dt2H | 0.145 0 | 0.64 | 0.10 | 0.32 | 0.86 | <0.001 |
WAboveground = aVb | V | 0.000 1 | 1.15 | 0.17 | 0.34 | 0.85 | <0.001 | |
WRoot = a(Dt2H) b | Dt2H | 0.032 0 | 0.68 | 0.30 | 0.34 | 0.86 | <0.001 | |
WStem = a(Dt2H) b | Dt2H | 0.031 0 | 0.71 | 0.28 | 0.40 | 0.82 | <0.001 | |
WLeaf = aVb | V | 0.000 9 | 0.90 | 0.48 | 0.30 | 0.81 | <0.001 | |
土庄绣线菊 Spiraea pubescens | WTotal = aV + b | V | 0.001 0 | 18.90 | 13.81 | 38.03 | 0.89 | <0.001 |
WAboveground = aV + b | V | 0.002 0 | 8.02 | 12.84 | 22.11 | 0.91 | <0.001 | |
WRoot = aVb | V | 0.020 0 | 0.74 | 0.44 | 0.45 | 0.78 | <0.001 | |
WStem = aV + b | V | 0.002 0 | 6.18 | 12.95 | 20.92 | 0.92 | <0.001 | |
WLeaf = a(Dt2H) b | Dt2H | 0.011 0 | 0.53 | 4.33 | 0.46 | 0.71 | <0.001 | |
金花忍冬 Lonicera chrysantha | WTotal = a(Dt2H) b | Dt2H | 0.365 0 | 0.56 | 0.08 | 0.42 | 0.82 | <0.001 |
WAboveground = a(Dt2H) b | Dt2H | 0.233 0 | 0.53 | 0.16 | 0.40 | 0.83 | <0.001 | |
WRoot = aDt2H + b | Dt2H | 0.000 5 | 43.22 | 25.05 | 67.14 | 0.76 | <0.001 | |
WStem = a(Dt2H)b | Dt2H | 0.136 0 | 0.56 | 0.20 | 0.41 | 0.83 | <0.001 | |
WLeaf = aDt2H + b | Dt2H | 0.000 1 | 9.08 | 18.23 | 8.19 | 0.78 | <0.001 | |
蒙古荚蒾 Viburnum mongolicum | WTotal = aVb | V | 0.006 0 | 0.88 | 0.12 | 0.32 | 0.92 | <0.001 |
WAboveground = aVb | V | 0.003 0 | 0.90 | 0.21 | 0.34 | 0.92 | <0.001 | |
WRoot = aVb | V | 0.002 0 | 0.84 | 0.70 | 0.66 | 0.72 | <0.001 | |
WStem= aVb | V | 0.001 0 | 0.91 | 0.34 | 0.47 | 0.91 | <0.001 | |
WLeaf = aVb | V | 0.000 3 | 0.89 | 1.94 | 0.50 | 0.85 | <0.001 | |
唐古特忍冬 Lonicera tangutica | WTotal = a(Dt2H) b | Dt2H | 0.200 0 | 0.54 | 0.30 | 0.34 | 0.80 | <0.001 |
WAboveground = aVb | V | 0.007 0 | 0.80 | 0.49 | 0.33 | 0.84 | <0.001 | |
WRoot= aDt2H + b | Dt2H | 0.000 4 | 6.22 | 11.48 | 5.13 | 0.73 | <0.001 | |
物种名 Species | 最佳方程 Best model | 最佳变量 Best variable | 参数a Parameter variable a | 参数b Parameter variable b | 平均预估误差Mean prediction error (MPE) (%) | 估计值的标准误差Standard error of estimate (SEE) | R2 | p |
唐古特忍冬 Lonicera tangutica | WStem = a(Dt2H) b | Dt2H | 0.063 0 | 0.59 | 0.74 | 0.41 | 0.77 | <0.001 |
WLeaf = aVb | V | 0.005 0 | 0.68 | 2.30 | 0.29 | 0.81 | <0.001 | |
复盆子 Rubus idaeus | WTotal = aV + b | V | 0.000 6 | 12.52 | 10.18 | 6.76 | 0.84 | <0.001 |
WAboveground = aV + b | V | 0.000 4 | 10.71 | 10.63 | 5.59 | 0.80 | <0.001 | |
WRoot = aV + b | V | 0.000 0 | 1.81 | 13.92 | 1.92 | 0.83 | <0.001 | |
WStem = aV + b | V | 0.000 2 | 4.59 | 14.17 | 3.43 | 0.73 | <0.001 | |
WLeaf = alnV + b | V | 14.166 0 | -69.23 | 11.41 | 3.24 | 0.77 | <0.001 | |
银露梅 Potentilla glabra | WTotal = aA + b | A | 0.131 0 | -6.74 | 19.50 | 42.11 | 0.82 | <0.001 |
WAboveground = aA + b | A | 0.077 0 | -2.81 | 19.75 | 25.62 | 0.81 | <0.001 | |
WRoot = aA + b | A | 0.054 0 | -3.93 | 22.54 | 19.43 | 0.78 | <0.001 | |
WStem = aA + b | A | 0.068 0 | -3.26 | 20.73 | 23.16 | 0.80 | <0.001 | |
WLeaf = aA + b | A | 0.010 0 | 0.44 | 20.89 | 3.76 | 0.74 | <0.001 | |
山刺玫 Rosa davurica | WTotal = a(Dt2H) b | Dt2H | 0.061 0 | 0.69 | 0.11 | 0.29 | 0.88 | <0.001 |
WAboveground = a(Dt2H) b | Dt2H | 0.042 0 | 0.67 | 0.22 | 0.35 | 0.83 | <0.001 | |
WRoot = a(Dt2H) b | Dt2H | 0.023 0 | 0.70 | 0.37 | 0.40 | 0.80 | <0.001 | |
WStem = a(Dt2H) b | Dt2H | 0.025 0 | 0.70 | 0.27 | 0.36 | 0.84 | <0.001 | |
WLeaf = aA+b | A | 0.020 0 | -0.87 | 7.35 | 1.94 | 0.95 | <0.001 | |
刺果茶藨子 Ribes burejense | WTotal = aVb | V | 0.550 0 | 0.41 | 0.36 | 0.43 | 0.64 | <0.001 |
WAboveground = aV + b | V | 0.000 4 | 12.39 | 16.40 | 12.07 | 0.66 | <0.001 | |
WRoot = aAb | A | 0.938 0 | 0.46 | 1.39 | 0.64 | 0.47 | <0.001 | |
WStem = aV + b | V | 0.000 2 | 9.22 | 15.79 | 9.06 | 0.70 | <0.001 | |
WLeaf = aVb | V | 0.016 0 | 0.55 | 3.89 | 0.63 | 0.60 | <0.001 | |
鬼箭锦鸡儿 Caragana jubata | WTotal = aA + b | A | 0.268 0 | -10.27 | 12.92 | 48.69 | 0.93 | <0.001 |
WAboveground = aA + b | A | 0.159 0 | -3.65 | 16.51 | 38.04 | 0.88 | <0.001 | |
WRoot = aA + b | A | 0.110 0 | -6.63 | 11.13 | 16.30 | 0.95 | <0.001 | |
WStem = aA + b | A | 0.120 0 | -2.83 | 16.74 | 29.02 | 0.88 | <0.001 | |
WLeaf = aA + b | A | 0.040 0 | -0.82 | 21.53 | 12.27 | 0.81 | <0.001 |
表2 14种灌木总生物量(WTotal)、地上生物量(WAboveground)、根生物量(WRoot)、茎生物量(WStem)、叶生物量(WLeaf)的最佳拟合模型(n = 30)
Table 2 The best estimation models for total biomass (WTotal), aboveground biomass (WAboveground), root biomass (WRoot) , stem biomass (WStem), and leaf biomass (WLeaf) of 14 shrub species (n = 30)
物种名 Species | 最佳方程 Best model | 最佳变量 Best variable | 参数a Parameter variable a | 参数b Parameter variable b | 平均预估误差Mean prediction error (MPE) (%) | 估计值的标准误差 Standard error of estimate (SEE) | R2 | p |
---|---|---|---|---|---|---|---|---|
沙棘 Hippophae rhamnoides | WTotal = aDt2H + b | Dt2H | 0.002 0 | 52.34 | 15.48 | 94.78 | 0.91 | <0.001 |
WAboveground = aDt2H + b | Dt2H | 0.002 0 | 40.77 | 17.42 | 85.18 | 0.90 | <0.001 | |
WRoot = aDt2H + b | Dt2H | 0.000 4 | 11.58 | 12.24 | 15.12 | 0.93 | <0.001 | |
WStem = aDt2H + b | Dt2H | 0.001 0 | 30.06 | 18.10 | 69.05 | 0.89 | <0.001 | |
WLeaf = aDt2H + b | Dt2H | 0.000 4 | 10.71 | 17.27 | 18.55 | 0.88 | <0.001 | |
三裂绣线菊 Spiraea trilobata | WTotal = aVb | V | 0.049 0 | 0.66 | 0.40 | 0.83 | 0.45 | <0.001 |
WAboveground = aVb | V | 0.022 0 | 0.69 | 0.64 | 0.85 | 0.46 | <0.001 | |
WRoot = aVb | V | 0.030 0 | 0.60 | 1.17 | 0.86 | 0.39 | <0.001 | |
WStem = aVb | V | 0.012 0 | 0.72 | 0.95 | 0.96 | 0.42 | <0.001 | |
WLeaf = aVb | V | 0.005 0 | 0.70 | 2.57 | 0.85 | 0.46 | <0.001 | |
黄刺玫 Rosa xanthina | WTotal = aVb | V | 0.005 0 | 0.88 | 0.07 | 0.34 | 0.90 | <0.001 |
WAboveground = aVb | V | 0.003 0 | 0.88 | 0.11 | 0.32 | 0.93 | <0.001 | |
WRoot = aVb | V | 0.005 0 | 0.77 | 0.29 | 0.50 | 0.80 | <0.001 | |
WStem= aVb | V | 0.002 0 | 0.89 | 0.16 | 0.35 | 0.92 | <0.001 | |
WLeaf = aVb | V | 0.001 0 | 0.86 | 0.40 | 0.33 | 0.92 | <0.001 | |
虎榛子 Ostryopsis davidiana | WTotal = aV + b | V | 0.001 0 | 9.28 | 13.66 | 29.28 | 0.90 | <0.001 |
WAboveground = aV + b | V | 0.000 8 | 6.25 | 12.87 | 19.43 | 0.91 | <0.001 | |
WRoot = aV + b | V | 0.000 2 | 3.03 | 16.66 | 10.56 | 0.86 | <0.001 | |
WStem = aV + b | V | 0.000 6 | 2.93 | 16.70 | 17.86 | 0.87 | <0.001 | |
WLeaf = aV + b | V | 0.000 2 | 3.32 | 9.14 | 4.03 | 0.94 | <0.001 | |
榛 Corylus heterophylla | WTotal = a(Dt2H) b | Dt2H | 0.145 0 | 0.64 | 0.10 | 0.32 | 0.86 | <0.001 |
WAboveground = aVb | V | 0.000 1 | 1.15 | 0.17 | 0.34 | 0.85 | <0.001 | |
WRoot = a(Dt2H) b | Dt2H | 0.032 0 | 0.68 | 0.30 | 0.34 | 0.86 | <0.001 | |
WStem = a(Dt2H) b | Dt2H | 0.031 0 | 0.71 | 0.28 | 0.40 | 0.82 | <0.001 | |
WLeaf = aVb | V | 0.000 9 | 0.90 | 0.48 | 0.30 | 0.81 | <0.001 | |
土庄绣线菊 Spiraea pubescens | WTotal = aV + b | V | 0.001 0 | 18.90 | 13.81 | 38.03 | 0.89 | <0.001 |
WAboveground = aV + b | V | 0.002 0 | 8.02 | 12.84 | 22.11 | 0.91 | <0.001 | |
WRoot = aVb | V | 0.020 0 | 0.74 | 0.44 | 0.45 | 0.78 | <0.001 | |
WStem = aV + b | V | 0.002 0 | 6.18 | 12.95 | 20.92 | 0.92 | <0.001 | |
WLeaf = a(Dt2H) b | Dt2H | 0.011 0 | 0.53 | 4.33 | 0.46 | 0.71 | <0.001 | |
金花忍冬 Lonicera chrysantha | WTotal = a(Dt2H) b | Dt2H | 0.365 0 | 0.56 | 0.08 | 0.42 | 0.82 | <0.001 |
WAboveground = a(Dt2H) b | Dt2H | 0.233 0 | 0.53 | 0.16 | 0.40 | 0.83 | <0.001 | |
WRoot = aDt2H + b | Dt2H | 0.000 5 | 43.22 | 25.05 | 67.14 | 0.76 | <0.001 | |
WStem = a(Dt2H)b | Dt2H | 0.136 0 | 0.56 | 0.20 | 0.41 | 0.83 | <0.001 | |
WLeaf = aDt2H + b | Dt2H | 0.000 1 | 9.08 | 18.23 | 8.19 | 0.78 | <0.001 | |
蒙古荚蒾 Viburnum mongolicum | WTotal = aVb | V | 0.006 0 | 0.88 | 0.12 | 0.32 | 0.92 | <0.001 |
WAboveground = aVb | V | 0.003 0 | 0.90 | 0.21 | 0.34 | 0.92 | <0.001 | |
WRoot = aVb | V | 0.002 0 | 0.84 | 0.70 | 0.66 | 0.72 | <0.001 | |
WStem= aVb | V | 0.001 0 | 0.91 | 0.34 | 0.47 | 0.91 | <0.001 | |
WLeaf = aVb | V | 0.000 3 | 0.89 | 1.94 | 0.50 | 0.85 | <0.001 | |
唐古特忍冬 Lonicera tangutica | WTotal = a(Dt2H) b | Dt2H | 0.200 0 | 0.54 | 0.30 | 0.34 | 0.80 | <0.001 |
WAboveground = aVb | V | 0.007 0 | 0.80 | 0.49 | 0.33 | 0.84 | <0.001 | |
WRoot= aDt2H + b | Dt2H | 0.000 4 | 6.22 | 11.48 | 5.13 | 0.73 | <0.001 | |
物种名 Species | 最佳方程 Best model | 最佳变量 Best variable | 参数a Parameter variable a | 参数b Parameter variable b | 平均预估误差Mean prediction error (MPE) (%) | 估计值的标准误差Standard error of estimate (SEE) | R2 | p |
唐古特忍冬 Lonicera tangutica | WStem = a(Dt2H) b | Dt2H | 0.063 0 | 0.59 | 0.74 | 0.41 | 0.77 | <0.001 |
WLeaf = aVb | V | 0.005 0 | 0.68 | 2.30 | 0.29 | 0.81 | <0.001 | |
复盆子 Rubus idaeus | WTotal = aV + b | V | 0.000 6 | 12.52 | 10.18 | 6.76 | 0.84 | <0.001 |
WAboveground = aV + b | V | 0.000 4 | 10.71 | 10.63 | 5.59 | 0.80 | <0.001 | |
WRoot = aV + b | V | 0.000 0 | 1.81 | 13.92 | 1.92 | 0.83 | <0.001 | |
WStem = aV + b | V | 0.000 2 | 4.59 | 14.17 | 3.43 | 0.73 | <0.001 | |
WLeaf = alnV + b | V | 14.166 0 | -69.23 | 11.41 | 3.24 | 0.77 | <0.001 | |
银露梅 Potentilla glabra | WTotal = aA + b | A | 0.131 0 | -6.74 | 19.50 | 42.11 | 0.82 | <0.001 |
WAboveground = aA + b | A | 0.077 0 | -2.81 | 19.75 | 25.62 | 0.81 | <0.001 | |
WRoot = aA + b | A | 0.054 0 | -3.93 | 22.54 | 19.43 | 0.78 | <0.001 | |
WStem = aA + b | A | 0.068 0 | -3.26 | 20.73 | 23.16 | 0.80 | <0.001 | |
WLeaf = aA + b | A | 0.010 0 | 0.44 | 20.89 | 3.76 | 0.74 | <0.001 | |
山刺玫 Rosa davurica | WTotal = a(Dt2H) b | Dt2H | 0.061 0 | 0.69 | 0.11 | 0.29 | 0.88 | <0.001 |
WAboveground = a(Dt2H) b | Dt2H | 0.042 0 | 0.67 | 0.22 | 0.35 | 0.83 | <0.001 | |
WRoot = a(Dt2H) b | Dt2H | 0.023 0 | 0.70 | 0.37 | 0.40 | 0.80 | <0.001 | |
WStem = a(Dt2H) b | Dt2H | 0.025 0 | 0.70 | 0.27 | 0.36 | 0.84 | <0.001 | |
WLeaf = aA+b | A | 0.020 0 | -0.87 | 7.35 | 1.94 | 0.95 | <0.001 | |
刺果茶藨子 Ribes burejense | WTotal = aVb | V | 0.550 0 | 0.41 | 0.36 | 0.43 | 0.64 | <0.001 |
WAboveground = aV + b | V | 0.000 4 | 12.39 | 16.40 | 12.07 | 0.66 | <0.001 | |
WRoot = aAb | A | 0.938 0 | 0.46 | 1.39 | 0.64 | 0.47 | <0.001 | |
WStem = aV + b | V | 0.000 2 | 9.22 | 15.79 | 9.06 | 0.70 | <0.001 | |
WLeaf = aVb | V | 0.016 0 | 0.55 | 3.89 | 0.63 | 0.60 | <0.001 | |
鬼箭锦鸡儿 Caragana jubata | WTotal = aA + b | A | 0.268 0 | -10.27 | 12.92 | 48.69 | 0.93 | <0.001 |
WAboveground = aA + b | A | 0.159 0 | -3.65 | 16.51 | 38.04 | 0.88 | <0.001 | |
WRoot = aA + b | A | 0.110 0 | -6.63 | 11.13 | 16.30 | 0.95 | <0.001 | |
WStem = aA + b | A | 0.120 0 | -2.83 | 16.74 | 29.02 | 0.88 | <0.001 | |
WLeaf = aA + b | A | 0.040 0 | -0.82 | 21.53 | 12.27 | 0.81 | <0.001 |
图1 芦芽山6种灌木总生物量最佳拟合模型。A, 刺玫。B, 蒙古荚蒾。C, 刺果茶藨子。D, 沙棘。E, 虎榛子。F, 鬼箭锦鸡儿。
Fig. 1 The best biomass estimation model of six shrub species in Mountain Luya. A, Rosa davurica. B, Viburnum mongolicum. C, Ribes burejense. D, Hippophae rhamnoides. E, Ostryopsis davidiana. F, Caragana jubata.
物种 Species | 根冠比 R/S | 叶质比 LMF | 茎质比 SMF | 根质比 RMF | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
范围 Range | 平均值± 标准偏差 Mean ± SD | 中位值 Median | 范围 Range | 平均值± 标准偏差 Mean ± SD | 中位值 Median | 范围 Range | 平均值± 标准偏差 Mean ± SD | 中位值 Median | 范围 Range | 平均值± 标准偏差 Mean ± SD | 中位值 Median | ||||
沙棘 Hippophae rhamnoides | 0.06-0.59 | 0.31 ± 0.14 | 0.29 | 0.07-0.30 | 0.20 ± 0.06 | 0.20 | 0.39-0.79 | 0.57 ± 0.11 | 0.54 | 0.06-0.37 | 0.23 ± 0.08 | 0.22 | |||
三裂绣线菊 Spiraea trilobata | 0.32-1.24 | 0.57 ± 0.21 | 0.51 | 0.04-0.33 | 0.17 ± 0.09 | 0.15 | 0.25-0.67 | 0.48 ± 0.12 | 0.48 | 0.24-0.55 | 0.35 ± 0.07 | 0.34 | |||
黄刺玫 Rosa xanthina | 0.19-2.00 | 0.55 ± 0.34 | 0.45 | 0.09-0.29 | 0.19 ± 0.05 | 0.18 | 0.24-0.67 | 0.48 ± 0.09 | 0.47 | 0.16-0.67 | 0.33 ± 0.11 | 0.31 | |||
虎榛子 Ostryopsis davidiana | 0.16-0.97 | 0.42 ± 0.15 | 0.40 | 0.09-0.45 | 0.24 ± 0.08 | 0.23 | 0.35-0.58 | 0.47 ± 0.06 | 0.48 | 0.14-0.49 | 0.29 ± 0.07 | 0.29 | |||
榛 Corylus heterophylla | 0.28-1.24 | 0.53 ± 0.22 | 0.47 | 0.10-0.34 | 0.24 ± 0.07 | 0.23 | 0.26-0.56 | 0.43 ± 0.07 | 0.42 | 0.22-0.55 | 0.34 ± 0.08 | 0.32 | |||
土庄绣线菊 Spiraea pubescens | 0.45-1.42 | 0.72 ± 0.27 | 0.63 | 0.01-0.10 | 0.05 ± 0.03 | 0.05 | 0.37-0.67 | 0.54 ± 0.08 | 0.57 | 0.31-0.59 | 0.41 ± 0.08 | 0.39 | |||
金花忍冬 Lonicera chrysantha | 0.24-2.42 | 1.05 ± 0.54 | 0.98 | 0.05-0.26 | 0.10 ± 0.04 | 0.10 | 0.20-0.72 | 0.42 ± 0.13 | 0.39 | 0.19-0.71 | 0.48 ± 0.13 | 0.49 | |||
蒙古荚蒾 Viburnum mongolicum | 0.16-2.06 | 0.67 ± 0.45 | 0.54 | 0.04-0.23 | 0.10 ± 0.04 | 0.10 | 0.28-0.76 | 0.53 ± 0.11 | 0.54 | 0.14-0.67 | 0.37 ± 0.13 | 0.35 | |||
唐古特忍冬 Lonicera tangutica | 0.12-1.84 | 0.67 ± 0.38 | 0.54 | 0.06-0.24 | 0.13 ± 0.04 | 0.12 | 0.28-0.65 | 0.50 ± 0.10 | 0.52 | 0.11-0.65 | 0.37 ± 0.12 | 0.35 | |||
复盆子 Rubus idaeus | 0.11-0.54 | 0.26 ± 0.10 | 0.23 | 0.26-0.67 | 0.44 ± 0.10 | 0.43 | 0.17-0.61 | 0.36 ± 0.12 | 0.35 | 0.10-0.35 | 0.20 ± 0.06 | 0.19 | |||
银露梅 Potentilla glabra | 0.29-2.54 | 0.76 ± 0.46 | 0.64 | 0.04-0.21 | 0.11 ± 0.05 | 0.09 | 0.25-0.67 | 0.49 ± 0.11 | 0.51 | 0.22-0.72 | 0.41 ± 0.12 | 0.39 | |||
山刺玫 Rosa davurica | 0.36-1.29 | 0.71 ± 0.24 | 0.67 | 0.04-0.19 | 0.11 ± 0.04 | 0.10 | 0.37-0.62 | 0.49 ± 0.07 | 0.48 | 0.26-0.56 | 0.40 ± 0.08 | 0.4 | |||
刺果茶藨子 Ribes burejense | 0.27-1.89 | 0.69 ± 0.44 | 0.52 | 0.02-0.35 | 0.13 ± 0.07 | 0.11 | 0.24-0.67 | 0.49 ± 0.12 | 0.52 | 0.21-0.65 | 0.38 ± 0.13 | 0.34 | |||
鬼箭锦鸡儿 Caragana jubata | 0.16-1.54 | 0.60 ± 0.30 | 0.58 | 0.08-0.34 | 0.18 ± 0.07 | 0.17 | 0.26-0.68 | 0.47 ± 0.09 | 0.46 | 0.14-0.61 | 0.36 ± 0.10 | 0.37 | |||
整体 Total | 0.61 ± 0.38 | 0.17 ± 0.11 | 0.48 ± 0.11 | 0.35 ± 0.12 |
表3 14种灌木的根冠比、叶质比、茎质比及根质比的统计特征
Table 3 The descriptive statistics of root to shoot mass ratio (R/S), leaf to total mass ratio (LMF), stem to total mass ratio (SMF), and root to total mass ratio (RMF) of 14 shrub species
物种 Species | 根冠比 R/S | 叶质比 LMF | 茎质比 SMF | 根质比 RMF | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
范围 Range | 平均值± 标准偏差 Mean ± SD | 中位值 Median | 范围 Range | 平均值± 标准偏差 Mean ± SD | 中位值 Median | 范围 Range | 平均值± 标准偏差 Mean ± SD | 中位值 Median | 范围 Range | 平均值± 标准偏差 Mean ± SD | 中位值 Median | ||||
沙棘 Hippophae rhamnoides | 0.06-0.59 | 0.31 ± 0.14 | 0.29 | 0.07-0.30 | 0.20 ± 0.06 | 0.20 | 0.39-0.79 | 0.57 ± 0.11 | 0.54 | 0.06-0.37 | 0.23 ± 0.08 | 0.22 | |||
三裂绣线菊 Spiraea trilobata | 0.32-1.24 | 0.57 ± 0.21 | 0.51 | 0.04-0.33 | 0.17 ± 0.09 | 0.15 | 0.25-0.67 | 0.48 ± 0.12 | 0.48 | 0.24-0.55 | 0.35 ± 0.07 | 0.34 | |||
黄刺玫 Rosa xanthina | 0.19-2.00 | 0.55 ± 0.34 | 0.45 | 0.09-0.29 | 0.19 ± 0.05 | 0.18 | 0.24-0.67 | 0.48 ± 0.09 | 0.47 | 0.16-0.67 | 0.33 ± 0.11 | 0.31 | |||
虎榛子 Ostryopsis davidiana | 0.16-0.97 | 0.42 ± 0.15 | 0.40 | 0.09-0.45 | 0.24 ± 0.08 | 0.23 | 0.35-0.58 | 0.47 ± 0.06 | 0.48 | 0.14-0.49 | 0.29 ± 0.07 | 0.29 | |||
榛 Corylus heterophylla | 0.28-1.24 | 0.53 ± 0.22 | 0.47 | 0.10-0.34 | 0.24 ± 0.07 | 0.23 | 0.26-0.56 | 0.43 ± 0.07 | 0.42 | 0.22-0.55 | 0.34 ± 0.08 | 0.32 | |||
土庄绣线菊 Spiraea pubescens | 0.45-1.42 | 0.72 ± 0.27 | 0.63 | 0.01-0.10 | 0.05 ± 0.03 | 0.05 | 0.37-0.67 | 0.54 ± 0.08 | 0.57 | 0.31-0.59 | 0.41 ± 0.08 | 0.39 | |||
金花忍冬 Lonicera chrysantha | 0.24-2.42 | 1.05 ± 0.54 | 0.98 | 0.05-0.26 | 0.10 ± 0.04 | 0.10 | 0.20-0.72 | 0.42 ± 0.13 | 0.39 | 0.19-0.71 | 0.48 ± 0.13 | 0.49 | |||
蒙古荚蒾 Viburnum mongolicum | 0.16-2.06 | 0.67 ± 0.45 | 0.54 | 0.04-0.23 | 0.10 ± 0.04 | 0.10 | 0.28-0.76 | 0.53 ± 0.11 | 0.54 | 0.14-0.67 | 0.37 ± 0.13 | 0.35 | |||
唐古特忍冬 Lonicera tangutica | 0.12-1.84 | 0.67 ± 0.38 | 0.54 | 0.06-0.24 | 0.13 ± 0.04 | 0.12 | 0.28-0.65 | 0.50 ± 0.10 | 0.52 | 0.11-0.65 | 0.37 ± 0.12 | 0.35 | |||
复盆子 Rubus idaeus | 0.11-0.54 | 0.26 ± 0.10 | 0.23 | 0.26-0.67 | 0.44 ± 0.10 | 0.43 | 0.17-0.61 | 0.36 ± 0.12 | 0.35 | 0.10-0.35 | 0.20 ± 0.06 | 0.19 | |||
银露梅 Potentilla glabra | 0.29-2.54 | 0.76 ± 0.46 | 0.64 | 0.04-0.21 | 0.11 ± 0.05 | 0.09 | 0.25-0.67 | 0.49 ± 0.11 | 0.51 | 0.22-0.72 | 0.41 ± 0.12 | 0.39 | |||
山刺玫 Rosa davurica | 0.36-1.29 | 0.71 ± 0.24 | 0.67 | 0.04-0.19 | 0.11 ± 0.04 | 0.10 | 0.37-0.62 | 0.49 ± 0.07 | 0.48 | 0.26-0.56 | 0.40 ± 0.08 | 0.4 | |||
刺果茶藨子 Ribes burejense | 0.27-1.89 | 0.69 ± 0.44 | 0.52 | 0.02-0.35 | 0.13 ± 0.07 | 0.11 | 0.24-0.67 | 0.49 ± 0.12 | 0.52 | 0.21-0.65 | 0.38 ± 0.13 | 0.34 | |||
鬼箭锦鸡儿 Caragana jubata | 0.16-1.54 | 0.60 ± 0.30 | 0.58 | 0.08-0.34 | 0.18 ± 0.07 | 0.17 | 0.26-0.68 | 0.47 ± 0.09 | 0.46 | 0.14-0.61 | 0.36 ± 0.10 | 0.37 | |||
整体 Total | 0.61 ± 0.38 | 0.17 ± 0.11 | 0.48 ± 0.11 | 0.35 ± 0.12 |
图2 带刺与不带刺灌木之间叶质比(L/T)、茎质比(S/T)、根质比(R/T)、根冠比(R/S)的比较(平均值±标准误差)。用单因素方差分析(Tukey post hoc)检验不同类别之间的差异; 显著性差异(p < 0.05)用不同字母标记。
Fig. 2 Comparisons of leaf biomass fraction (L/T), stem biomass fraction (S/T), root biomass fraction (R/T), root to shoot mass ratio (R/S) between shrubs with and without thorn (mean ± SE). Differences between each group were tested using a one-way ANOVA with a Tukey post hoc test of significance; significance different at p < 0.05 was indicated by different letters.
[1] | Bloom AJ, Chapin FS, Mooney HA (1985). Resource limitation in plants: An economic analogy.Annual Review of Ecology and Systematics, 1, 363-392. |
[2] | Cai Z, Liu QJ, Ouyang QL (2006). Estimation model for biomass of shrubs in Qianyanzhou.Journal of Central South Forestry University, 26(3), 15-23. (in Chinese with English abstract)[蔡哲, 刘琪璟, 欧阳球林 (2006). 千烟洲实验区几种灌木生物量估算模型的研究. 中南林学院学报, 26(3), 15-23.] |
[3] | Cheng DL (2007). Plant Allometric Study of Biomass Allocation Pattern and Biomass Production Rates. PhD dissertation, Lanzhou University, Lanzhou. 40-42. (in Chinese with English abstract).[程栋梁 (2007). 植物生物量分配模式与生长速率的相关规律研究. 博士学位论文, 兰州大学, 兰州. 40-42.] |
[4] | Chen XL, Ma QY, Kang FF, Cao WQ, Zhang GH, Chen ZW (2002). Studies on biomass and productivity of typical shrubs in Taiyue Mountain, Shanxi Province.Forest Research, 15, 304-309. (in Chinese with English abstract)[陈遐林, 马钦彦, 康峰峰, 曹文强, 张国华, 陈宗伟 (2002). 山西太岳山典型灌木林生物量及生产力研究. 林业科学研究, 15, 304-309.] |
[5] | Enquist BJ, Niklas KJ (2002). Global allocation rules for patterns of biomass portioning in seed plants.Science, 295, 1517-1520. |
[6] | Fang JY, Liu GH, Zhu B, Wang XK, Liu SH (2006). Carbon cycling of three temperate forest ecosystems in Mountain Dongling, Beijing.Scientia Sinica Terrae, 36, 533-543. (in Chinese)[方精云, 刘国华, 朱彪, 王效科, 刘绍辉 (2006). 北京东灵山三种温带森林生态系统的碳循环. 中国科学(地球科学), 36, 533-543.] |
[7] | He M, Mi K (2009). Study on the common plants with thorns in Shandong Province.Journal of Anhui Agricultural Sciences, 37, 1703-1705. (in Chinese with English abstract)[贺猛, 米楷 (2009). 山东省常见带刺植物研究. 安徽农业科学, 37, 1703-1705.] |
[8] | Hilbert DW, Canadell J (1995). Biomass partitioning and resource allocation of plants from mediterranean-type ecosystems: Possible responses to elevated atmospheric CO2. In: José MM, Walter CO eds. Global Change and Mediterranean-Type Ecosystems. Springer, Berlin. 76-101. |
[9] | Jiang FQ, Lu FY (1982). The model of aboveground biomass of Caragana microphylla brush. Acta Ecologica Sinica, 2, 103-110. (in Chinese with English abstract)[姜凤歧, 卢凤勇 (1982). 小叶锦鸡儿灌丛地上生物量的预测模式. 生态学报, 2, 103-110.] |
[10] | Lei L (2012). Distribution Character of Alpine Shrubs Biomass Along an Elevation Gradient in Qilian Mountains. Master degree dissertation, Gansu Agriculture University, Lanzhou. 12-21. (in Chinese with English abstract)[雷蕾 (2012). 祁连山高山灌丛生物量沿海拔梯度分配特征研究. 硕士学位论文, 甘肃农业大学, 兰州. 12-21.] |
[11] | Li XD, Zhang CP, Fu H (2012). Seasonal dynamics of root-shoot ratio and the effect of factors in grazed and ungrazed grasslands of the Loess Plateau.Acta Prataculture Sinica, 21, 307-312. (in Chinese with English abstract)[李旭东, 张春平, 傅华 (2012). 黄土高原典型草原地根冠比的季节动态及其影响因素. 草业学报, 21, 307-312.] |
[12] | Lin W, Li JS, Zheng BF, Guo JM, Hu LL (2010). Models for estimating biomass of twelve shrub species in Jinggang Mountain Nature Reserve.Journal of Wuhan Botanical Research, 28, 725-729. (in Chinese with English abstract)[林伟, 李俊生, 郑博福, 郭建明, 胡理乐 (2010). 井冈山自然保护区12种常见灌木生物量的估测模型. 武汉植物学研究, 28, 725-729.] |
[13] | Liu CC, Wei YF, Liu YG, Guo K (2009). Biomass of canopy and shrub layers of karst forests in Puding, Guizhou, China.Chinese Journal of Plant Ecology, 33, 698-705. (in Chinese with English abstract)[刘长成, 魏雅芬, 刘玉国, 郭柯 (2009). 贵州普定喀斯特次生林乔灌层地上生物量. 植物生态学报, 33, 698-705.] |
[14] | Liu XL, Liu SR, Su YM, Cai XH, Ma QY (2006). Aboveground biomass of Quercus aquifolioides shrub community and its responses to altitudinal gradients in Balangshan Mountain, Sichuan Province. Scientia Silvae Sinicae, 42(2), 1-7. (in Chinese with English abstract)[刘兴良, 刘世荣, 宿以明, 蔡小虎, 马钦彦 (2006). 巴郎山川滇高山栎灌丛地上生物量及其对海拔梯度的响应. 林业科学, 42(2), 1-7.] |
[15] | Lu ZL, Gong XS (2009). Progress on the research of shrub biomass estimation.Forest Inventory and Planning, 34(4), 37-45. (in Chinese with English abstract)[卢振龙, 龚孝生 (2009). 灌木生物量测定的研究进展. 林业调查规划, 34(4), 37-45.] |
[16] | Pooter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control.New Phytologist, 193, 30-50. |
[17] | Salis SM, Assis MA, Mattos PP, Pião ACS (2006). Estimating the aboveground biomass and wood volume of savanna woodlands in Brazil’s Pantanal wetlands based on allometric correlations.Forest Ecology and Management, 228, 61-68. |
[18] | Whittaker RH (1982). Net production relations of shrubs in the Great Smoky Mountains.Ecology, 43, 357-377. |
[19] | Yi HY (2010). Study on Soil Microorganism and Soil Enzyme Activity of Different Vegetation in the Mountain Forests— The Arid Valley Ecotone in the Upper Reach of Minjiang River. Master degree dissertation, Sichuan Agricultural University, Ya’an, Sichuan. 14-17. (in Chinese with English abstract))[易海燕 (2010). 岷江上游山地森林-干旱河谷交错带不同植被类型土壤微生物及土壤酶活性的研究. 硕士学位论文, 四川农业大学, 四川雅安. 14-17.] |
[20] | Yu HS, Li BJ, Zhang BW, Yao HL (2003). The discussion of major ecological function.Inner Mongolia Forestry Science & Technology, (4), 15-18. (in Chinese)[俞海生, 李宝军, 张宝文, 姚洪林 (2003). 灌木林主要生态作用的探讨. 内蒙古林业科技, (4), 15-18.] |
[21] | Zeng HQ, Liu QJ, Ma ZQ, Zeng ZY (2006). The regression model of Loropetalum chinense biomass based on canopy diameter and plant height. Journal of Nanjing Forestry University (Natural Sciences Edition), 30(4), 101-104. (in Chinese with English abstract)[曾慧卿, 刘琪璟, 马泽清, 曾珍英 (2006). 基于冠幅及植株高度的檵木生物量回归模型. 南京林业大学学报(自然科学版), 30(4), 101-104.] |
[22] | Zeng HQ, Liu QJ, Feng ZW, Ma ZQ, Hu LL (2007). Estimation models of understory shrub and their applications in red soil hilly region.Chinese Journal of Applied Ecology, 18, 2185-2190. (in Chinese with English abstract)[曾慧卿, 刘琪璟, 冯宗炜, 马泽清, 胡理乐 (2007). 红壤丘陵区林下灌木生物量估算模型的建立及其应用. 应用生态学报, 18, 2185-2190.] |
[23] | Zeng ZY, Liu QJ, Zeng HQ (2005). Study of biomass models of some kinds of shrubs in Qianyanzhou, Jiangxi Province.Journal of Fujian Forestry Science and Technology, 32(4), 68-72. (in Chinese with English abstract)[曾珍英, 刘琪璟, 曾慧卿 (2005). 江西千烟洲几种灌木生物量模型的研究. 福建林业科技, 32(4), 68-72.] |
[24] | Zeng WS, Tang SZ (2011). Goodness evaluation and precision analysis of tree biomass equations.Scientia Silvae Sinicae, 47(11), 106-113. (in Chinese with English abstract)[曾伟生, 唐守正 (2011). 立木生物量方程的优度评价和精度分析. 林业科学, 47(11), 106-113.] |
[25] | Zhang DY (2010). Researches on Theoretical Ecology. Higher Education Press, Beijing. 48. (in Chinese)[张大勇 (2010). 理论生态学研究. 高等教育出版社, 北京. 48.] |
[26] | Zhang HQ, Liu QJ, Lu PL, Yu Q, Zeng HQ (2005). Biomass estimation of several common shrubs in Qianyanzhou experimental station.Forest Inventory and Planning, 30(5), 43-49. (in Chinese with English abstract)[张海清, 刘琪璟, 陆佩玲, 于强, 曾慧卿 (2005). 千烟洲试验站几种常见灌木生物量估测. 林业调查规划, 30(5), 43-49.] |
[27] | Zhang JT (1989). Vertical zones of vegetation in Luya Mountain in Shanxi Province.Scientia Geographica Since, 9, 346-353. (in Chinese with English abstract)[张金屯 (1989). 山西芦芽山植被垂直带的划分. 地理科学, 9, 346-353.] |
[1] | 李变变 张凤华 赵亚光 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢以及生物量的影响[J]. 植物生态学报, 2023, 47(1): 0-0. |
[2] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[3] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
[4] | 于水今, 王娟, 张春雨, 赵秀海. 温带针阔混交林生物量稳定性影响机制[J]. 植物生态学报, 2022, 46(6): 632-641. |
[5] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[6] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[7] | 张玉林, 尹本丰, 陶冶, 李永刚, 周晓兵, 张元明. 早春首次降雨时间及降雨量对古尔班通古特沙漠两种短命植物形态特征与叶绿素荧光的影响[J]. 植物生态学报, 2022, 46(4): 428-439. |
[8] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[9] | 祁鲁玉 陈浩楠 库丽洪·赛热别力 籍天宇 孟高德 秦慧颖 王宁 宋逸欣 刘春雨 杜宁 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略分析[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[10] | 黄侩侩 胡刚 庞庆玲 张贝 何业涌 胡聪 徐超昊 张忠华. 放牧对中国亚热带喀斯特山地灌草丛物种组成与群落结构的影响[J]. 植物生态学报, 2022, 46(11): 1350-1363. |
[11] | 李斐, 孙明伟, 钟尚志, 宋文政, 钟晓月, 孙伟. 不同光合类型牧草对干旱-复水的光合生理响应及生长适应策略[J]. 植物生态学报, 2022, 46(1): 74-87. |
[12] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
[13] | 高德才, 白娥. 冻融循环期间土壤氧化亚氮排放影响因素[J]. 植物生态学报, 2021, 45(9): 1006-1023. |
[14] | 陈哲, 汪浩, 王金洲, 石慧瑾, 刘慧颖, 贺金生. 基于物候相机归一化植被指数估算高寒草地植物地上生物量的季节动态[J]. 植物生态学报, 2021, 45(5): 487-495. |
[15] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19