植物生态学报 ›› 2017, Vol. 41 ›› Issue (1): 105-114.DOI: 10.17521/cjpe.2016.0217
所属专题: 中国灌丛生态系统碳储量的研究
王杨1,2, 徐文婷1, 熊高明1, 李家湘1,3, 赵常明1, 卢志军4, 李跃林5, 谢宗强1,*()
收稿日期:
2016-07-04
接受日期:
2016-12-16
出版日期:
2017-01-10
发布日期:
2017-01-23
通讯作者:
谢宗强
作者简介:
* 通信作者Author for correspondence (E-mail:基金资助:
Yang WANG1,2, Wen-Ting XU1, Gao-Ming XIONG1, Jia-Xiang LI1,3, Chang-Ming ZHAO1, Zhi-Jun LU4, Yue-Lin LI5, Zong-Qiang XIE1,*()
Received:
2016-07-04
Accepted:
2016-12-16
Online:
2017-01-10
Published:
2017-01-23
Contact:
Zong-Qiang XIE
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
生物量是生态系统最基本的数量特征, 其在各器官间的分配反映了植物适应环境的生长策略, 是物种进化、生物多样性保护和生态系统碳循环研究的核心问题。檵木(Loropetalum chinense)灌丛是中国亚热带灌丛生态系统最具优势的一种灌丛类型, 该研究以该灌丛建群种檵木为研究对象, 采用整株收获法在个体水平上研究了器官间的异速生长、生物量在各器官间的分配以及与个体大小、灌丛更新起源和生境因子之间的关系。研究发现: 檵木地上-地下间相对生长关系符合等速生长规律, 但随径级增大其等速生长关系可能发生变化; 较小径级檵木叶-茎、叶-根间为等速生长, 随径级增大转换为异速生长。不同灌丛起源间, 檵木叶-茎、叶-根间相对生长存在显著差异。器官间相对生长的尺度系数与生境因子无显著相关关系, 灌木层盖度和坡度通过影响檵木生长初期器官间的相对生长影响其生物量在器官间的分配。檵木平均叶质比为0.11, 茎质比为0.55, 根质比为0.34, 根冠比为0.65。随径级的增大, 茎质比(0.50-0.64)逐渐增大, 叶质比(0.12-0.08)、根质比(0.38-0.28)和根冠比(0.91-0.43)逐渐减小。在次生灌丛中, 檵木叶质比为0.12, 根质比为0.33; 在原生灌丛中, 檵木叶质比为0.07, 根质比为0.36。生物量向地上部分的分配与灌木层盖度正相关, 叶质比与坡度负相关, 根质比与年平均气温正相关。研究结果表明: 随个体增大, 檵木器官间的相对生长关系由等速生长转换为异速生长, 生物量向地上部分的分配增加, 地上生物量更多地分配到茎干中; 干扰通过影响器官间的相对生长影响生物量在各器官间的分配, 干扰导致生物量向叶的分配增加, 向根的分配减少; 光照减少促进生物量向地上部分的分配, 坡度增加导致生物量向叶的分配减少, 年平均气温升高促进生物量向根系的分配, 年降水量的变化对生物量分配无显著影响。檵木生物量分配策略在一定程度上支持了最优分配假说。
王杨, 徐文婷, 熊高明, 李家湘, 赵常明, 卢志军, 李跃林, 谢宗强. 檵木生物量分配特征. 植物生态学报, 2017, 41(1): 105-114. DOI: 10.17521/cjpe.2016.0217
Yang WANG, Wen-Ting XU, Gao-Ming XIONG, Jia-Xiang LI, Chang-Ming ZHAO, Zhi-Jun LU, Yue-Lin LI, Zong-Qiang XIE. Biomass allocation patterns of Loropetalum chinense. Chinese Journal of Plant Ecology, 2017, 41(1): 105-114. DOI: 10.17521/cjpe.2016.0217
径级 Diameter class | 样本数 n | 回归常数 Regression constant | 尺度系数 Scaling coefficient | p | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
α | 置信下限 Lower CI | 置信上限 Upper CI | β | 置信下限 Lower CI | 置信上限 Upper CI | |||||
地上-根 MA-MR | ||||||||||
A | 96 | 0.125 | -0.090 | 0.341 | 0.945 | 0.846 | 1.057 | <0.001 | 0.704 | |
B | 136 | 0.272 | 0.136 | 0.407 | 0.979 | 0.879 | 1.090 | <0.001 | 0.601 | |
C | 63 | 0.355 | 0.186 | 0.524 | 0.927 | 0.750 | 1.147 | <0.001 | 0.300 | |
D | 32 | 0.429 | 0.311 | 0.546 | 0.975 | 0.724 | 1.313 | <0.001 | 0.343 | |
叶-茎 ML-MS | ||||||||||
A | 96 | -0.601 | -0.774 | -0.429 | 1.029 | 0.943 | 1.124 | <0.001 | 0.815 | |
B | 136 | -0.690 | -0.826 | -0.554 | 1.089 | 0.970 | 1.221 | <0.001 | 0.546 | |
C | 63 | -0.733 | -0.876 | -0.589 | 1.268 | 1.031 | 1.559 | <0.001 | 0.339 | |
D | 32 | -1.047 | -1.168 | -0.926 | 1.681 | 1.311 | 2.157 | <0.001 | 0.545 | |
叶-根 ML-MR | ||||||||||
A | 96 | -0.556 | -0.802 | -0.311 | 0.983 | 0.870 | 1.110 | <0.001 | 0.644 | |
B | 136 | -0.446 | -0.629 | -0.262 | 1.096 | 0.963 | 1.247 | <0.001 | 0.422 | |
C | 63 | -0.332 | -0.582 | -0.082 | 1.226 | 0.969 | 1.551 | 0.002 | 0.141 | |
D | 32 | -0.429 | -0.657 | -0.201 | 1.586 | 1.129 | 2.227 | 0.036 | 0.138 |
表2 不同径级的檵木器官间异速生长关系(双对数尺度)
Table 2 Allometric relationships between organs of Loropetalum chinense in four basal diameter classes (in log-log scale)
径级 Diameter class | 样本数 n | 回归常数 Regression constant | 尺度系数 Scaling coefficient | p | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
α | 置信下限 Lower CI | 置信上限 Upper CI | β | 置信下限 Lower CI | 置信上限 Upper CI | |||||
地上-根 MA-MR | ||||||||||
A | 96 | 0.125 | -0.090 | 0.341 | 0.945 | 0.846 | 1.057 | <0.001 | 0.704 | |
B | 136 | 0.272 | 0.136 | 0.407 | 0.979 | 0.879 | 1.090 | <0.001 | 0.601 | |
C | 63 | 0.355 | 0.186 | 0.524 | 0.927 | 0.750 | 1.147 | <0.001 | 0.300 | |
D | 32 | 0.429 | 0.311 | 0.546 | 0.975 | 0.724 | 1.313 | <0.001 | 0.343 | |
叶-茎 ML-MS | ||||||||||
A | 96 | -0.601 | -0.774 | -0.429 | 1.029 | 0.943 | 1.124 | <0.001 | 0.815 | |
B | 136 | -0.690 | -0.826 | -0.554 | 1.089 | 0.970 | 1.221 | <0.001 | 0.546 | |
C | 63 | -0.733 | -0.876 | -0.589 | 1.268 | 1.031 | 1.559 | <0.001 | 0.339 | |
D | 32 | -1.047 | -1.168 | -0.926 | 1.681 | 1.311 | 2.157 | <0.001 | 0.545 | |
叶-根 ML-MR | ||||||||||
A | 96 | -0.556 | -0.802 | -0.311 | 0.983 | 0.870 | 1.110 | <0.001 | 0.644 | |
B | 136 | -0.446 | -0.629 | -0.262 | 1.096 | 0.963 | 1.247 | <0.001 | 0.422 | |
C | 63 | -0.332 | -0.582 | -0.082 | 1.226 | 0.969 | 1.551 | 0.002 | 0.141 | |
D | 32 | -0.429 | -0.657 | -0.201 | 1.586 | 1.129 | 2.227 | 0.036 | 0.138 |
起源 Origin | 样本数 n | 回归常数 Regression constant | 尺度系数 Scaling coefficient | p | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
α | 置信下限 Lower CI | 置信上限 Upper CI | β | 置信下限 Lower CI | 置信上限 Upper CI | |||||
地上-根 MA-MR | ||||||||||
次生 Secondary | 209 | 0.376 | 0.296 | 0.455 | 1.032 | 0.977 | 1.090 | <0.001 | 0.840 | |
原生 Primary | 118 | 0.396 | 0.269 | 0.522 | 1.097 | 1.015 | 1.185 | <0.001 | 0.822 | |
叶-茎 ML-MS | ||||||||||
次生 Secondary | 209 | -0.745 | -0.809 | -0.681 | 0.949 | 0.898 | 1.002 | <0.001 | 0.840 | |
原生 Primary | 118 | -1.049 | -1.129 | -0.970 | 0.876 | 0.819 | 0.937 | <0.001 | 0.867 | |
叶-根 ML-MR | ||||||||||
次生 Secondary | 209 | -0.449 | -0.549 | -0.349 | 1.002 | 0.934 | 1.075 | <0.001 | 0.735 | |
原生 Primary | 118 | -0.726 | -0.853 | -0.600 | 0.983 | 0.902 | 1.072 | <0.001 | 0.779 |
表3 不同起源的灌丛中檵木器官间异速生长关系(双对数尺度)
Table 3 Allometric relationships between organs of Loropetalum chinense in primary and secondary shrublands (in log-log scale)
起源 Origin | 样本数 n | 回归常数 Regression constant | 尺度系数 Scaling coefficient | p | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
α | 置信下限 Lower CI | 置信上限 Upper CI | β | 置信下限 Lower CI | 置信上限 Upper CI | |||||
地上-根 MA-MR | ||||||||||
次生 Secondary | 209 | 0.376 | 0.296 | 0.455 | 1.032 | 0.977 | 1.090 | <0.001 | 0.840 | |
原生 Primary | 118 | 0.396 | 0.269 | 0.522 | 1.097 | 1.015 | 1.185 | <0.001 | 0.822 | |
叶-茎 ML-MS | ||||||||||
次生 Secondary | 209 | -0.745 | -0.809 | -0.681 | 0.949 | 0.898 | 1.002 | <0.001 | 0.840 | |
原生 Primary | 118 | -1.049 | -1.129 | -0.970 | 0.876 | 0.819 | 0.937 | <0.001 | 0.867 | |
叶-根 ML-MR | ||||||||||
次生 Secondary | 209 | -0.449 | -0.549 | -0.349 | 1.002 | 0.934 | 1.075 | <0.001 | 0.735 | |
原生 Primary | 118 | -0.726 | -0.853 | -0.600 | 0.983 | 0.902 | 1.072 | <0.001 | 0.779 |
图2 不同径级的檵木器官间异速生长关系。ML、MS和MR分别为叶干质量、茎干质量和根干质量, MA = ML + MS。
Fig. 2 Allometric relationships between different organs of Loropetalum chinense in four basal diameter classes. ML, MS and MR are the dry mass of leaf, stem and root, respectively; MA = ML + MS).
图3 不同起源的灌丛中檵木器官间异速生长关系。MA、ML、MR、MS同图2。
Fig. 3 Allometric relationships between different organs of Loropetalum chinense in primary and secondary shrublands. MA, ML, MR, MS see Fig. 2.
图4 不同径级的檵木生物量在器官间的分配比例关系(平均值±标准偏差)。A, 0.1-1 cm; B, 1-2 cm; C, 2-3 cm; D, 3-6 cm。不同小写字母表示径级间差异显著(p < 0.05)。
Fig. 4 Dry mass ratio of leaf, stem, root and the root to shoot ratio of Loropetalum chinense in four basal diameter classes (mean ± SD). A, 0.1-1 cm; B, 1-2 cm; C, 2-3 cm; D, 3-6 cm; d, basal diameter. Different small letters indicate significant difference (p < 0.05) among diameter classes.
图5 不同起源的灌丛中檵木生物量在器官间的分配比例关系(平均值±标准偏差)。不同小写字母表示不同起源间差异显著(p < 0.05)。
Fig. 5 Dry mass ratio of leaf, stem, root and the root to shoot ratio of Loropetalum chinense in primary and secondary shrub lands (mean ± SD). Different small letters indicate significant difference (p < 0.05) among different regeneration origins.
[1] | Bessler H, Temperton VM, Roscher C, Buchmann N, Schmid B, Schulze ED, Weisser WW, Engels C (2009). Aboveground overyielding in grassland mixtures is associated with reduced biomass partitioning to belowground organs.Ecology, 90, 1520-1530. |
[2] | Cheng DL, Niklas KJ (2007). Above- and below-ground biomass relationships across 1534 forested communities.Annals of Botany, 99, 95-102. |
[3] | Coomes DA (2006). Challenges to the generality of WBE theory.Trendsin Ecology & Evolution, 21, 593-596. |
[4] | Duncanson LI, Dubayah RO, Enquist BJ (2015). Assessing the general patterns of forest structure: Quantifying tree and forest allometric scaling relationships in the United States.Global Ecology and Biogeography, 24, 1465-1475. |
[5] | Enquist BJ, Kerkhoff AJ, Stark SC, Swenson NG, McCarthy MC, Price CA (2007). A general integrative model for scaling plant growth, carbon flux, and functional trait spectra.Nature, 449, 218-222. |
[6] | Enquist BJ, Niklas KJ (2001). Invariant scaling relations across tree-dominated communities.Nature, 410, 655-660. |
[7] | Enquist BJ, Niklas KJ (2002). Global allocation rules for patterns of biomass partitioning in seed plants.Science, 295, 1517-1520. |
[8] | Fan FL, Zhang FS, Qu Z, Lu YH (2008). Plant carbon partitioning below ground in the presence of different neighboring species.Soil Biology & Biochemistry, 40, 2266-2272. |
[9] | Fan JW, Wang K, Harris W, Zhong HP, Hu ZM, Han B, Zhang WY, Wang JB (2009). Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia.Journal of Arid Environments, 73, 521-528. |
[10] | Hu HF, Wang ZH, Liu GH, Fu BJ (2006). Vegetation carbon storage of major shrublands in China.Journal of Plant Ecology (Chinese Version), 30, 539-544. (in Chinese with English abstract)[胡会峰, 王志恒, 刘国华, 傅博杰 (2006). 中国主要灌丛植被碳储量. 植物生态学报, 30, 539-544.] |
[11] | Luken JO (1988). Population structure and biomass allocation of the naturalized shrub Lonicera maackii(Rupr.) Maxim. in forest and open habitats. The American Midland Naturalist, 119, 258-267. |
[12] | McCarthy MC, Enquist BJ (2007). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation.Functional Ecology, 21, 713-720. |
[13] | McConnaughay KDM, Coleman JS (1999). Biomass allocation in plants: Ontogeny or optimality? A test along three resource gradients.Ecology, 80, 2581-2593. |
[14] | Nie XQ, Yang YH, Yang LC, Zhou GY (2016). Above- and belowground biomass allocation in shrub biomes across the northeast Tibetan Plateau.PLOS ONE, 11, e0154251. doi:10.1371/journal.pone.0154251. |
[15] | Niklas KJ (2004). Plant allometry: Is there a grand unifying theory?Biological Reviews, 79, 871-889. |
[16] | Perkins SR, Owens MK (2003). Growth and biomass allocation of shrub and grass seedlings in response to predicted changes in precipitation seasonality.Plant Ecology, 168, 107-120. |
[17] | Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control.New Phytologist, 193, 30-50. |
[18] | Robinson D (2004). Scaling the depths: Below-ground allocation in plants, forests and biomes.Functional Ecology, 18, 290-295. |
[19] | Ryser P, Eek L (2000). Consequences of phenotypic plasticity vs. interspecific differences in leaf and root traits for acquisition of aboveground and belowground resources.American Journal of Botany, 87, 402-411. |
[20] | Sack L, Maranon T, Grubb PJ (2002). Global allocation rules for patterns of biomass partitioning.Science, 296, 1923a. |
[21] | Shipley B, Meziane D (2002). The balanced-growth hypothesis and the allometry of leaf and root biomass allocation.Functional Ecology, 16, 326-331. |
[22] | Wang XP, Fang JY, Zhu B (2008). Forest biomass and root- shoot allocation in northeast China.Forest Ecology and Management, 255, 4007-4020. |
[23] | Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry.Biological Reviews, 81, 259-291. |
[24] | Weiner J (2004). Allocation, plasticity and allometry in plants.Perspectives in Plant Ecology, Evolution and Systematics, 6, 207-215. |
[25] | Xie JY, Chen LZ (1997). The studies of some aspects of biodiversity on scrubs in the warm temperate zone in China.Acta Phytoecologica Sinica, 21, 197-207. (in Chinese with English abstract)[谢晋阳, 陈灵芝 (1997). 中国暖温带若干灌丛群落多样性问题的研究. 植物生态学报, 21, 197-207.] |
[26] | Yang HT, Li XR, Liu LC, Jia RL, Wang ZJ, Li XJ, Li G (2013). Biomass allocation patterns of four shrubs in desert grassland.Journal of Desert Research, 33, 1340-1348. (in Chinese with English abstract)[杨昊天, 李新荣, 刘立超, 贾荣亮, 王增加, 李小军, 李刚 (2013). 荒漠草地4种灌木生物量分配特征. 中国沙漠, 33, 1340-1348.] |
[27] | Yang YH, Luo YQ (2011). Isometric biomass partitioning pattern in forest ecosystems: Evidence from temporal observations during stand development.Journal of Ecology, 99, 431-437. |
[28] | Zhang H, Wang KL, Xu XL, Song TQ, Xu YF, Zeng FP (2015). Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests.Scientific Reports, 5, 15997. doi: 10.1038/srep15997. |
[29] | Zhou HK, Zhou L, Zhao XQ, Sheng ZX, Li YN, Zhou XM, Yan ZL, Liu W (2002). Study of formation pattern of below-ground biomass in Potentilla fruticosa shrub. Acta Prataculturae Sinica, 11, 59-65. (in Chinese with English abstract)[周华坤, 周立, 赵新全, 沈振西, 李英年, 周兴民, 严作良, 刘伟 (2002). 金露梅灌丛地下生物量形成规律的研究. 草业学报, 11, 59-65.] |
[1] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[2] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[3] | 邓文婕, 吴华征, 李添翔, 周丽娜, 胡仁勇, 金鑫杰, 张永普, 张永华, 刘金亮. 洞头国家级海洋公园主要植被类型及其特征[J]. 植物生态学报, 2024, 48(2): 254-268. |
[4] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[5] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[6] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[7] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[8] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[9] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[10] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[11] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
[12] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[13] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[14] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[15] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 4249
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1586
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La