植物生态学报 ›› 2019, Vol. 43 ›› Issue (1): 46-54.DOI: 10.17521/cjpe.2018.0100
所属专题: 生态化学计量
收稿日期:
2018-05-04
接受日期:
2018-12-24
出版日期:
2019-01-20
发布日期:
2019-04-23
通讯作者:
李玉霖
基金资助:
NING Zhi-Ying1,2,LI Yu-Lin1,*(),YANG Hong-Ling1,2,ZHANG Zi-Qian1,2
Received:
2018-05-04
Accepted:
2018-12-24
Online:
2019-01-20
Published:
2019-04-23
Contact:
LI Yu-Lin
Supported by:
摘要:
为科学认识科尔沁沙地优势固沙灌木的生态适应性和固沙植被演变规律, 该研究对科尔沁沙地流动沙丘、半固定沙丘、固定沙丘和丘间低地的优势固沙灌木小叶锦鸡儿(Caragana microphylla)和盐蒿(Artemisia halodendron)进行野外调查, 研究了这两种固沙灌木的叶片氮(N)、磷(P)化学计量特征、灌丛土壤养分状况以及内稳性特征。结果表明: 1)与盐蒿相比, 灌木小叶锦鸡儿具有较高的叶片N含量及N:P, 而P含量仅为盐蒿的1/2; 2)两种优势固沙灌木灌丛下土壤的全N、全P含量及速效N、速效P含量高于该地区土壤的平均水平, 小叶锦鸡儿灌丛下土壤养分含量显著高于盐蒿灌丛下土壤; 3)盐蒿叶片N、P化学计量内稳性指数(H)表现为HP > HN:P > HN, 说明盐蒿更易受土壤N的限制; 小叶锦鸡儿叶片N、P化学计量内稳性指数表现为HN:P > HN > HP, 意味着小叶锦鸡儿更易受土壤P的限制。在N含量较低的沙化草地, HN较高的固沙灌木小叶锦鸡儿比盐蒿更具生长优势, 对于该地区生态恢复及保护具有不可替代的作用。然而, 小叶锦鸡儿额外吸收的N, 使其生长过程可能易受P的限制, 因此在沙地恢复过程中应注意土壤P的供应。
宁志英, 李玉霖, 杨红玲, 张子谦. 科尔沁沙地优势固沙灌木叶片氮磷化学计量内稳性. 植物生态学报, 2019, 43(1): 46-54. DOI: 10.17521/cjpe.2018.0100
NING Zhi-Ying, LI Yu-Lin, YANG Hong-Ling, ZHANG Zi-Qian. Nitrogen and phosphorus stoichiometric homoeostasis in leaves of dominant sand-fixing shrubs in Horqin Sandy Land, China. Chinese Journal of Plant Ecology, 2019, 43(1): 46-54. DOI: 10.17521/cjpe.2018.0100
物种 Species | 指标 Index | 算数平均值 Arithmetic average | 中位数 Median | 众数 Mode | 变异系数 Coefficient of variation(%) | 极小值 Minimum value | 极大值 Maximum value |
---|---|---|---|---|---|---|---|
盐蒿 A. halodendron | N (g·kg-1) | 23.24 ± 0.49 | 24.50 | 27.00 | 18.71 | 15.00 | 31.40 |
P (g·kg-1) | 3.80 ± 0.05 | 3.82 | 3.67 | 11.05 | 2.86 | 4.53 | |
N:P | 6.10 ± 0.10 | 6.17 | 5.59 | 14.43 | 4.02 | 7.82 | |
小叶锦鸡儿 C. microphylla | N (g·kg-1) | 30.44 ± 0.46 | 31.00 | 30.40 | 13.24 | 18.20 | 37.90 |
P (g·kg-1) | 1.96 ± 0.04 | 1.97 | 1.97 | 17.86 | 1.24 | 2.69 | |
N:P | 15.86 ± 0.29 | 15.71 | 11.28 | 15.82 | 11.28 | 24.33 |
表1 科尔沁沙地优势固沙灌木盐蒿和小叶锦鸡儿叶片N、P含量和比值(平均值±标准误差)
Table 1 Nitrogen (N) and phosphorus (P) concentrations and their ratios in leaves of Artemisia halodendron and Caragana microphylla in Horqin Sandy Land (mean ± SE)
物种 Species | 指标 Index | 算数平均值 Arithmetic average | 中位数 Median | 众数 Mode | 变异系数 Coefficient of variation(%) | 极小值 Minimum value | 极大值 Maximum value |
---|---|---|---|---|---|---|---|
盐蒿 A. halodendron | N (g·kg-1) | 23.24 ± 0.49 | 24.50 | 27.00 | 18.71 | 15.00 | 31.40 |
P (g·kg-1) | 3.80 ± 0.05 | 3.82 | 3.67 | 11.05 | 2.86 | 4.53 | |
N:P | 6.10 ± 0.10 | 6.17 | 5.59 | 14.43 | 4.02 | 7.82 | |
小叶锦鸡儿 C. microphylla | N (g·kg-1) | 30.44 ± 0.46 | 31.00 | 30.40 | 13.24 | 18.20 | 37.90 |
P (g·kg-1) | 1.96 ± 0.04 | 1.97 | 1.97 | 17.86 | 1.24 | 2.69 | |
N:P | 15.86 ± 0.29 | 15.71 | 11.28 | 15.82 | 11.28 | 24.33 |
图1 科尔沁沙地优势固沙灌木盐蒿和小叶锦鸡儿叶片N、P化学计量特征比较。p < 0.001表示盐蒿和小叶锦鸡儿的该指标在0.001水平上差异显著; 误差线表示标准误差; Ar, Artemisia halodendron; Ca, Caragana microphylla。
Fig. 1 Comparisons of leaf nitrogen (N) and phosphorus (P) stoichiometry between Artemisia halodendron and Caragana microphylla in Horqin Sandy Land. Differences between Artemisia halodendron and Caragana microphylla are significant at p < 0.001. Vertical bars represent standard errors. Ar, Artemisia halodendron; Ca, Caragana microphylla.
物种 Species | 指标 Index | 算数平均值 Arithmetic average | 中位数 Median | 众数 Mode | 变异系数 Coefficient of variation(%) | 极小值 Minimum value | 极大值 Maximum value |
---|---|---|---|---|---|---|---|
盐蒿 A. halodendron | N (g·kg-1) | 0.15 ± 0.01 | 0.14 | 0.17* | 57.14 | 0.01 | 0.38 |
P (g·kg-1) | 0.05 ± 0.00 | 0.05 | 0.03* | 60.00 | 0.00 | 0.11 | |
N:P | 3.10 ± 0.26 | 2.38 | 0.43 | 73.22 | 0.43 | 12.10 | |
速效 N Available N (mg·kg-1) | 15.77 ± 1.00 | 16.20 | 21.60 | 56.04 | 1.17 | 38.00 | |
速效 P Available P (mg·kg-1) | 7.82 ± 0.57 | 6.80 | 9.80 | 64.32 | 1.28 | 20.06 | |
速效 N:P Available N:P | 2.27 ± 0.12 | 2.20 | 3.60 | 46.70 | 0.59 | 5.77 | |
小叶锦鸡儿 C. microphylla | N (g·kg-1) | 0.23 ± 0.02 | 0.21 | 0.02 | 69.56 | 0.02 | 0.65 |
P (g·kg-1) | 0.08 ± 0.01 | 0.07 | 0.03 | 62.50 | 0.01 | 0.19 | |
N:P | 3.08 ± 0.21 | 2.87 | 0.76 | 61.04 | 0.76 | 11.99 | |
速效 N Available N (mg·kg-1) | 19.38 ± 1.08 | 16.88 | 9.43* | 48.81 | 7.39 | 44.86 | |
速效 P Available P (mg·kg-1) | 9.74 ± 0.55 | 8.60 | 6.10* | 49.90 | 2.93 | 24.80 | |
速效 N:P Available N:P | 2.11 ± 0.07 | 2.11 | 0.35* | 27.49 | 0.35 | 3.91 |
表2 科尔沁沙地优势固沙灌木盐蒿和小叶锦鸡儿冠幅内土壤N、P化学计量特征(平均值±标准误差)
Table 2 Nitrogen (N) and phosphorus (P) stoichiometry in soils beneath Artemisia halodendron and Caragana microphylla in Horqin Sandy Land (mean ± SE)
物种 Species | 指标 Index | 算数平均值 Arithmetic average | 中位数 Median | 众数 Mode | 变异系数 Coefficient of variation(%) | 极小值 Minimum value | 极大值 Maximum value |
---|---|---|---|---|---|---|---|
盐蒿 A. halodendron | N (g·kg-1) | 0.15 ± 0.01 | 0.14 | 0.17* | 57.14 | 0.01 | 0.38 |
P (g·kg-1) | 0.05 ± 0.00 | 0.05 | 0.03* | 60.00 | 0.00 | 0.11 | |
N:P | 3.10 ± 0.26 | 2.38 | 0.43 | 73.22 | 0.43 | 12.10 | |
速效 N Available N (mg·kg-1) | 15.77 ± 1.00 | 16.20 | 21.60 | 56.04 | 1.17 | 38.00 | |
速效 P Available P (mg·kg-1) | 7.82 ± 0.57 | 6.80 | 9.80 | 64.32 | 1.28 | 20.06 | |
速效 N:P Available N:P | 2.27 ± 0.12 | 2.20 | 3.60 | 46.70 | 0.59 | 5.77 | |
小叶锦鸡儿 C. microphylla | N (g·kg-1) | 0.23 ± 0.02 | 0.21 | 0.02 | 69.56 | 0.02 | 0.65 |
P (g·kg-1) | 0.08 ± 0.01 | 0.07 | 0.03 | 62.50 | 0.01 | 0.19 | |
N:P | 3.08 ± 0.21 | 2.87 | 0.76 | 61.04 | 0.76 | 11.99 | |
速效 N Available N (mg·kg-1) | 19.38 ± 1.08 | 16.88 | 9.43* | 48.81 | 7.39 | 44.86 | |
速效 P Available P (mg·kg-1) | 9.74 ± 0.55 | 8.60 | 6.10* | 49.90 | 2.93 | 24.80 | |
速效 N:P Available N:P | 2.11 ± 0.07 | 2.11 | 0.35* | 27.49 | 0.35 | 3.91 |
图2 科尔沁沙地优势固沙灌木盐蒿和小叶锦鸡儿土壤N、P化学计量特征比较。p < 0.001表示盐蒿和小叶锦鸡儿的该指标在0.001水平上差异显著; 误差线表示标准误差; Ar, Artemisia halodendron; Ca, Caragana microphylla。
Fig. 2 Comparisons of soil nitrogen (N) and phosphorus (P) stoichiometry between Artemisia halodendron and Caragana microphylla in Horqin Sandy Land. Differences between Artemisia halodendron and Caragana microphylla are significant at p < 0.001. Vertical bars represent standard errors. Ar, Artemisia halodendron; Ca, Caragana microphylla.
图3 科尔沁沙地优势固沙灌木叶片N、P及比值与对应土壤速效N、P及其比值的关系。H, 内稳性指数。
Fig. 3 Relationships of leaf N, P, and N:P with soil N, P, and N:P in two dominant shrubs in Horqin Sandy Land. H, stoichiometric homoeostasis indexes.
[1] | Aerts R, Chapin FS ( 2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[2] |
Andersen T, Elser JJ, Hessen DO ( 2004). Stoichiometry and population dynamics. Ecology Letters, 7, 884-900.
DOI URL |
[3] | Bin ZJ, Wang JJ, Zhang WP, Xu DH, Cheng XH, Li KJ, Cao DH ( 2014). Effects of N addition on ecological stoichiometric characteristics in six dominant plant speciesof alpine meadow on the Qinghai-Xizang Plateau, China. Chinese Journal of Plant Ecology, 38, 231-237. |
[ 宾振钧, 王静静, 张文鹏, 徐当会, 程雪寒, 李柯杰, 曹德昊 ( 2014). 氮肥添加对青藏高原高寒草甸6个群落优势种生态化学计量学特征的影响. 植物生态学报, 38, 231-237.] | |
[4] | Chen GS, Zeng DH, Chen FS, Fan ZP, Geng HD ( 2003). A research review on “ fertile islands” of soils under shrub canopy in arid and semi-arid regions. Chinese Journal of Applied Ecology, 14, 2295-2300. |
[ 陈广生, 曾德慧, 陈伏生, 范志平, 耿海东 ( 2003). 干旱和半干旱地区灌木下土壤“肥岛”研究进展. 应用生态学报, 14, 2295-2300.] | |
[5] | Chen ZQ, Chen ZB, Yan XY, Bai LY ( 2016). Stoichiometric mechanisms of Dicranopteris dichotoma, growth and resistance to nutrient limitation in the Zhuxi watershed in the red soil hilly region of China. Plant & Soil, 398, 367-379. |
[6] | Daufresne T, Loreau M ( 2001). Ecological stoichiometry, primary producer-decomposer interactions, and ecosystem persistence. Ecology, 82, 3069-3082. |
[7] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE ( 2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI URL |
[8] |
Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ ( 2010). Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytologist, 186, 593-608.
DOI URL |
[9] | Fan XY ( 2012). Spatial Variation in Nutrient of Dominate Plant and Ecological Stoichiometry from Laohu Gou of Qilian Mountin. Master degree dissertation, Lanzhou Univirsity, Lanzhou. |
[ 樊晓勇 ( 2012). 祁连山老虎沟优势植物的养分空间变化与生态化学计量学研究. 硕士学位论文, 兰州大学, 兰州.] | |
[10] |
Fisher RF ( 1995). Amelioration of degraded rain forest soils by plantations of native trees. Soil Science Society of America Journal, 59, 544-549.
DOI URL |
[11] |
Frost PC, Elser JJ ( 2002). Growth responses of littoral mayflies to the phosphorus content of their food. Ecology Letters, 5, 232-240.
DOI URL |
[12] | Garnier E ( 1998). Interspecific Variation in Plasticity of Grasses in Response to Nitrogen Supply. Cambridge University Press, Cambridge, UK. 155-181. |
[13] |
Guo YP, Yang X, Schob C, Jiang YX, Tang ZY ( 2017). Legume shrubs are more nitrogen-homeostatic than non-legume shrubs. Frontiers in Plant Science, 8, 1662.
DOI URL |
[14] |
Han WX, Fang JY, Guo DL, Zhang Y ( 2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI URL |
[15] | He J, Hu YF, Shu XY, Wang Q, Jia AD, Yan X ( 2018). Effect of Salix cupularis plantations on soil stoichiometry and stocks in the alpine-cold desert of northwestern Sichuan. Acta Prataculturae Sinica, 27, 27-33. |
[ 何佳, 胡玉福, 舒向阳, 王琴, 贾安都, 严星 ( 2018). 川西北高寒沙地不同年限高山柳土壤生态化学计量及储量变化特征. 草业学报, 27, 27-33.] | |
[16] |
Hessen DO, Agren GI, Anderson TR, Elser JJ, De Ruiter PC ( 2004). Carbon, sequestration in ecosystems: The role of stoichiometry. Ecology, 85, 1179-1192.
DOI URL |
[17] |
Hobbie SE, Vitousek PM ( 2000). Nutrient limitation of decomposition in hawaiian forests. Ecology, 81, 1867-1877.
DOI URL |
[18] | Institute of Soil Science, Chinese Academy of Sciences ( 1978). Physical and Chemical AnalysisMethods of Soil. Shanghai Science and Technology Press, Shanghai. |
[ 中国科学院南京土壤研究所 ( 1978). 土壤理化分析. 上海科学技术出版社, 上海.] | |
[19] |
Jeyasingh PD, Weider LJ, Sterner RW ( 2009). Genetically- based trade-offs in response to stoichiometric food quality influence competition in a keystone aquatic herbivore. Ecology Letters, 12, 1229-1237.
DOI URL |
[20] | Jiang LL, Zeng CS, Shao JJ, Zhou XH ( 2017). Plant nutrient dynamics and stoichiometric homeostasis of invasive species Spartina alternifloraand native Cyperus malaccensis var. brevifolius in the Minjiang River estuarine wetlands. Chinese Journal of Plant Ecology, 41, 450-460. |
[ 蒋利玲, 曾从盛, 邵钧炯, 周旭辉 ( 2017). 闽江河口入侵种互花米草和本地种短叶茳芏的养分动态及植物化学计量内稳性特征. 植物生态学报, 41, 450-460.] | |
[21] |
Koerselman W, Meuleman AF ( 1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
DOI URL |
[22] |
Koojiman SALM ( 1995). The stoichiometry of animal energetics. Journal of Theoretical Biology, 177, 139-149.
DOI URL |
[23] | Li Y, Li Q, Guo D, Liang S, Wang Y ( 2016). Ecological stoichiometry homeostasis of Leymus chinensis, in degraded grassland in western Jilin Province, NE China. Ecological Engineering, 90, 387-391. |
[24] | Li YL, Cui JH, Su YZ ( 2005). Specific leaf area and leaf dry matter content of some plants in different dune habitats. Acta Ecologica Sinica, 25, 304-311. |
[ 李玉霖, 崔建垣, 苏永中 ( 2005). 不同沙丘生境主要植物比叶面积和叶干物质含量的比较. 生态学报, 25, 304-311.] | |
[25] | Ning ZY, Li YL, Yang HL, Sun DC, Bi JD ( 2017). Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land. Chinese Journal of Plant Ecology, 41, 1069-1080. |
[ 宁志英, 李玉霖, 杨红玲, 孙殿超, 毕京东 ( 2017). 科尔沁沙地主要植物细根和叶片碳、氮、磷化学计量特征. 植物生态学报, 41, 1069-1080.] | |
[26] |
Persson J, Kato S ( 2010). To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 119, 741-751.
DOI URL |
[27] | Qu WL, Yang XP, Zhang CT, Wei B ( 2015). Shrub-mediated “fertile island” effects in arid and semi-arid grassland. Acta Prataculturae Sinica, 24, 201-207. |
[ 瞿王龙, 杨小鹏, 张存涛, 魏冰 ( 2015). 干旱、半干旱地区天然草原灌木及其肥岛效应研究进展. 草业学报, 24, 201-207.] | |
[28] |
Reich PB, Oleksyn J ( 2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI URL |
[29] |
Reiners WA ( 1986). Complementary models for ecosystems. The American Naturalist, 127, 59-73.
DOI URL |
[30] | Schlesinger WH, Raikes JA, Hartley AE, Cross AF ( 1996). On the spatial pattern of soil nutrients in desert ecosystems. Ecology, 77, 364-374. |
[31] | Sterner RW, Elser JJ ( 2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[32] | Su YZ, Zhao HL, Zhang TH ( 2002). Influencing mechanism of several shrubs and subshrubs on soil fertility in Keerqin sandy land. Chinese Journalof Applied Ecology, 13, 802-806. |
[ 苏永中, 赵哈林, 张铜会 ( 2002). 几种灌木、半灌木对沙地土壤肥力影响机制的研究. 应用生态学报, 13, 802-806.] | |
[33] | Su YZ, Zhao HL, Zhang TH, Li YL ( 2004). Characteristics of plant community and soil properties in the plantation chronosequence of Caragana microphylla in Horqin Sandy Land. Acta Phytoecologica Sinica, 28, 93-100. |
[ 苏永中, 赵哈林, 张铜会, 李玉霖 ( 2004). 科尔沁沙地不同年代小叶锦鸡儿人工林植物群落特征及其土壤特性. 植物生态学报, 28, 93-100.] | |
[34] |
Sundareshwar PV, Morris JT, Koepfler EK, Fornwalt B ( 2003). Phosphorus limitation of coastal ecosystem processes. Science, 299, 563.
DOI URL |
[35] |
Tian H, Chen G, Zhang C, Melillo JM, Hall CAS ( 2010). Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 98, 139-151.
DOI URL |
[36] |
Vitousek PM ( 1999). Nutrient limitation to nitrogen fixation in young volcanic sites. Ecosystems, 2, 505-510.
DOI URL |
[37] | Wang T, Yang YH, Ma WH ( 2008). Storage, patterns and environmental controls of soil phosphorus in China. Acta Scientiarum Naturalium Universitatis Pekinensis, 44, 945-952. |
[ 汪涛, 杨元合, 马文红 ( 2008). 中国土壤磷库的大小、分布及其影响因素. 北京大学学报(自然科学版), 44, 945-952.] | |
[38] |
Westheimer FH ( 1987). Why nature chose phosphates. Science, 235, 1173.
DOI URL |
[39] |
Wezel A, Rajot JL, Herbrig C ( 2000). Influence of shrubs on soil characteristics and their function in Sahelian agro-ecosystems in semi-arid Niger. Journal of Arid Environments, 44, 383-398.
DOI URL |
[40] | Whitford WG, Anderson J, Rice PM ( 1997). Stemflow contribution to the “fertile island” effect in creosotebush,Larrea tridentata. Journal of Arid Environments, 35, 451-457. |
[41] | Wu XD, Song NP, Pan J ( 2016). Effect of shrub (Caragana intermedia) encroachment under different sandy habitats on contentand distribution of soil organic carbon in desert grassland. Transactions of the Chinese Society of Agricultural Engineering, 32, 115-121. |
[ 吴旭东, 宋乃平, 潘军 ( 2016). 不同沙地生境下柠条灌丛化对草地土壤有机碳含量及分布的影响. 农业工程学报, 32, 115-121.] | |
[42] | Xiong BQ, Zhao LY, Zhang J, Li YQ, Chen HB, Li FR ( 2017). Relationship between the soil andstanding vegetation changes during grassland desertification process. Ecology and Environmental Sciences, 26, 400-407. |
[ 熊炳桥, 赵丽娅, 张劲, 李艳蔷, 陈红兵, 李锋瑞 ( 2017). 草地沙漠化过程中土壤与地上植被的变化及其相互关系. 生态环境学报, 26, 400-407.] | |
[43] |
Yan JH, Li K, Peng XJ, Huang ZL, Liu SZ, Zhang QM ( 2015). The mechanism for exclusion of Pinus massoniana during the succession in subtropical forest ecosystems: Light competition or stoichiometric homoeostasis? Scientific Reports, 5, 10994. DOI: 10.1038/srep10994.
DOI |
[44] | Yu Q ( 2009). Ecological Stoichiometric Study on VascularPlants in the Inner Mongolia Steppe. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. |
[ 庾强 ( 2009). 内蒙古草原植物化学计量生态学研究. 博士学位论文, 中国科学院植物研究所, 北京.] | |
[45] |
Yu Q, Chen QS, Elser JJ, Cease A, He NP, Wu HH, Zhang GM, Wu JG, Bai YF, Han XG ( 2010). Linking stoichiometric homeostasis with ecosystem structure, functioning, and stability. Ecology Letters, 13, 1390.
DOI URL |
[46] | Zhu JT, Li XY, Zhang XM, Lin LS, Yang SG ( 2010). Nitrogen allocation and partitioning within a leguminous and two non-leguminous plant species growing at the southern fringe of China’s Taklamakan Desert. Chinese Journal of Plant Ecology, 34, 1025-1032. |
[ 朱军涛, 李向义, 张希明, 林丽莎, 杨尚功 ( 2010). 塔克拉玛干沙漠南缘豆科与非豆科植物的氮分配. 植物生态学报, 34, 1025-1032.] |
[1] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[4] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[5] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[6] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[7] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[8] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[9] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[10] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[11] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[12] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[13] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[14] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[15] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19