植物生态学报 ›› 2018, Vol. 42 ›› Issue (7): 723-733.DOI: 10.17521/cjpe.2017.0294
莫雪丽1,2,戴晓琴1,3,*(),王辉民1,2,3,付晓莉1,3,寇亮1,3
出版日期:
2018-07-20
发布日期:
2018-06-01
通讯作者:
戴晓琴
基金资助:
MO Xue-Li1,2, DAI Xiao-Qin1,3,*(), WANG Hui-Min1,2,3, FU Xiao-Li1,3, KOU Liang1,3
Online:
2018-07-20
Published:
2018-06-01
Contact:
Xiao-Qin DAI
Supported by:
摘要:
为了深入探讨人工林内不同植物根际效应的差异, 为人工林生态系统林下植被管理提供理论依据, 该研究以江西泰和千烟洲站区杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)和湿地松(Pinus elliottii) 3种人工林(1985年前后营造)为研究对象, 测定林内乔木及其林下常见灌木檵木(Loropetalum chinense)、杨桐(Adinandra millettii)和格药柃(Eurya muricata)的根际和全土土壤碳、氮、磷含量及pH值, 比较不同林分类型下优势乔灌树种的根际效应。结果发现: (1)乔木根际土壤大部分化学性质指标显著高于或低于全土(p < 0.05), 而林下灌木根际土壤与全土土壤化学性质的差异与物种有关, 如檵木根际土壤大部分化学性质显著不同于全土, 而格药柃根际土壤大部分指标与全土无显著差异。(2)除硝态氮(NO3 --N)外, 林下灌木不同物种之间的根际效应有别, 具体表现为檵木pH值、铵态氮(NH4 +-N)、可溶性有机碳(DOC)、全氮(TN)、全碳(TC)、碳氮比(C/N)、有效磷(AP)和全磷(TP)的根际效应显著高于格药柃, TN、TC、C/N和AP的根际效应也显著高于杨桐, 但杨桐与格药柃间的根际效应无显著差异。(3)杉木的根际效应显著强于林下3种灌木; 马尾松和湿地松的根际效应与檵木无显著差异, 而马尾松的根际效应显著高于杨桐和格药柃, 湿地松的根际效应显著高于格药柃。该研究表明相对于林下灌木(尤其是格药柃), 乔木具有较强的根际效应, 暗示了乔木具有更高的养分捕获能力。但林下灌木与乔木根际效应的差异与灌木种类和林分类型有关。因此, 人工林林下植被管理除了考虑适量保留林下灌木外, 可依据人工林类型, 充分考虑灌木种类选择, 进而最大地发挥人工林生态系统的生产和生态功能。
莫雪丽, 戴晓琴, 王辉民, 付晓莉, 寇亮. 中亚热带典型人工林常见乔灌木根际效应——以江西泰和千烟洲为例. 植物生态学报, 2018, 42(7): 723-733. DOI: 10.17521/cjpe.2017.0294
MO Xue-Li, DAI Xiao-Qin, WANG Hui-Min, FU Xiao-Li, KOU Liang. Rhizosphere effects of overstory tree and understory shrub species in central subtropical plantations—A case study at Qianyanzhou, Taihe, Jiangxi, China. Chinese Journal of Plant Ecology, 2018, 42(7): 723-733. DOI: 10.17521/cjpe.2017.0294
林分类型 Forest stand type | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) | 林分密度 Stand density (trees·hm-2) | 郁闭度 Canopy closure | 凋落物干质量 Dry mass of litter (kg·hm-2) | 群落多样性指数 Diversity indices of communities | |||
---|---|---|---|---|---|---|---|---|---|
灌木 Shrub | 草本 Herb | ||||||||
Shannon- Wiener (H) | Pielous (J) | Shannon- Wiener (H) | Pielous (J) | ||||||
杉木林 Cunninghamia lanceolata forest | 20.5 ± 2.1ab | 17.2 ± 3.0a | 2 440 ± 357a | 0.77 ± 0.04a | 5 787 ± 351a | 1.66 ± 0.24a | 0.90 ± 0.05a | 1.05 ± 0.19a | 0.89 ± 0.04a |
马尾松林 Pinus massoniana forest | 19. 6 ± 1.4a | 20.2 ± 0.6a | 1 960 ± 211a | 0.79 ± 0.05a | 4 892 ± 719a | 0.86 ± 0.07b | 0.88 ± 0.06a | 0.64 ± 0.19a | 0.74 ± 0.10a |
湿地松林 Pinus elliottii forest | 24.6 ± 1.2b | 22.0 ± 0.8a | 2 060 ± 309a | 0.75 ± 0.06a | 7 070 ± 870b | 1.51 ± 0.20a | 0.86 ± 0.06a | 0.86 ± 0.24a | 0.92 ± 0.06a |
表1 林分基本信息(平均值±标准误差, n = 5)
Table 1 General stand characteristics in our selected forest plantations (mean ± SE, n = 5)
林分类型 Forest stand type | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) | 林分密度 Stand density (trees·hm-2) | 郁闭度 Canopy closure | 凋落物干质量 Dry mass of litter (kg·hm-2) | 群落多样性指数 Diversity indices of communities | |||
---|---|---|---|---|---|---|---|---|---|
灌木 Shrub | 草本 Herb | ||||||||
Shannon- Wiener (H) | Pielous (J) | Shannon- Wiener (H) | Pielous (J) | ||||||
杉木林 Cunninghamia lanceolata forest | 20.5 ± 2.1ab | 17.2 ± 3.0a | 2 440 ± 357a | 0.77 ± 0.04a | 5 787 ± 351a | 1.66 ± 0.24a | 0.90 ± 0.05a | 1.05 ± 0.19a | 0.89 ± 0.04a |
马尾松林 Pinus massoniana forest | 19. 6 ± 1.4a | 20.2 ± 0.6a | 1 960 ± 211a | 0.79 ± 0.05a | 4 892 ± 719a | 0.86 ± 0.07b | 0.88 ± 0.06a | 0.64 ± 0.19a | 0.74 ± 0.10a |
湿地松林 Pinus elliottii forest | 24.6 ± 1.2b | 22.0 ± 0.8a | 2 060 ± 309a | 0.75 ± 0.06a | 7 070 ± 870b | 1.51 ± 0.20a | 0.86 ± 0.06a | 0.86 ± 0.24a | 0.92 ± 0.06a |
林分类型 Forest stand type | 灌木树种 Shrub species | 基径 Basal diameter (mm) | 高度 Height (cm) | 冠幅 Crown width (cm) | 密度 Density (shrubs·hm-2) | 重要值 Important value (%) |
---|---|---|---|---|---|---|
杉木林 Cunninghamia lanceolata forest | 檵木 Loropetalum chinense | 15.8 ± 1.8 | 183 ± 25 | 124 ± 17 | 700 ± 146 | 22.22 |
杨桐 Adinandra millettii | 14.4 ± 1.7 | 178 ± 25 | 89 ± 11 | 2 320 ± 320 | 37.87 | |
格药柃 Eurya muricata | 16.3 ± 1.3 | 200 ± 12 | 102 ± 10 | 1 354 ± 277 | 29.67 | |
马尾松林 Pinus massoniana forest | 檵木 L. chinense | 30.2 ± 4.3 | 413 ± 41 | 186 ± 22 | 2 655 ± 988 | 33.67 |
杨桐 A. millettii | 36.0 ± 7.2 | 376 ± 64 | 173 ± 34 | 2 585 ± 520 | 14.67 | |
格药柃 E. muricata | 23.8 ± 3.6 | 302 ± 50 | 118 ± 16 | 2 240 ± 470 | 8.00 | |
湿地松林 Pinus elliottii forest | 檵木 L. chinense | 16.3 ± 2.7 | 244 ± 34 | 134 ± 18 | 3 960 ± 905 | 36.00 |
杨桐 A. millettii | 16.4 ± 1.8 | 206 ± 21 | 111 ± 13 | 1 640 ± 324 | 25.34 | |
格药柃 E. muricata | 11.0 ± 2.9 | 112 ± 25 | 73 ± 14 | 850 ± 159 | 21.33 |
表2 林下灌木基本信息(平均值±标准误差, n = 5)
Table 2 The characteristics of understory shrub species (mean ± SE, n = 5)
林分类型 Forest stand type | 灌木树种 Shrub species | 基径 Basal diameter (mm) | 高度 Height (cm) | 冠幅 Crown width (cm) | 密度 Density (shrubs·hm-2) | 重要值 Important value (%) |
---|---|---|---|---|---|---|
杉木林 Cunninghamia lanceolata forest | 檵木 Loropetalum chinense | 15.8 ± 1.8 | 183 ± 25 | 124 ± 17 | 700 ± 146 | 22.22 |
杨桐 Adinandra millettii | 14.4 ± 1.7 | 178 ± 25 | 89 ± 11 | 2 320 ± 320 | 37.87 | |
格药柃 Eurya muricata | 16.3 ± 1.3 | 200 ± 12 | 102 ± 10 | 1 354 ± 277 | 29.67 | |
马尾松林 Pinus massoniana forest | 檵木 L. chinense | 30.2 ± 4.3 | 413 ± 41 | 186 ± 22 | 2 655 ± 988 | 33.67 |
杨桐 A. millettii | 36.0 ± 7.2 | 376 ± 64 | 173 ± 34 | 2 585 ± 520 | 14.67 | |
格药柃 E. muricata | 23.8 ± 3.6 | 302 ± 50 | 118 ± 16 | 2 240 ± 470 | 8.00 | |
湿地松林 Pinus elliottii forest | 檵木 L. chinense | 16.3 ± 2.7 | 244 ± 34 | 134 ± 18 | 3 960 ± 905 | 36.00 |
杨桐 A. millettii | 16.4 ± 1.8 | 206 ± 21 | 111 ± 13 | 1 640 ± 324 | 25.34 | |
格药柃 E. muricata | 11.0 ± 2.9 | 112 ± 25 | 73 ± 14 | 850 ± 159 | 21.33 |
乔木树种 Tree species | pH | 可溶性有机碳 DOC | 硝态氮 NO3--N | 铵态氮 NH4+-N | 有效磷 AP | 全碳 TC | 全氮 TN | 全磷 TP | 碳氮比 C/N |
---|---|---|---|---|---|---|---|---|---|
杉木 Cunninghamia lanceolata | 0.87 ± 0.01 | 3.6 ± 0.72 | 4.7 ± 1.97 | 1.4 ± 0.14 | 4.4 ± 0.85 | 6.2 ± 1.12 | 3.6 ± 0.69 | 1.7 ± 0.18 | 1.8 ± 0.08 |
马尾松 Pinus massoniana | 0.86 ± 0.04 | 5.5 ± 1.11 | 4.0 ± 1.82 | 1.6 ± 0.11 | 4.8 ± 1.33 | 7.5 ± 1.94 | 4.5 ± 0.98 | 1.6 ± 0.19 | 1.7 ± 0.12 |
湿地松 Pinus elliottii | 0.83 ± 0.01 | 4.5 ± 0.87 | 2.8 ± 1.58 | 1.8 ± 0.33 | 7.4 ± 2.39 | 9.1 ± 2.30 | 5.1 ± 1.51 | 1.6 ± 0.25 | 1.9 ± 0.07 |
F | 0.620 | 1.010 | 0.290 | 0.731 | 1.741 | 0.799 | 0.285 | 0.023 | 1.432 |
p | 0.556 | 0.396 | 0.754 | 0.528 | 0.246 | 0.493 | 0.762 | 0.978 | 0.284 |
表4 不同乔木树种根际效应(平均值±标准误差, n = 5)
Table 4 Rhizosphere effects of different overstory tree species (mean ± SE, n=5)
乔木树种 Tree species | pH | 可溶性有机碳 DOC | 硝态氮 NO3--N | 铵态氮 NH4+-N | 有效磷 AP | 全碳 TC | 全氮 TN | 全磷 TP | 碳氮比 C/N |
---|---|---|---|---|---|---|---|---|---|
杉木 Cunninghamia lanceolata | 0.87 ± 0.01 | 3.6 ± 0.72 | 4.7 ± 1.97 | 1.4 ± 0.14 | 4.4 ± 0.85 | 6.2 ± 1.12 | 3.6 ± 0.69 | 1.7 ± 0.18 | 1.8 ± 0.08 |
马尾松 Pinus massoniana | 0.86 ± 0.04 | 5.5 ± 1.11 | 4.0 ± 1.82 | 1.6 ± 0.11 | 4.8 ± 1.33 | 7.5 ± 1.94 | 4.5 ± 0.98 | 1.6 ± 0.19 | 1.7 ± 0.12 |
湿地松 Pinus elliottii | 0.83 ± 0.01 | 4.5 ± 0.87 | 2.8 ± 1.58 | 1.8 ± 0.33 | 7.4 ± 2.39 | 9.1 ± 2.30 | 5.1 ± 1.51 | 1.6 ± 0.25 | 1.9 ± 0.07 |
F | 0.620 | 1.010 | 0.290 | 0.731 | 1.741 | 0.799 | 0.285 | 0.023 | 1.432 |
p | 0.556 | 0.396 | 0.754 | 0.528 | 0.246 | 0.493 | 0.762 | 0.978 | 0.284 |
灌木树种 Shrub species | pH | 可溶性有机碳 DOC | 硝态氮 NO3--N | 铵态氮 NH4+-N | 有效磷 AP | 全碳 TC | 全氮 TN | 全磷 TP | 碳氮比 C/N |
---|---|---|---|---|---|---|---|---|---|
檵木 Loropetalum chinense | 0.91 ± 0.02a | 3.9 ± 0.65b | 3.9 ± 0.67a | 1.5 ± 0.08b | 5.0 ± 0.94b | 5.5 ± 0.86b | 3.6 ± 0.41b | 1.5 ± 0.10b | 1.6 ± 0.08b |
杨桐 Adinandra millettii | 0.94 ± 0.01ab | 2.7 ± 0.54ab | 3.0 ± 0.91a | 1.3 ± 0.10ab | 3.0 ± 0.65a | 3.1 ± 0.51a | 2.3 ± 0.27a | 1.3 ± 0.10ab | 1.3 ± 0.07a |
格药柃 Eurya muricata | 0.96 ± 0.02b | 1.8 ± 0.23a | 1.7 ± 0.47a | 1.1 ± 0.07a | 2.2 ± 0.67a | 1.9 ± 0.26a | 1.5 ± 0.18a | 1.1 ± 0.09a | 1.2 ± 0.06a |
F | 3.464 | 5.037 | 1.699 | 5.508 | 4.833 | 9.535 | 12.481 | 5.304 | 5.972 |
p | 0.043* | 0.012* | 0.198 | 0.009* | 0.014* | 0.001* | 0.000* | 0.010* | 0.006* |
表5 不同灌木树种根际效应(平均值±标准误差, n = 5)
Table 5 Rhizosphere effects of different understory shrub species (mean ± SE, n=15)
灌木树种 Shrub species | pH | 可溶性有机碳 DOC | 硝态氮 NO3--N | 铵态氮 NH4+-N | 有效磷 AP | 全碳 TC | 全氮 TN | 全磷 TP | 碳氮比 C/N |
---|---|---|---|---|---|---|---|---|---|
檵木 Loropetalum chinense | 0.91 ± 0.02a | 3.9 ± 0.65b | 3.9 ± 0.67a | 1.5 ± 0.08b | 5.0 ± 0.94b | 5.5 ± 0.86b | 3.6 ± 0.41b | 1.5 ± 0.10b | 1.6 ± 0.08b |
杨桐 Adinandra millettii | 0.94 ± 0.01ab | 2.7 ± 0.54ab | 3.0 ± 0.91a | 1.3 ± 0.10ab | 3.0 ± 0.65a | 3.1 ± 0.51a | 2.3 ± 0.27a | 1.3 ± 0.10ab | 1.3 ± 0.07a |
格药柃 Eurya muricata | 0.96 ± 0.02b | 1.8 ± 0.23a | 1.7 ± 0.47a | 1.1 ± 0.07a | 2.2 ± 0.67a | 1.9 ± 0.26a | 1.5 ± 0.18a | 1.1 ± 0.09a | 1.2 ± 0.06a |
F | 3.464 | 5.037 | 1.699 | 5.508 | 4.833 | 9.535 | 12.481 | 5.304 | 5.972 |
p | 0.043* | 0.012* | 0.198 | 0.009* | 0.014* | 0.001* | 0.000* | 0.010* | 0.006* |
图1 不同林分类型下乔灌木的根际效应(平均值±标准误差, n = 5)。A, 杉木林。B, 马尾松林。C, 湿地松林。LC, 檵木; AM, 杨桐; EM, 格药柃; OS, 乔木。不同小写字母表示树种间差异显著(p < 0.05)。DOC、NO3--N、NH4+-N、AP、TC、TN、TP、C/N同表3。
Fig. 1 Rhizosphere effects of tree species and shrub species in different forest stand types (mean ± SE, n = 5). A, Cunninghamia lanceolata forest. B, Pinus massoniana forest. C, Pinus elliottii forest. LC, Loropetalum chinense; AM, Adinandra millettii; EM, Eurya muricata; OS, overstory tree species. Different lowercase letters indicate significant differences among different species (p < 0.05). See Table 3 for DOC, NO3--N, NH4+-N, AP, TC, TN, TP, C/N.
植物类型 Plant type | 杉木林 Cunninghamia lanceolata forest | 马尾松林 Pinus massoniana forest | 湿地松林 Pinus elliottii forest |
---|---|---|---|
乔木 Overstory tree | 0.56 ± 0.400a | 0.68 ± 0.447a | 0.84 ± 0.469a |
檵木 Loropetalum chinense | -0.11 ± 0.041b | 0.44 ± 0.427a | 0.4 ± 0.225ab |
杨桐 Adinandra millettii | -0.25 ± 0.274b | -0.64 ± 0.142b | 0.08 ± 0.396ab |
格药柃 Eurya muricata | -0.93 ± 0.114c | -0.8 ± 0.154b | -0.4 ± 0.228b |
F | 10.940 | 8.239 | 1.705 |
p | 0.004* | 0.003* | 0.211 |
表6 不同林分类型下乔灌木根际效应主成分分析综合得分(平均值±标准误差, n = 5)
Table 6 Comprehensive scores on rhizosphere effects of tree and shrub species in different forest stand types by principal component analysis (mean ± SE, n=5)
植物类型 Plant type | 杉木林 Cunninghamia lanceolata forest | 马尾松林 Pinus massoniana forest | 湿地松林 Pinus elliottii forest |
---|---|---|---|
乔木 Overstory tree | 0.56 ± 0.400a | 0.68 ± 0.447a | 0.84 ± 0.469a |
檵木 Loropetalum chinense | -0.11 ± 0.041b | 0.44 ± 0.427a | 0.4 ± 0.225ab |
杨桐 Adinandra millettii | -0.25 ± 0.274b | -0.64 ± 0.142b | 0.08 ± 0.396ab |
格药柃 Eurya muricata | -0.93 ± 0.114c | -0.8 ± 0.154b | -0.4 ± 0.228b |
F | 10.940 | 8.239 | 1.705 |
p | 0.004* | 0.003* | 0.211 |
[1] |
Brzostek ER, Dragoni D, Brown ZA, Phillips RP ( 2015). Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest. New Phytologist, 206, 1274-1282.
DOI URL PMID |
[2] |
Calvaruso CN, Dira V, Turpault MP ( 2011). Impact of common European tree species and Douglas-fir ( Pseudotsuga menziesii [Mirb.] Franco) on the physicochemical properties of the rhizosphere. Plant and Soil, 342, 469-480.
DOI URL |
[3] |
Cheeke TE, Phillips RP, Brzostek ER, Rosling A, Bever JD, Fransson P ( 2017). Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytologist, 214, 432-442.
DOI URL PMID |
[4] | Du Z, Cai XH, Bao WK, Chen H, Pan HL ( 2016). Understory effects on overstory trees: A review. Chinese Journal of Applied Ecology, 27, 963-972. |
[ 杜忠, 蔡小虎, 包维楷, 陈槐, 潘红丽 ( 2016). 林下层植被对上层乔木的影响研究综述. 应用生态学报, 27, 963-972.] | |
[5] | Du Z, Cai XH, Bao WK, Chen H, Pan HL, Wang X, Zhao QX, Zhu WZ, Liu XL, Jiang Y, Li MH ( 2016). Short-term vs. long-term effects of understory removal on nitrogen and mobile carbohydrates in overstory trees. Forests, 7, 67. DOI: 10.3390/f7030067. |
[6] |
Fan C, Li XW, Zhang J ( 2014). Nitrogen dynamic of rhizosphere and bulk soil in Alnus formosana silvopasture systems. Journal of Nanjing Forestry University (Natural Science Edition), 38(5), 73-78.
DOI URL |
[ 范川, 李贤伟, 张健 ( 2014). 台湾桤木林草复合模式根际与非根际氮特征. 南京林业大学学报(自然科学版), 38(5), 73-78.]
DOI URL |
|
[7] |
Fu XL, Wang JL, Di YB, Wang HM ( 2015 a). Differences in fine-root biomass of trees and understory vegetation among stand types in subtropical forests. PLOS ONE, 10, e0128894. DOI: 10.1371/journal.pone.0128894.
DOI URL PMID |
[8] |
Fu XL, Wang JL, Wang HM, Dai XQ, Yang FT, Zhao M ( 2016). Response of the fine root production, phenology, and turnover rate of six shrub species from a subtropical forest to a soil moisture gradient and shading. Plant and Soil, 399, 1-12.
DOI URL |
[9] |
Fu XL, Yang FT, Wang JL, Di YB, Dai XQ, Zhang XY, Wang HM ( 2015 b). Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation. Science of the Total Environment, 502, 280-286.
DOI URL PMID |
[10] | Gong X ( 2013). Soil Phosphorus Availability and Its Influence Factors of Plantation in Degraded Subtropical Hilly Red Soil Region. PhD dissertation, Jiangxi Agricultural University, Nanchang. |
[ 龚霞 ( 2013). 亚热带退化丘陵红壤区人工林土壤磷素有效性及其影响因素. 博士学位论文, 江西农业大学, 南昌.] | |
[11] |
Gschwendtner S, Engel M, Lueders T, Buegger F, Schloter M ( 2016). Nitrogen fertilization affects bacteria utilizing plant-derived carbon in the rhizosphere of beech seedlings. Plant and Soil, 407, 203-215.
DOI URL |
[12] | Guan X, Wang SL, Zhang WD ( 2016). Availability of N and P in the rhizosphere of three subtropical species. Journal of Tropical Forest Science, 28, 159-166. |
[13] |
Hess LJT, Austin AT ( 2017). Pine afforestation alters rhizosphere effects and soil nutrient turnover across a precipitation gradient in Patagonia, Argentina. Plant and Soil, 415, 449-464.
DOI URL |
[14] |
Hinsinger P, Plassard C, Tang C, Jaillard B ( 2003). Origins of root-mediated pH changes in rhizosphere and their responses to environmental constraints: A review. Plant and Soil, 248, 43-59.
DOI URL |
[15] | Li B (2000). Ecology. High Educational Press, Beijing. |
[ 李博 (2000). 生态学. 高等教育出版社, 北京.] | |
[16] |
Li CC, Li QR, Qiao N, Xu XL, Li QK, Wang HM ( 2016). Inorganic and organic nitrogen uptake by nine dominant subtropical tree species. iForest, 9, 253-258.
DOI URL |
[17] | Li YP, Xu H, Li YD, Luo TS, Chen DX, Zhou Z, Lin MX, Yang H ( 2016). Scale-dependent spatial patterns of species diversity in the tropical montane rain forest in Jianfengling, Hainan Island, China. Chinese Journal of Plant Ecology, 40, 861-870. |
[ 李艳朋, 许涵, 李意德, 骆土寿, 陈德祥, 周璋, 林明献, 杨怀 ( 2016). 海南尖峰岭热带山地雨林物种多样性空间分布格局的尺度效应. 植物生态学报, 40, 861-870.] | |
[18] | Lin GG, Zhao Q, Zhao L, Li HC, Zeng DH ( 2012). Effects of understory removal and nitrogen addition on the soil chemical and biological properties of Pinus sylvestris var. mongolica plantation in Keerqin Sandy Land. Chinese Journal of Applied Ecology, 23, 1188-1194. |
[ 林贵刚, 赵琼, 赵蕾, 李慧超, 曾德慧 ( 2012). 林下植被去除与氮添加对樟子松人工林土壤化学和生物学性质的影响. 应用生态学报, 23, 1188-1194. ] | |
[19] |
Liu S, Sheng KY, Liu XS, Wu ZH, Guo XM, Xiao FM, Zhang WY ( 2017). Contents of soil organic carbon and nitrogen forms in rhizosphere soil of Cunninghamia lanceolata and the rhizopshere effect. Chinese Journal of Ecology, 36, 1957-1964.
DOI URL |
[ 刘顺, 盛可银, 刘喜帅, 吴珍花, 郭晓敏, 肖复明, 张文元 ( 2017). 陈山红心杉根际土壤有机碳、氮含量及根际效应. 生态学杂志, 36, 1957-1964.]
DOI URL |
|
[20] | Liu SX, Wang MY, Yang YM, Xiong Z, Wang JH, Miao FJ, Zhang JY, Wang J ( 2013). Rhizosphere effect of five plant communities in Jianhu wetland lakeside zone on nitrogen and phosphorus. Environmental Science & Technology, 36(10), 73-77. |
[ 刘绍雄, 王明月, 杨宇明, 熊智, 王金华, 缪福俊, 张敬宜, 王娟 ( 2013). 剑湖湿地湖滨带5种植物群落类型氮和磷根际效应. 环境科学与技术, 36(10), 73-77.] | |
[21] | Liu Y, Hu XF, Chen FS, Yuan PC ( 2013). Temperature sensitivity of CO2 fluxes from rhizosphere soil mineralization and root decomposition inPinus massoniana and Castanopsis sclerophylla forests. Chinese Journal of Applied Ecology, 24, 1501-1508. |
[ 刘煜, 胡小飞, 陈伏生, 袁平成 ( 2013). 马尾松和苦槠林根际土壤矿化和根系分解CO2释放的温度敏感性. 应用生态学报, 24, 1501-1508.] | |
[22] |
Pan F, Liang Y, Zhang W, Zhao J ( 2016). Enhanced nitrogen availability in karst ecosystems by oxalic acid release in the rhizosphere. Frontiers in Plant Science, 7, 687. DOI: 10.3389/fpls.2016.00687.
DOI URL PMID |
[23] |
Phillips RP, Erlitz Y, Bier R, Bernhardt ES ( 2008). New approach for capturing soluble root exudates in forest soils. Functional Ecology, 22, 990-999.
DOI URL |
[24] |
Phillips RP, Fahey TJ ( 2006). Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology, 87, 1302-1303.
DOI URL PMID |
[25] |
Phillips RP, Fahey TJ ( 2008). The influence of soil fertility on rhizosphere effects in northern hardwood forest soils. Soilence Society of America Journal, 72, 453-461.
DOI URL |
[26] | Qi HY ( 2014). Nitrogen and Phosphorus Rhizosphere Effect: A Potential Strategy of Phyllostachys edulis Expansion to Broad-leaved Forest. Master degree dissertation, Jiangxi Agricultural University,Nanchang. |
[ 祁红艳 ( 2014). 氮磷根际效应: 毛竹扩张的潜在策略. 硕士学位论文, 江西农业大学, 南昌.] | |
[27] |
Sommer J, Dippold MA, Zieger SL, Handke A, Scheu S, Kuzyakov Y ( 2017). The tree species matters: Belowground carbon input and utilization in the myco-rhizosphere. European Journal of Soil Biology, 81, 100-107.
DOI URL |
[28] | Song YC (2001). Vegetation Ecology. East China Normal University Press, Shanghai. |
[ 宋永昌 (2001). 植被生态学. 华东师范大学出版社, 上海.] | |
[29] | Su LY, Cheng AX, Yu AL, Fu WQ, Zhen PY ( 1992). Investigation on mycorrhizae of forest trees in Natural Reserve of Mount Tianmu. Journal of Zhejiang Forestry College, 9, 263-276. |
[ 苏琍英, 程爱兴, 喻爱林, 傅卫庆, 郑平谣 ( 1992). 天目山自然保护区林木菌根调查. 浙江林学院学报, 9, 263-276.] | |
[30] |
Sun L, Kominami Y, Yoshimura K, Kitayama K ( 2017). Root-exudate flux variations among four co-existing canopy species in a temperate forest, Japan. Ecological Research, 32, 331-339.
DOI URL |
[31] |
Takahashi K, Uemura S, Suzuki JI, Hara T ( 2003). Effects of understory dwarf bamboo on soil water and the growth of overstory trees in a dense secondary Betula ermanii forest, northern Japan. Ecological Research, 18, 767-774.
DOI URL |
[32] |
Uroz S, Oger P, Tisserand E, Cébron A, Turpault M-P, Buée M, de Boer W, Leveau JHJ, Frey-Klett P ( 2016). Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Scientific Reports, 6, 27756. DOI: 10.1038/srep27756.
DOI URL PMID |
[33] | Wan SZ, Zhang CL, Chen YQ, Zhao J, Wang XL, Wu JP, Zhou LX, Lin YB, Liu ZF, Fu SL ( 2014). The understory fern Dicranopteris dichotoma facilitates the overstory Eucalyptus trees in subtropical plantations. Ecosphere, 5(5), 1-12. |
[34] |
Wang FC, Zou LQ, Tang J, Fang XM, Wan SZ, Wu NS, Wang HM, Chen FS ( 2016). Influence of nitrogen deposition on soil nutrient supply and organic carbon mineralization in Cunninghamia lanceolata and Liquidambar formosana plantations. Acta Ecologica Sinica, 36, 3226-3234.
DOI URL |
[ 王方超, 邹丽群, 唐静, 方向民, 万松泽, 吴南生, 王辉民, 陈伏生 ( 2016). 氮沉降对杉木和枫香土壤氮磷转化及碳矿化的影响. 生态学报, 36, 3226-3234.]
DOI URL |
|
[35] | Wang JL, Wang HM, Fu XL, Yang FT, Chen FS ( 2015). Effects of intraspecific competition and litter coverage on fine root morphological traits of Cunninghamia lanceolata and Loropetalum chinensis. Chinese Journal of Ecology, 34, 596-603 |
[ 王君龙, 王辉民, 付晓莉, 杨风亭, 陈伏生 ( 2015). 种内竞争和残落物覆盖对杉木和檵木细根形态特征的影响. 生态学杂志, 34, 596-603.] | |
[36] | Wang XZ, Hu ZL, Du YX, Liu YZ, Li LQ, Pan GX ( 2010). Comparison of microbial biomass and community structure of rhizosphere soil between forest and shrubbery in karst ecosystem. Soils, 42, 224-229. |
[ 王新洲, 胡忠良, 杜有新, 刘永卓, 李恋卿, 潘根兴 ( 2010). 喀斯特生态系统中乔木和灌木林根际土壤微生物生物量及其多样性的比较. 土壤, 42, 224-229.] | |
[37] | Wang YP, Wang HT, Tan XM, Jiang YZ, Kong LG ( 2010). Comparison on rhizosphere effect of cultivar alternation and non-alternation continuous cropping poplar (Populus deltoids) plantation. Acta Ecologica Sinica, 30, 1379-1389. |
[ 王延平, 王华田, 谭秀梅, 姜岳忠, 孔令刚 ( 2010). 杨树人工林品种更替连作与非更替连作根际效应的比较. 生态学报, 30, 1379-1389.] | |
[38] |
Yang Y, Wang JF, Zhang XY, Li DD, Wang HM, Chen FS, Sun XM, Wen XF ( 2016). Mechanism of litter and understory vegetation effects on soil carbon and nitrogen hydrolase activities in Chinese fir forests. Acta Ecologica Sinica, 36, 8102-8110.
DOI URL |
[ 杨洋, 王继富, 张心昱, 李丹丹, 王辉民, 陈伏生, 孙晓敏, 温学发 ( 2016). 凋落物和林下植被对杉木林土壤碳氮水解酶活性的影响机制. 生态学报, 36, 8102-8110.]
DOI URL |
|
[39] |
Yin HJ, Wheeler E, Phillips RP ( 2014). Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biology & Biochemistry, 78, 213-221.
DOI URL |
[40] |
Yin HJ, Xiao J, Li YF, Chen Z, Cheng XY, Zhao CZ, Liu Q ( 2013). Warming effects on root morphological and physiological traits: The potential consequences on soil C dynamics as altered root exudation. Agricultural and Forest Meteorology, 180, 287-296.
DOI URL |
[41] |
Zhan YY, Xue ZY, Ren W, Zhou ZY ( 2009). Characteristic of nitrogen content between rhizosphere and bulk soil under seven shrubs in arid desert area of China. Acta Ecologica Sinica, 29, 59-66.
DOI URL |
[ 詹媛媛, 薛梓瑜, 任伟, 周志宇 ( 2009). 干旱荒漠区不同灌木根际与非根际土壤氮素的含量特征. 生态学报, 29, 59-66.]
DOI URL |
|
[42] | Zhang X, Xue JH, Kikuo H, Xu XT, Tian Y, Hiroto T, Liu YH ( 2007). Nutrient dynamics and hydrological process of karst forests in mountainous area of central Guizhou Province, China. Journal of Plant Ecology (Chinese Version), 31, 757-768. |
[ 张喜, 薛建辉, 生原喜久雄, 许笑天, 田野, 户田诰夫, 刘延惠 ( 2007). 黔中山地喀斯特森林的水文学过程和养分动态. 植物生态学报, 31, 757-768.] | |
[43] | Zhao Q, Zeng DH, Yu ZY, Deng B, Fan ZP ( 2006). Rhizosphere effects of Pinus sylvestris var.mongolica on soil phosphorus transformation. Chinese Journal of Applied Ecology, 17, 1377-1381. |
[ 赵琼, 曾德慧, 于占源, 邓斌, 范志平 ( 2006). 沙地樟子松人工林土壤磷素转化的根际效应. 应用生态学报, 17, 1377-1381.] |
[1] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[2] | 邓梦达, 游健荣, 李家湘, 李雄, 杨静, 邓创发, 刘昂, 刘文剑, 丁聪, 谢勇, 周国辉, 喻勋林. 长株潭城市群生态绿心地区主要植被类型的群落特征[J]. 植物生态学报, 2020, 44(12): 1296-1304. |
[3] | 高雨秋, 戴晓琴, 王建雷, 付晓莉, 寇亮, 王辉民. 亚热带人工林下植被根际土壤酶化学计量特征[J]. 植物生态学报, 2019, 43(3): 258-272. |
[4] | 李忠佩. 凋落物对红壤丘陵区人工林地土壤有机碳及养分的影响[J]. 植物生态学报, 1999, 23(199901): 84-92. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19