植物生态学报 ›› 2013, Vol. 37 ›› Issue (7): 691-698.DOI: 10.3724/SP.J.1258.2013.00072
所属专题: 植物功能性状
• 综述 • 上一篇
收稿日期:
2013-03-13
接受日期:
2013-05-20
出版日期:
2013-03-13
发布日期:
2013-07-05
通讯作者:
郭大立
基金资助:
LI Le1,ZENG Hui1,2,GUO Da-Li3,*()
Received:
2013-03-13
Accepted:
2013-05-20
Online:
2013-03-13
Published:
2013-07-05
Contact:
GUO Da-Li
摘要:
叶脉网络结构是叶脉系统在叶片里的分布和排列样式。早期叶脉网络结构研究主要集中在其分类学意义上; 近年来叶脉网络功能性状及其在植物水分利用上的意义已成为植物生态学研究的热点。该文介绍了叶脉网络功能性状的指标体系(包括叶脉密度、叶脉直径、叶脉之间的距离、叶脉闭合度等), 综述了叶脉网络功能性状与叶脉系统功能(包括水分、养分和光合产物等物质运输、机械支撑和虫害防御等)的关系, 叶脉网络功能性状与叶片其他功能性状(包括比叶重、叶寿命、光合速率、叶片大小、气孔密度等)的协同变异和权衡关系, 以及叶脉网络功能性状随环境因子(包括水分、温度、光照等)的变化规律等方面的最新研究进展。此外, 叶脉网络功能性状的研究成果也被应用于古环境重建、城市交通规划、流域规划及全球变化研究中。由于叶脉网络功能性状是环境因子与系统发育共同作用的结果, 未来开展分子—叶片—植物—生态系统等多尺度的叶脉网络功能性状研究, 理清叶脉网络功能性状与气孔失水—茎干导水—根系吸水等植物水分利用的关系, 将为预测植物及生态系统对全球变化的响应提供新的启示。
李乐,曾辉,郭大立. 叶脉网络功能性状及其生态学意义. 植物生态学报, 2013, 37(7): 691-698. DOI: 10.3724/SP.J.1258.2013.00072
LI Le,ZENG Hui,GUO Da-Li. Leaf venation functional traits and their ecological significance. Chinese Journal of Plant Ecology, 2013, 37(7): 691-698. DOI: 10.3724/SP.J.1258.2013.00072
图1 叶脉网络功能性状与叶脉网络结构-叶脉系统的功能-环境因子的关系。
Fig. 1 Relations among leaf venation functional traits and leaf venation-leaf vein system function-environmental factors.
图2 叶脉系统中与叶脉网络功能性状有关的4个几何特征(改自Blonder et al., 2010)。
Fig. 2 Four geometrical characteristics associated with leaf venation functional traits in a leaf vein system (Adapted from Blonder et al., 2010).
叶脉系统的功能 Vein system function | 叶脉网络功能性状 Leaf venation functional traits |
---|---|
物质运输 Matter transport | 叶脉密度 Vein density (+) 叶脉直径 Vein diameter (+) 叶脉之间的距离 Distance between veins (-) |
机械支撑 Mechanical support | 叶脉直径 Vein diameter (+) 叶脉密度 Vein density (+) |
虫害防御 Herbivore defense | 叶脉闭合度 Loopiness of veins (+) 叶脉密度 Vein density (+) |
表1 叶脉网络功能性状的指标体系
Table 1 An index system for leaf venation functional traits
叶脉系统的功能 Vein system function | 叶脉网络功能性状 Leaf venation functional traits |
---|---|
物质运输 Matter transport | 叶脉密度 Vein density (+) 叶脉直径 Vein diameter (+) 叶脉之间的距离 Distance between veins (-) |
机械支撑 Mechanical support | 叶脉直径 Vein diameter (+) 叶脉密度 Vein density (+) |
虫害防御 Herbivore defense | 叶脉闭合度 Loopiness of veins (+) 叶脉密度 Vein density (+) |
图3 不同植物具有不同的叶脉网络结构(从左到右末端叶脉密度依次增加) (改自Brodribb et al., 2010)。
Fig. 3 Different plants have different leaf venations (terminal vein density increases from left to right) (Adapted from Brodribb et al., 2010).
[1] |
Barthélemy M, Flammini A (2008). Modeling urban street patterns. Physical Review Letters, doi: 10.1103/PhysRev-Lett.100.138702.
URL PMID |
[2] |
Beerling DJ, Franks PJ (2010). The hidden cost of transpiration. Nature, 464, 495-496.
DOI URL PMID |
[3] |
Blonder B, Violle C, Bentley LP, Enquist BJ (2010). Venation networks and the origin of the leaf economics spectrum. Ecology Letters, 14, 91-100.
DOI URL PMID |
[4] |
Bohn S, Magnasco MO (2007). Structure, scaling, and phase transition in the optimal transport network. Physical Review Letters, doi: 10.1103/PhysRevLett.98.088702.
URL PMID |
[5] |
Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA (2009). Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of the Royal Society B: Biological Sciences, 276, 1771-1776.
DOI URL PMID |
[6] |
Brodribb TJ, Feild TS (2010). Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecology Letters, 13, 175-183.
DOI URL PMID |
[7] |
Brodribb TJ, Feild TS, Sack L (2010). Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology, 37, 488-498.
DOI URL |
[8] |
Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytologist, 192, 437-448.
DOI URL PMID |
[9] |
Chettiparamb A (2005). Fractal spaces for planning and governance. The Town Planning Review, 76, 317-340.
DOI URL |
[10] |
Chonan N (1967). Studies on the photosynthetic tissues in the leaves of cereal crops. III. The mesophyll structure of rice leaves inserted at different levels of the shoot. Proceedings of the Crop Science Society of Japan, 36, 291-296.
DOI URL |
[11] |
Dunbar-Co S, Sporck MJ, Sack L (2009). Leaf trait diversification and design in seven rare taxa of the Hawaiian Plantago radiation. International Journal of Plant Sciences, 170, 61-75.
DOI URL |
[12] | Editorial Committee of Flora of China, Chinese Academy of Sciences (1998). Flora of China. Science Press, Beijing. (in Chinese) |
[ 中国科学院中国植物志编辑委员会 (1998). 中国植物志. 科学出版社, 北京.] | |
[13] | Ellis B, Daly DC, Hickey LJ, Johnson KR, Mitchell JD, Wilf P, Wing SL (2009). Manual of Leaf Architecture. Cornell University Press, New York. |
[14] |
Feild TS, Brodribb TJ, Iglesias A, Chatelet DS, Baresch A, Upchurch GR, Gomez JB, Mohrh BAR, Coiffardh C, Kvaceki J, Jaramillo C (2011). Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. Proceedings of the National Academy of Sciences of the United States of America, 108, 8363-8366.
DOI URL |
[15] |
Franks PJ, Beerling DJ (2009). CO2-forced evolution of plant gas exchange capacity and water-use efficiency over the Phanerozoic. Geobiology, 7, 227-236.
DOI URL PMID |
[16] | Grace J, Russell G (1977). The effect of wind on grasses. III. Influence of continuous drought or wind on anatomy and water relations in Festuca arundinacea Schreb. Journal of Botany, 28, 268-278. |
[17] |
Gupta B (1961). Correlation of tissues in leaves. 1. Absolute vein-islet numbers and absolute veinlet termination numbers. Annals of Botany, 25, 65-70.
DOI URL |
[18] |
He JS, Wang X, Flynn DF, Wang L, Schmid B, Fang J (2009). Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence. Ecology, 90, 2779-2791.
DOI URL PMID |
[19] |
Hickey LJ (1973). Classification of the architecture of dicotyledonous leaves. American Journal of Botany, 60, 17-33.
DOI URL |
[20] | Hickey LJ (1979). A revised classification of the architecture of dicotyledonous leaves. In: Metcalfe CR, Chalk L eds. Anatomy of the Dicotyledons, Vol. I, Systematic Anatomy of the Leaf and Stem. 2nd edn. Clarendon Press, Oxford. 25-39. |
[21] |
Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75, 3-35.
DOI URL |
[22] | Hu YL (1992). Some morphological and anatomical characters of root system and leaves of Phyllanthu semblica and its relation to drought resistance. Journal of Fujian Agricultural College, 21, 413-417. (in Chinese with English Abstract) |
[ 胡又厘 (1992). 余甘根和叶的形态解剖特征与耐旱性的关系. 福建农学院学报, 21, 413-417.] | |
[23] |
Hughes AP (1959). Effects of the environment on leaf development in Impatiens parviflora DC. Journal of the Linnean Society of London, Botany, 56, 161-165.
DOI URL |
[24] |
Lavorel S, Garnier E (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16, 545-556.
DOI URL |
[25] | Li FL, Bao WK (2005). Responses of the morphological and anatomical structure of the plant leaf to environmental change. Chinese Bulletin of Botany, 22, 118-127. (in Chinese with English Abstract) |
[ 李芳兰, 包维楷 (2005). 植物叶片形态解剖结构对环境变化的响应与适应. 植物学通报, 22, 118-127.] | |
[26] | Maximov NA (1929). The Plant in Relation to Water. London: Translation by Yapp RH. Ecological anatomy, Water Flooding, General article Review article (PMBD, 185104291). |
[27] | McElwain J, Willis KJ, Lupia R (2005). Cretaceous CO2 decline and the radiation and diversification of angiosperms. Ecological Studies, 177, 133-165. |
[28] |
McGill BJ, Enquist BJ, Weiher E, Westoby M (2006). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21, 178-185.
DOI URL PMID |
[29] |
McKown AD, Cochard H, Sack L (2010). Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution. The American Naturalist, 175, 447-460.
DOI URL PMID |
[30] |
Melville R (1976). The terminology of leaf architecture. Taxon, 25, 549-561.
DOI URL |
[31] | Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165. (in Chinese with English Abstract) |
[ 孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.] | |
[32] | Niinemets Ü, Portsmuth A, Tobias M (2007). Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation? Functional Ecology, 21, 28-40. |
[33] |
Niklas KJ (1999). A mechanical perspective on foliage leaf form and function. New Phytologist, 143, 19-31.
DOI URL |
[34] |
Oleksyn J, Karolewski P, Giertych MJ, Zytkowiak R, Reich PB, Tjoelker MG (2008). Primary and secondary host plants differ in leaf-level photosynthetic response to herbivory: evidence from Alnus and Betula grazed by the alder beetle, Agelastica alni. New Phytologist, 140, 239-249.
DOI URL |
[35] |
Pelletier JD, Turcotte DL (2000). Shapes of river networks and leaves: are they statistically similar? Philosophical Transactions of the Royal Society B: Biological Sciences, 355, 307-311.
DOI URL |
[36] |
Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734.
URL PMID |
[37] |
Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H (2001). Evolution and function of leaf venation architecture: a review. Annals of Botany, 87, 553-566.
DOI URL |
[38] |
Sack L, Cowan PD, Holbrook NM (2003a). The major veins of mesomorphic leaves revisited: tests for conductive overload in Acer saccharum (Aceraceae) and Quercus rubra (Fagaceae). American Journal of Botany, 90, 32-39.
URL PMID |
[39] | Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003b). The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell & Environment, 26, 1343-1356. |
[40] |
Sack L, Dietrich EM, Streeter CM, Sánchez-Gómez D, Holbrook NM (2008). Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption. Proceedings of the National Academy of Sciences of the United States of America, 105, 1567-1572.
DOI URL PMID |
[41] |
Sack L, Frole K (2006). Leaf structural diversity is related to hydraulic capacity in tropical rainforest trees. Ecology, 87, 483-491.
DOI URL PMID |
[42] |
Sack L, Holbrook NM (2006). Leaf hydraulics. Annual Review of Plant Biology, 57, 361-381.
URL PMID |
[43] |
Sack L, Scoffoni C (2013). Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983-1000.
DOI URL PMID |
[44] |
Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications, 3, 837.
DOI URL PMID |
[45] |
Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiology, 156, 832-843.
DOI URL PMID |
[46] | Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. Springer Verlag, New York. |
[47] |
Uhl D, Mosbrugger V (1999). Leaf venation density as a climate and environmental proxy: a critical review and new data. Palaeogeography, Palaeoclimatology, Palaeoecology, 149, 15-26.
DOI URL |
[48] |
Vincent JF (1983). The influence of water content on the stiffness and fracture properties of grass leaves. Grass and Forage Science, 38, 107-114.
DOI URL |
[49] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[50] |
Walls RL (2011). Angiosperm leaf vein patterns are linked to leaf functions in a global-scale data set. American Journal of Botany, 98, 244-253.
DOI URL PMID |
[51] | Wang JZ, Zhang WH (2004). The research on form dissecting of Quercus variabilis leaf in different habitats. Journal of Northwest Forestry University, 19(2), 44-46. (in Chinese with English Abstract) |
[ 王金照, 张文辉 (2004). 不同生境下栓皮栎叶形态解剖的研究. 西北林学院学报, 19(2), 44-46.] | |
[52] |
Webb CT, Hoeting JA, Ames GM, Pyne MI, LeRoy Poff N (2010). A structured and dynamic framework to advance traits―based theory and prediction in ecology. Ecology Letters, 13, 267-283.
DOI URL PMID |
[53] |
Westoby M, Wright IJ (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology and Evolution, 21, 261-268.
DOI URL PMID |
[54] | Whitehead FH (1964). Phenotypic adaptation in wind exposed plants. Scientia Horticulturae, 17, 31-39. |
[55] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee TL, Lee W, Lusk C, Midgley JJ, Marie-Laure N, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL PMID |
[56] | Wylie RB (1951). Principles of foliar organization shown by sun-shade leaves from ten species of deciduous dicotyledonous trees. American Journal of Botany, 38, 355-361. |
[57] | You WJ, Zhang QF, Xia L (2008). Responses of leaf structure of urban greening plants to different lights conditions. Journal of Northwest Forestry University, 23(5), 22-25. (in Chinese with English Abstract) |
[ 游文娟, 张庆费, 夏檑 (2008). 城市绿化植物叶片结构对光强的响应. 西北林学院学报, 23(5), 22-25.] | |
[58] | Zhang L, Luo TX (2004). Advances in ecological studies on leaf lifespan and associated leaf traits. Acta Phytoecologica Sinica, 28, 844-852. (in Chinese with English Abstract) |
[ 张林, 罗天祥 (2004). 植物叶寿命及其相关叶性状的生态学研究进展. 植物生态学报, 28, 844-852.] | |
[59] |
Zhang SB, Guan ZJ, Sun M, Zhang JJ, Cao KF, Hu H (2012). Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae. PloS One, 7, doi: 10.1371/journal.pone.0040080.
URL PMID |
[1] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[2] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[3] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[4] | 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. 基于叶干质量比的杉木比叶面积估算模型的构建[J]. 植物生态学报, 2018, 42(2): 209-219. |
[5] | 韩玲, 赵成章, 冯威, 徐婷, 郑慧玲, 段贝贝. 张掖湿地芨芨草叶脉密度和叶脉直径的权衡关系对3种生境的响应[J]. 植物生态学报, 2017, 41(8): 872-881. |
[6] | 徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017, 41(7): 761-769. |
[7] | 韩玲, 赵成章, 徐婷, 冯威, 段贝贝. 不同土壤水分条件下洪泛平原湿地芨芨草叶片厚度与叶脉性状的关系[J]. 植物生态学报, 2017, 41(5): 529-538. |
[8] | 韩玲, 赵成章, 徐婷, 冯威, 段贝贝, 郑慧玲. 张掖湿地芨芨草叶大小和叶脉密度的权衡关系[J]. 植物生态学报, 2016, 40(8): 788-797. |
[9] | 肖迪, 王晓洁, 张凯, 何念鹏, 侯继华. 氮添加对山西太岳山天然油松林主要植物叶片性状的影响[J]. 植物生态学报, 2016, 40(7): 686-701. |
[10] | 段贝贝, 赵成章, 徐婷, 郑慧玲, 冯威, 韩玲. 兰州北山不同坡向刺槐叶脉密度与气孔性状的关联性分析[J]. 植物生态学报, 2016, 40(12): 1289-1297. |
[11] | 于鸿莹, 陈莹婷, 许振柱, 周广胜. 内蒙古荒漠草原植物叶片功能性状关系及其经济谱分析[J]. 植物生态学报, 2014, 38(10): 1029-1040. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19