植物生态学报 ›› 2016, Vol. 40 ›› Issue (7): 686-701.DOI: 10.17521/cjpe.2015.1043
肖迪1, 王晓洁1, 张凯1, 何念鹏2, 侯继华1,*()
收稿日期:
2015-01-29
接受日期:
2015-12-27
出版日期:
2016-07-10
发布日期:
2016-07-07
通讯作者:
侯继华
基金资助:
Di XIAO1, Xiao-Jie WANG1, Kai ZHANG1, Nian-Peng HE2, Ji-Hua HOU1,*()
Received:
2015-01-29
Accepted:
2015-12-27
Online:
2016-07-10
Published:
2016-07-07
Contact:
Ji-Hua HOU
摘要:
为探讨植物性状对大气氮沉降的响应与适应机制, 该文以中国特有的、在北方温性针叶林中广泛分布的天然油松(Pinus tabuliformis)林为研究对象, 在2009-2013年开展了氮添加对植物叶片性状影响的野外控制试验, 4个氮添加浓度分别为0 kg·hm-2·a-1 (CK)、50 kg·hm-2·a-1 (低氮)、100 kg·hm-2·a-1 (中氮)和150 kg·hm-2·a-1 (高氮)。试验过程中分别测定了油松、蒙古栎(Quercus mongolica)、茶条槭(Acer ginnala)、毛榛(Corylus mandshurica)、沙梾(Cornus bretschneideri)、绣线菊(Spiraea salicifolia)、金银忍冬(Lonicera maackii)、羊须草(Carex callitrichos)、龙常草(Diarrhena mandshurica)、大火草(Anemone tomentosa)和玉竹(Polygonatum odoratum)等11种主要植物的9种叶片性状, 包括叶厚度(LT)、比叶面积(SLA)、干物质含量(LDMC)、叶氮含量(LNC)、叶磷含量(LPC)等。结果表明: 1)在氮添加影响下, 玉竹等个别物种的LT和SLA、绣线菊等部分物种的叶面积(LA)和LDMC差异显著, 上述所有物种的LNC与大多数物种的叶绿素含量(CC)、LPC显著增加, 油松等9种植物叶片N:P发生显著变化, 不同年龄、不同类型的植物叶片对氮添加的响应不同。2)叶性状之间普遍存在显著相关性, 如SLA与LNC和LPC极显著正相关, LT与LNC和LPC极显著负相关, 且相关性随氮添加强度变化。3) 11种植物的叶片特征空间分布规律与叶经济谱的描述一致, 氮添加使植物在特征空间中的位置向叶片薄、生长快、叶寿命短的“快速投资-收益型”一端发生移动; 在垂直方向上, 阔叶乔木、灌木及草本的位置与针叶乔木的移动方向相反。当环境改变时, 植物会改变生存策略, 调整资源分配, 从而保证物种间相对位置和群落整体结构的稳定性。叶经济谱的形成不依赖于环境的变化, 而是植物一种固有的属性。
肖迪, 王晓洁, 张凯, 何念鹏, 侯继华. 氮添加对山西太岳山天然油松林主要植物叶片性状的影响. 植物生态学报, 2016, 40(7): 686-701. DOI: 10.17521/cjpe.2015.1043
Di XIAO, Xiao-Jie WANG, Kai ZHANG, Nian-Peng HE, Ji-Hua HOU. Effects of nitrogen addition on leaf traits of common species in natural Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China. Chinese Journal of Plant Ecology, 2016, 40(7): 686-701. DOI: 10.17521/cjpe.2015.1043
处理 Treatment | 林分特征 Stand characteristics | 土壤理化性质 Physical-chemical properties of soil | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
林龄 Stand age (a) | 密度 Density (plant·hm-2) | 平均胸径 Mean diameter at breast height (cm) | 平均株高 Mean plant height (m) | 坡度 Slope (°) | 土壤容重 Soil volume weight (g·cm-3) | 土壤pH Soil pH | 土壤有机碳含量 Soil organic carbon content (mg·g-1) | 土壤氮含量 Soil nitrogen content (mg·g-1) | 土壤磷含量 Soil phosphorus content (mg·g-1) | ||
对照 Control | 75 | 1 267 | 23.9 | 17.7 | 24 | 0.94 | 7.12 | 45.30 | 1.70 | 0.43 | |
低氮 Low-N | 75 | 1 567 | 20.6 | 17.8 | 21 | 0.97 | 7.12 | 61.02 | 2.14 | 0.38 | |
中氮 Medium-N | 75 | 1 208 | 23.5 | 17.4 | 25 | 1.07 | 7.19 | 42.14 | 1.91 | 0.38 | |
高氮 High-N | 75 | 1 225 | 23.4 | 19 | 23 | 1.06 | 7.28 | 36.08 | 2.25 | 0.44 |
表1 天然油松林各处理样地的林分特征和土壤理化性质
Table 1 Stand characteristics and soil physical-chemical properties of the nitrogen-loaded plots in the natural forest of Pinus tabuliformis
处理 Treatment | 林分特征 Stand characteristics | 土壤理化性质 Physical-chemical properties of soil | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
林龄 Stand age (a) | 密度 Density (plant·hm-2) | 平均胸径 Mean diameter at breast height (cm) | 平均株高 Mean plant height (m) | 坡度 Slope (°) | 土壤容重 Soil volume weight (g·cm-3) | 土壤pH Soil pH | 土壤有机碳含量 Soil organic carbon content (mg·g-1) | 土壤氮含量 Soil nitrogen content (mg·g-1) | 土壤磷含量 Soil phosphorus content (mg·g-1) | ||
对照 Control | 75 | 1 267 | 23.9 | 17.7 | 24 | 0.94 | 7.12 | 45.30 | 1.70 | 0.43 | |
低氮 Low-N | 75 | 1 567 | 20.6 | 17.8 | 21 | 0.97 | 7.12 | 61.02 | 2.14 | 0.38 | |
中氮 Medium-N | 75 | 1 208 | 23.5 | 17.4 | 25 | 1.07 | 7.19 | 42.14 | 1.91 | 0.38 | |
高氮 High-N | 75 | 1 225 | 23.4 | 19 | 23 | 1.06 | 7.28 | 36.08 | 2.25 | 0.44 |
图1 氮添加对叶厚度(LT, A)、叶面积(LA, B)、比叶面积(SLA, C)、叶绿素含量(CC, D)和叶干物质含量(LDMC, E)的影响(平均值±标准误差, n = 3)。Ag, 茶条槭; At, 大火草; Cb, 沙梾; Cc, 羊须草; Cm, 毛榛; Dm, 龙常草; Lm, 金银忍冬; Po, 玉竹; Pt-cy, 油松(当年生叶); Pt-fy, 油松(往年生叶); Qm, 蒙古栎; Ss, 绣线菊。CK, 氮添加浓度为0 kg·hm-2·a-1; LN, 氮添加浓度为50 kg·hm-2·a-1; MN, 氮添加浓度为100 kg·hm-2·a-1; HN, 氮添加浓度为150 kg·hm-2·a-1。不同小写字母表示氮添加处理间在p < 0.05水平上差异显著。
Fig. 1 Effects of nitrogen addition on leaf thickness (LT, A)、leaf area (LA, B)、specific leaf area (SLA, C)、chlorophyll content (CC, D) and leaf dry matter content (LDMC, E)(mean ± SE, n = 3). Ag, Acer ginnala; At, Anemone tomentosa; Cb, Cornus bretchneideri; Cc, Carex callitrichos; Cm, Corylus mandshurica; Dm, Diarrhena mandshurica; Lm, Lonicera maackii; Po, Polygonatum odoratum; Pt-cy, Pinus tabuliformis (current-year leaves); Pt-fy, P. tabuliformis (former-year leaves); Qm, Quercus mongolica; Ss, Spiraea salicifolia. CK, 0 kg·hm-2·a-1 nitrogen; LN, 50 kg·hm-2·a-1 nitrogen; MN, 100 kg·hm-2·a-1 nitrogen; HN, 150 kg·hm-2·a-1 nitrogen. Different lowercase letters indicate the significant difference at 5% level between nitrogen treatments.
图2 氮添加对叶碳含量(LCC, A)、叶氮含量(LNC, B)、叶磷含量(LPC, C)及氮磷比(N:P, D)的影响(平均值±标准误差, n = 3)。Ag, 茶条槭; At, 大火草; Cb, 沙梾; Cc, 羊须草; Cm, 毛榛; Dm, 龙常草; Lm, 金银忍冬; Po, 玉竹; Pt-cy, 油松(当年生叶); Pt-fy, 油松(往年生叶); Qm, 蒙古栎; Ss, 绣线菊。CK, 氮添加浓度为0 kg·hm-2·a-1; LN, 氮添加浓度为50 kg·hm-2·a-1; MN, 氮添加浓度为100 kg·hm-2·a-1; HN, 氮添加浓度为150 kg·hm-2·a-1。不同小写字母表示氮添加处理间在p < 0.05水平上差异显著。
Fig. 2 Effects of nitrogen addition on leaf carbon content (LCC, A), leaf nitrogen content (LNC, B), leaf phosphorus content (LPC, C), and N-P ratio (N:P, D)(mean ± SE, n = 3). Ag, Acer ginnala; At, Anemone tomentosa; Cb, Cornus bretchneideri; Cc, Carex callitrichos; Cm, Corylus mandshurica; Dm, Diarrhena mandshurica; Lm, Lonicera maackii; Po, Polygonatum odoratum; Pt-cy, Pinus tabuliformis (current-year leaves); Pt-fy, P. tabuliformis (former-year leaves); Qm, Quercus mongolica; Ss, Spiraea salicifolia. CK, 0 kg·hm-2·a-1 nitrogen; LN, 50 kg·hm-2·a-1 nitrogen; MN, 100 kg·hm-2·a-1 nitrogen; HN, 150 kg·hm-2·a-1 nitrogen. Different lowercase letters indicate the significant difference at 5% level between nitrogen treatments.
叶性状 Leaf trait | 处理 Treatment | 生活型 Life form | |||
---|---|---|---|---|---|
针叶乔木 Coniferous tree | 阔叶乔木 Broadleaf tree | 灌木 Shrub | 草本 Herb | ||
叶厚度 Leaf thickness (μm) | CK LN MN HN | 716.23 ± 15.16a 675.67 ± 27.71a 689.33 ± 27.24a 661.00 ± 17.85a | 160.45 ± 10.44a 136.88 ± 10.45a 147.48 ± 5.23a 154.85 ± 9.76a | 167.45 ± 18.16a 166.78 ± 13.89a 152.16 ± 7.41a 167.69 ± 16.35a | 199.43 ± 28.20a 198.07 ± 23.30a 168.19 ± 20.76a 161.35 ± 17.11a |
叶面积 Leaf area (cm2) | CK LN MN HN | 6.59 ± 0.14ab 7.13 ± 0.33a 7.18 ± 0.01a 6.45 ± 0.12b | 22.91 ± 2.70a 23.92 ± 4.38a 29.33 ± 4.91a 26.49 ± 3.74a | 25.59 ± 5.56a 23.79 ± 4.83a 25.97 ± 5.02a 30.02 ± 5.96a | 39.75 ± 12.70a 39.36 ± 12.85a 44.70 ± 13.22a 51.44 ± 20.18a |
比叶面积 Specific leaf area (m2·kg-1) | CK LN MN HN | 12.42 ± 0.53a 12.62 ± 0.33a 11.54 ± 0.40a 12.67 ± 0.79a | 24.32 ± 1.36ab 25.95 ± 0.91a 22.19 ± 1.43ab 21.73 ± 1.19b | 36.06 ± 0.86a 35.15 ± 1.27a 32.66 ± 1.69a 32.00 ± 1.56a | 34.22 ± 1.12a 33.30 ± 0.92a 32.98 ± 1.16a 31.60 ± 1.09a |
叶绿素含量 Chlorophyll content (SPAD) | CK LN MN HN | 45.73 ± 1.36a 40.37 ± 1.34a 44.03 ± 1.95a 42.23 ± 2.87a | 43.78 ± 1.91b 46.87 ± 2.17ab 48.75 ± 1.82ab 49.47 ± 1.21a | 35.20± 1.46a 37.03 ± 1.60a 39.65 ± 1.83a 39.71 ± 1.83a | 30.78 ± 1.50a 31.81 ± 1.74a 34.86 ± 1.47a 33.62 ± 1.43a |
叶干物质含量 Leaf dry matter content (g·kg-1) | CK LN MN HN | 391.87 ± 5.43b 421.10 ± 7.77a 420.03 ± 3.91a 416.17 ± 7.31a | 381.12 ± 15.37a 377.22 ± 3.14a 395.85 ± 11.58a 384.52 ± 5.94a | 284.66 ± 12.41a 287.51 ± 11.45a 290.32 ± 15.77a 295.34 ± 11.52a | 236.01 ± 16.81a 241.20 ± 16.62a 213.13 ± 23.40a 249.49 ± 11.31a |
叶有机碳含量 Leaf carbon content (mg·g-1) | CK LN MN HN | 587.59 ± 10.05a 541.67 ± 27.75a 553.05 ± 1.01a 548.83 ± 4.88a | 473.87 ± 15.47a 486.62 ± 17.09a 481.64 ± 13.02a 487.60 ± 13.23a | 484.68 ± 17.84a 450.92 ± 7.49a 454.37 ± 6.12a 468.28 ± 11.67a | 452.51 ± 7.97a 441.45 ± 8.30a 449.41 ± 9.61a 450.11 ± 6.43a |
叶氮含量 Leaf nitrogen content (mg·g-1) | CK LN MN HN | 12.09 ± 0.39b 13.48 ± 0.47a 11.91 ± 0.50b 12.50 ± 0.38ab | 25.25 ± 0.79Cc 26.60 ± 0.32BCb 27.56 ± 0.47Bb 29.78 ± 0.37Aa | 22.47 ± 0.61Bc 25.63 ± 0.56Ab 25.81 ± 0.47Ab 26.93 ± 0.45Aa | 22.96 ± 0.75Cc 28.04 ± 0.80Bb 28.20 ± 0.62Bb 30.47 ± 0.74Aa |
叶磷含量 Leaf phosphorus content (mg·g-1) | CK LN MN HN | 1.08 ± 0.12a 1.02 ± 0.10a 1.06 ± 0.11a 0.98 ± 0.07a | 1.60 ± 0.11ABb 1.48 ± 0.05Bb 1.70 ± 0.07ABab 1.92 ± 0.17Aa | 1.17 ± 0.05Cc 1.41 ± 0.03Bb 1.71 ± 0.07Aa 1.75 ± 0.05Aa | 1.26 ± 0.04Bc 1.68 ± 0.08Ab 1.91 ± 0.08Aa 1.86 ± 0.08Aab |
叶氮磷比 leaf N:P | CK LN MN HN | 12.54 ± 1.11a 14.75 ± 1.14a 12.44 ± 0.89a 14.40 ± 0.80a | 16.39 ± 0.96a 18.16 ± 0.46a 16.44 ± 0.52a 16.70 ± 1.08a | 19.86 ± 0.89Aa 18.47 ± 0.61ABa 15.80 ± 0.72Bb 15.77 ± 0.59Bb | 18.50 ± 0.50Aa 17.26 ± 0.66ABab 15.16 ± 0.44Bc 16.95 ± 0.59ABb |
表2 不同生活型植物叶片性状对氮添加的响应(平均值±标准误差)
Table 2 Variation of leaf traits in different life forms under different levels of nitrogen addition (mean ± SE)
叶性状 Leaf trait | 处理 Treatment | 生活型 Life form | |||
---|---|---|---|---|---|
针叶乔木 Coniferous tree | 阔叶乔木 Broadleaf tree | 灌木 Shrub | 草本 Herb | ||
叶厚度 Leaf thickness (μm) | CK LN MN HN | 716.23 ± 15.16a 675.67 ± 27.71a 689.33 ± 27.24a 661.00 ± 17.85a | 160.45 ± 10.44a 136.88 ± 10.45a 147.48 ± 5.23a 154.85 ± 9.76a | 167.45 ± 18.16a 166.78 ± 13.89a 152.16 ± 7.41a 167.69 ± 16.35a | 199.43 ± 28.20a 198.07 ± 23.30a 168.19 ± 20.76a 161.35 ± 17.11a |
叶面积 Leaf area (cm2) | CK LN MN HN | 6.59 ± 0.14ab 7.13 ± 0.33a 7.18 ± 0.01a 6.45 ± 0.12b | 22.91 ± 2.70a 23.92 ± 4.38a 29.33 ± 4.91a 26.49 ± 3.74a | 25.59 ± 5.56a 23.79 ± 4.83a 25.97 ± 5.02a 30.02 ± 5.96a | 39.75 ± 12.70a 39.36 ± 12.85a 44.70 ± 13.22a 51.44 ± 20.18a |
比叶面积 Specific leaf area (m2·kg-1) | CK LN MN HN | 12.42 ± 0.53a 12.62 ± 0.33a 11.54 ± 0.40a 12.67 ± 0.79a | 24.32 ± 1.36ab 25.95 ± 0.91a 22.19 ± 1.43ab 21.73 ± 1.19b | 36.06 ± 0.86a 35.15 ± 1.27a 32.66 ± 1.69a 32.00 ± 1.56a | 34.22 ± 1.12a 33.30 ± 0.92a 32.98 ± 1.16a 31.60 ± 1.09a |
叶绿素含量 Chlorophyll content (SPAD) | CK LN MN HN | 45.73 ± 1.36a 40.37 ± 1.34a 44.03 ± 1.95a 42.23 ± 2.87a | 43.78 ± 1.91b 46.87 ± 2.17ab 48.75 ± 1.82ab 49.47 ± 1.21a | 35.20± 1.46a 37.03 ± 1.60a 39.65 ± 1.83a 39.71 ± 1.83a | 30.78 ± 1.50a 31.81 ± 1.74a 34.86 ± 1.47a 33.62 ± 1.43a |
叶干物质含量 Leaf dry matter content (g·kg-1) | CK LN MN HN | 391.87 ± 5.43b 421.10 ± 7.77a 420.03 ± 3.91a 416.17 ± 7.31a | 381.12 ± 15.37a 377.22 ± 3.14a 395.85 ± 11.58a 384.52 ± 5.94a | 284.66 ± 12.41a 287.51 ± 11.45a 290.32 ± 15.77a 295.34 ± 11.52a | 236.01 ± 16.81a 241.20 ± 16.62a 213.13 ± 23.40a 249.49 ± 11.31a |
叶有机碳含量 Leaf carbon content (mg·g-1) | CK LN MN HN | 587.59 ± 10.05a 541.67 ± 27.75a 553.05 ± 1.01a 548.83 ± 4.88a | 473.87 ± 15.47a 486.62 ± 17.09a 481.64 ± 13.02a 487.60 ± 13.23a | 484.68 ± 17.84a 450.92 ± 7.49a 454.37 ± 6.12a 468.28 ± 11.67a | 452.51 ± 7.97a 441.45 ± 8.30a 449.41 ± 9.61a 450.11 ± 6.43a |
叶氮含量 Leaf nitrogen content (mg·g-1) | CK LN MN HN | 12.09 ± 0.39b 13.48 ± 0.47a 11.91 ± 0.50b 12.50 ± 0.38ab | 25.25 ± 0.79Cc 26.60 ± 0.32BCb 27.56 ± 0.47Bb 29.78 ± 0.37Aa | 22.47 ± 0.61Bc 25.63 ± 0.56Ab 25.81 ± 0.47Ab 26.93 ± 0.45Aa | 22.96 ± 0.75Cc 28.04 ± 0.80Bb 28.20 ± 0.62Bb 30.47 ± 0.74Aa |
叶磷含量 Leaf phosphorus content (mg·g-1) | CK LN MN HN | 1.08 ± 0.12a 1.02 ± 0.10a 1.06 ± 0.11a 0.98 ± 0.07a | 1.60 ± 0.11ABb 1.48 ± 0.05Bb 1.70 ± 0.07ABab 1.92 ± 0.17Aa | 1.17 ± 0.05Cc 1.41 ± 0.03Bb 1.71 ± 0.07Aa 1.75 ± 0.05Aa | 1.26 ± 0.04Bc 1.68 ± 0.08Ab 1.91 ± 0.08Aa 1.86 ± 0.08Aab |
叶氮磷比 leaf N:P | CK LN MN HN | 12.54 ± 1.11a 14.75 ± 1.14a 12.44 ± 0.89a 14.40 ± 0.80a | 16.39 ± 0.96a 18.16 ± 0.46a 16.44 ± 0.52a 16.70 ± 1.08a | 19.86 ± 0.89Aa 18.47 ± 0.61ABa 15.80 ± 0.72Bb 15.77 ± 0.59Bb | 18.50 ± 0.50Aa 17.26 ± 0.66ABab 15.16 ± 0.44Bc 16.95 ± 0.59ABb |
LT | LA | SLA | CC | LDMC | LCC | LNC | LPC | N:P | N-Tr. | Sp. | Sig. (N-Tr.× Sp.) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LT | 1 | -0.06 | -0.50** | 0.00 | ||||||||
LA | -0.17** | 1 | 0.06 | 0.37** | 0.00 | |||||||
SLA | -0.73** | 0.42** | 1 | -0.12* | 0.71** | 0.01 | ||||||
CC | 0.10 | 0.25** | -0.34** | 1 | 0.18** | -0.30** | 0.00 | |||||
LDMC | 0.11 | -0.43** | -0.56** | 0.35** | 1 | 0.04 | -0.72** | 0.00 | ||||
LCC | 0.44** | -0.55** | -0.64** | 0.22** | 0.52** | 1 | -0.04 | -0.58** | 0.00 | |||
LNC | -0.73** | 0.56** | 0.71** | 0.13* | -0.37** | -0.60** | 1 | 0.25** | 0.62** | 0.00 | ||
LPC | -0.46** | 0.42** | 0.50** | 0.03 | -0.40** | -0.54** | 0.71** | 1 | 0.34** | 0.39** | 0.00 | |
N:P | -0.36** | 0.17** | 0.29** | 0.14* | 0.08 | -0.06 | 0.29** | -0.41** | 1 | -0.17** | 0.26** | 0.00 |
表3 叶性状间Pearson相关系数及氮添加处理和物种的影响效应分析
Table 3 Pearson correlation coefficients among leaf traits and the effects of N-treatment and species
LT | LA | SLA | CC | LDMC | LCC | LNC | LPC | N:P | N-Tr. | Sp. | Sig. (N-Tr.× Sp.) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LT | 1 | -0.06 | -0.50** | 0.00 | ||||||||
LA | -0.17** | 1 | 0.06 | 0.37** | 0.00 | |||||||
SLA | -0.73** | 0.42** | 1 | -0.12* | 0.71** | 0.01 | ||||||
CC | 0.10 | 0.25** | -0.34** | 1 | 0.18** | -0.30** | 0.00 | |||||
LDMC | 0.11 | -0.43** | -0.56** | 0.35** | 1 | 0.04 | -0.72** | 0.00 | ||||
LCC | 0.44** | -0.55** | -0.64** | 0.22** | 0.52** | 1 | -0.04 | -0.58** | 0.00 | |||
LNC | -0.73** | 0.56** | 0.71** | 0.13* | -0.37** | -0.60** | 1 | 0.25** | 0.62** | 0.00 | ||
LPC | -0.46** | 0.42** | 0.50** | 0.03 | -0.40** | -0.54** | 0.71** | 1 | 0.34** | 0.39** | 0.00 | |
N:P | -0.36** | 0.17** | 0.29** | 0.14* | 0.08 | -0.06 | 0.29** | -0.41** | 1 | -0.17** | 0.26** | 0.00 |
图3 氮添加对叶氮含量(LNC)与比叶面积(SLA) (A)、LNC与叶厚度(LT) (B)、叶磷含量(LPC)与SLA (C)和LPC与LT (D)关系的影响。CK, 氮添加浓度为0 kg·hm-2·a-1; LN, 氮添加浓度为50 kg·hm-2·a-1; MN, 氮添加浓度为100 kg·hm-2·a-1; HN, 氮添加浓度为150 kg·hm-2·a-1。
Fig. 3 Effects of nitrogen addition on leaf nitrogen content (LNC) vs. specific leaf area (SLA) (A), LNC vs. leaf thickness (LT) (B), leaf phosphorus content (LPC) vs. SLA (C) and LPC vs. LT (D). CK, 0 kg·hm-2·a-1 nitrogen; LN, 50 kg·hm-2·a-1 nitrogen; MN, 100 kg·hm-2·a-1 nitrogen; HN, 150 kg·hm-2·a-1 nitrogen.
处理 Treatment | 叶氮含量/比叶面积 LNC:SLA | 叶磷含量/比叶面积 LPC:SLA | 叶氮含量/叶厚度 LNC:LT | 叶磷含量/叶厚度 LPC:LT |
---|---|---|---|---|
CK | 0.74 ± 0.022d | 0.05 ± 0.002b | 0.12 ± 0.007c | 0.01 ± 0.000b |
LN | 0.85 ± 0.018c | 0.05 ± 0.002b | 0.15 ± 0.009bc | 0.01 ± 0.001b |
MN | 0.92 ± 0.027b | 0.06 ± 0.002a | 0.16 ± 0.009ab | 0.01 ± 0.001a |
HN | 1.05 ± 0.033a | 0.07 ± 0.003a | 0.18 ± 0.012a | 0.01 ± 0.001a |
表4 氮添加处理对叶氮含量、叶磷含量与比叶面积、叶厚度比值影响的单因素方差分析(平均值±标准误差, n = 36)
Table 4 Results of one-way ANOVA for the effect of nitrogen addition on the ratio of leaf nitrogen content (LNC) over specific leaf area (SLA) and leaf thickness (LT), and leaf phosphorus content (LPC) over specific leaf area (SLA) and leaf thickness (LT) (mean ± SE, n = 36)
处理 Treatment | 叶氮含量/比叶面积 LNC:SLA | 叶磷含量/比叶面积 LPC:SLA | 叶氮含量/叶厚度 LNC:LT | 叶磷含量/叶厚度 LPC:LT |
---|---|---|---|---|
CK | 0.74 ± 0.022d | 0.05 ± 0.002b | 0.12 ± 0.007c | 0.01 ± 0.000b |
LN | 0.85 ± 0.018c | 0.05 ± 0.002b | 0.15 ± 0.009bc | 0.01 ± 0.001b |
MN | 0.92 ± 0.027b | 0.06 ± 0.002a | 0.16 ± 0.009ab | 0.01 ± 0.001a |
HN | 1.05 ± 0.033a | 0.07 ± 0.003a | 0.18 ± 0.012a | 0.01 ± 0.001a |
载荷 Loading | 叶厚度 Leaf thickness | 叶面积 Leaf area | 比叶面积 Specific leaf area | 叶绿素含量 Chlorophyll content | 叶干物质含量 Leaf dry matter content | 叶碳含量 Leaf carbon content | 叶氮含量 Leaf nitrogen content | 叶磷含量 Leaf phosphorus content | 氮磷比 N-P ratio | 氮添加处理 N addition treatment |
---|---|---|---|---|---|---|---|---|---|---|
主成分1 Principal component 1 | 0.70 | -0.64 | -0.83 | 0.09 | 0.58 | 0.80 | -0.91 | -0.80 | -0.11 | -0.20 |
主成分2 Principal component 2 | -0.40 | 0.08 | 0.16 | 0.32 | 0.33 | 0.10 | 0.24 | -0.43 | 0.94 | -0.57 |
表5 叶性状在主成分分析中的载荷
Table 5 Loadings of leaf traits in principal components analyses
载荷 Loading | 叶厚度 Leaf thickness | 叶面积 Leaf area | 比叶面积 Specific leaf area | 叶绿素含量 Chlorophyll content | 叶干物质含量 Leaf dry matter content | 叶碳含量 Leaf carbon content | 叶氮含量 Leaf nitrogen content | 叶磷含量 Leaf phosphorus content | 氮磷比 N-P ratio | 氮添加处理 N addition treatment |
---|---|---|---|---|---|---|---|---|---|---|
主成分1 Principal component 1 | 0.70 | -0.64 | -0.83 | 0.09 | 0.58 | 0.80 | -0.91 | -0.80 | -0.11 | -0.20 |
主成分2 Principal component 2 | -0.40 | 0.08 | 0.16 | 0.32 | 0.33 | 0.10 | 0.24 | -0.43 | 0.94 | -0.57 |
图4 天然油松林主要植物的叶性状主成分分析结果: 天然油松林主要植物的叶性状载荷(A)、因子得分(B)及对氮添加的响应(C)。分析前对数据进行了log10转化。CC, 叶绿素含量; LA, 叶面积; LCC, 叶有机碳含量; LDMC, 叶干物质含量; LNC, 叶氮含量; LPC, 叶磷含量; LT, 叶厚度; N:P, 氮磷比; SLA, 比叶面积。Ag, 茶条槭; At, 大火草; Cb, 沙梾; Cc, 羊须草; Cm, 毛榛; Dm, 龙常草; Lm, 金银忍冬; Po, 玉竹; Pt-cy, 油松(当年生叶); Pt-fy, 油松(往年生叶); Qm, 蒙古栎; Ss, 绣线菊。C, 针叶乔木; B, 阔叶乔木; H, 草本; S, 灌木。CK, 氮添加浓度为0 kg·hm-2·a-1; LN, 氮添加浓度为50 kg·hm-2·a-1; MN, 氮添加浓度为100 kg·hm-2·a-1; HN, 氮添加浓度为150 kg·hm-2·a-1。
Fig. 4 Results of principle component analyses (PCA) of leaf traits across common species in the natural Pinus tabuliformis forest. Loadings of leaf traits across primary species in the natural forest of P. tabuliformis (A), factor scores of different species (B) and responses to nitrogen addition (C). Data were log10-transformed before analysis. CC, chlorophyll content; LA, leaf area; LCC, leaf carbon content; LDMC, leaf dry matter content; LNC, leaf nitrogen content; LPC, leaf phosphorus content; LT, leaf thickness; N:P, N-P ratio; SLA, specific leaf area. Ag, Acer ginnala; At, Anemone tomentosa; Cb, Cornus bretchneideri; Cc, Carex callitrichos; Cm, Corylus mandshurica; Dm, Diarrhena mandshurica; Lm, Lonicera maackii; Po, Polygonatum odoratum; Pt-cy, Pinus tabuliformis (current-year leaves); Pt-fy, P. tabuliformis (former-year leaves); Qm, Quercus mongolica; Ss, Spiraea salicifolia. C, coniferous tree; B, broadleaf tree; H, herb; S, shrub. CK, 0 kg·hm-2·a-1 nitrogen; LN, 50 kg·hm-2·a-1 nitrogen; MN, 100 kg·hm-2·a-1 nitrogen; HN, 150 kg·hm-2·a-1 nitrogen.
1 | Aber JD, McDowell W, Nadelhoffer K, Magill A, Berntsen G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosystems: Hypothesis revisited.BioScience, 48, 921-934. |
2 | Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989). Nitrogen saturation in northern forest ecosystems. BioScience, 39, 378-386. |
3 | Adams MA, Ineson P, Binkley D, Cadisch G, Tokuchi N, Scholes M, Hicks K (2004). Soil functional responses to excess nitrogen inputs at global scales. AMBIO, 33, 530-536. |
4 | Aerts R, Chapin SF (2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns.Advances in Ecological Research, 30, 1-67. |
5 | Albert CH, Grasseina F, Schurrd FM, Vieilledente G, Violle C (2011). When and how should intraspecific variability be considered in trait-based plant ecology?Perspectives in Plant Ecology, Evolution, and Systematics, 13, 217-225. |
6 | Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S (2010a). A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits.Functional Ecology, 24, 1192-1201. |
7 | Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010b). Intraspecific functional variability: Extent, structure and sources of variation.Journal of Ecology, 98, 603-613. |
8 | Bassin S, Werner RA, Sörgel K, Volk M, Buchmann N, Fuhrer J (2009). Effects of combined ozone and nitrogen deposition on the in situ properties of eleven key plant species of a subalpine pasture.Oecologia, 158, 747-756. |
9 | Bleecker AB (1998). The evolutionary basis of leaf senescence: Method to the madness?Current Opinion in Plant Biology, 1, 73-78. |
10 | Blonder B, Violle C, Enquist BJ, Cornelissen H (2013). Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. Journal of Ecology, 101, 981-989. |
11 | Bobbink R, Hornung M, Roelofs JGM (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation.Journal of Ecology, 86, 717-738. |
12 | Chabot BF, David JH (1982). The ecology of leaf life spans.Annual Review of Ecology and Systematics, 13, 229-259. |
13 | Chen LY (2010).Effects of N, P Addition on N:P Stoichiometry of Different Functional Groups in Potentilla fruticosa Community in a Sub-alpine Meadow. Master degree dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstract)[陈凌云 (2010). 添加氮磷对亚高寒草甸金露梅群落各功能群化学计量学特征的影响. 硕士学位论文, 兰州大学, 兰州.] |
14 | Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153. (in Chinese with English abstract)[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.] |
15 | Clark CM, Tilman D (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands.Nature, 451, 712-715. |
16 | Comelissen JHC, Cerabolini B, Castro-Diez P, Villar-Salvador P, Montserrat-Marti G, Puyravaud JP, Maestro M, Werger MJA, Aerts R (2003). Functional traits of woody plants: Correspondence of species rankings between field adults and laboratory-grown seedlings?Journal of Vegetation Science, 14, 311-322. |
17 | Crawley MJ (1983). Herbivory: The Dynamics of Animal-Plant Interactions. Blackwell Scientific Publications, Oxford, UK. |
18 | Donovan LA, Maherali H, Caruso CM, Huber H, de Kroon H (2011). The evolution of the worldwide leaf economics spectrum. Trends in Ecology Evolution, 26, 88-95. |
19 | Fang YT, Mo JM, Zhou GY, Xue JH (2005). Response of diameter at breast height increase to N addition in forests of Dinghushan Biosphere Reserve.Journal of Tropical and Subtropical Botany, 13(3), 198-204. (in Chinese with English abstract)[方运霆, 莫江明, 周国逸, 薛璟花 (2005). 鼎湖山主要森林类型植物胸径生长对氮沉降增加的初期响应. 热带亚热带植物学报, 13(3), 198-204.] |
20 | Fenn ME, Poth MA, Johnson DW (1996). Evidence for nitrogen saturation in the San Bernardino Mountains in Southern California.Forest Ecology and Management, 82, 211-230. |
21 | Fonseca CR, Overton JM, Collins B, Westoby M (2000). Shifts in trait combinations along rainfall and phosphorus gradients.Journal of Ecology, 88, 964-977. |
22 | Frak E, Roux XL, Millard P, Dreyer E, Jaouen G, Saint-Joanis B, Wendler R (2001). Changes in total leaf nitrogen and partitioning of leaf nitrogen drive photosynthetic acclimation to light in fully developed walnut leaves.Plant, Cell & Environment, 24, 1279-1288. |
23 | Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010). Evidence of the ‘plant economics spectrum’ in a subarctic flora.Journal of Ecology, 98, 362-373. |
24 | Grime JP (2001).Plant Strategies, Vegetation Processes and Ecosystem Properties. John Wiley & Sons, Chichester, UK. |
25 | Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance.New Phytologist, 164, 243-266. |
26 | Han WX, Fang YT, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385. |
27 | He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China.Oecologia, 149, 115-122. |
28 | He JS, Han XG (2010). Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34, 2-6. (in Chinese with English abstract)[贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.] |
29 | He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes.Oecologia, 155, 301-310. |
30 | Holland EA, Dentener FJ, Braswell BH, Sulzman JM (1999). Contemporary and pre-industrial global reactive nitrogen budgets.Biogeochemistry, 46, 7-43. |
31 | Huang HX, Yang XD, Sun BW, Zhang ZH, Yan ER (2013). Variability and association of leaf traits between current-year and former-year leaves in evergreen trees in Tiantong, Zhejiang, China.Chinese Journal of Plant Ecology, 37, 912-921. (in Chinese with English abstract)[黄海侠, 杨晓东, 孙宝伟, 张志浩, 阎恩荣 (2013). 浙江天童常绿植物当年生与往年生叶片性状的变异与关联. 植物生态学报, 37, 912-921.] |
32 | Huang JY, Yuan ZY, Li LH (2009). Changes in N, P and specific leaf area of green leaves of Leymus chinensis along nitrogen, phosphorus and water gradients.Chinese Journal of Plant Ecology, 33, 442-448. (in Chinese with English abstract)[黄菊莹, 袁志友, 李凌浩 (2009). 羊草绿叶氮、磷浓度和比叶面积沿氮、磷和水分梯度的变化. 植物生态学报, 33, 442-448.] |
33 | Kikuzawa K (1991). A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. The American Naturalist, 138, 1250-1263. |
34 | Laughlin DC (2011). Nitrification is linked to dominant leaf traits rather than functional diversity.Journal of Ecology, 99, 1091-1099. |
35 | Leishman MR, Haslehurst T, Ares A, Baruch Z (2007). Leaf trait relationships of native and invasive plants: Community- and global-scale comparisons.New Phytologist, 176, 635-643. |
36 | Li DJ, Mo JM, Fang YT, Li ZA (2005). Effects of simulated nitrogen deposition on biomass production and allocation in Schima superba and Cryptocarya concinna seedlings in subtropical China.Acta Phytoecologica Sinica, 29, 543-549. (in Chinese with English abstract)[李德军, 莫江明, 方运霆, 李志安 (2005). 模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响. 植物生态学报, 29, 543-549.] |
37 | Li HS, Wang JS, Liu X, Jiang SS, Zhang CY, Zhao XH (2014). Effects and its sustained effect of simulated nitrogen deposition on soil respiration in Pinus tabulaeformis forests in the Taiyue Mountain, China.Acta Scientiae Circumstantiae, 34, 238-249. (in Chinese with English abstract)[李化山, 汪金松, 刘星, 蒋思思, 张春雨, 赵秀海 (2014). 模拟氮沉降对太岳山油松林土壤呼吸的影响及其持续效应. 环境科学学报, 34, 238-249.] |
38 | Li XR, Liu QJ, Cai Z, Ma ZQ (2007). Specific leaf area and leaf area index of conifer plantations in Qianyanzhou Station of subtropical China. Journal of Plant Ecology (Chinese Version), 31, 93-101. (in Chinese with English abstract)[李轩然, 刘琪璟, 蔡哲, 马泽清 (2007). 千烟洲针叶林的比叶面积及叶面积指数. 植物生态学报, 31, 93-101.] |
39 | Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013). Enhanced nitrogen deposition over China.Nature, 494, 459-462. |
40 | Liu Y, Zhang J, Chen YM, Chen L, Liu Q (2013). Effect of nitrogen and phosphorus fertilization on biomass allocation and C:N:P stoichiometric characteristics of Eucalyptus grandis seedlings.Chinese Journal of Plant Ecology, 37, 933-941. (in Chinese with English abstract)[刘洋, 张健, 陈亚梅, 陈磊, 刘强 (2013). 氮磷添加对巨桉幼苗生物量分配和C:N:P化学计量特征的影响. 植物生态学报, 37, 933-941.] |
41 | Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA.Forest Ecology and Management, 196, 7-28. |
42 | Maire V, Gross N, Hill D, Martin R, Wirth C, Wright IJ, Soussana JF (2013). Disentangling coordination among functional traits using an individual-centred model: Impact on plant performance at intra- and inter-specific levels. PLOS ONE, 8, e77372. doi: 10.1371/journal.pone.00773-72.eCollection 2013. |
43 | McGill BJ, Enquist BJ, Weiher E, Westoby M (2006). Rebuilding community ecology from functional traits.Trends in Ecology Evolution, 21, 178-185 |
44 | Nihlgard B (1985). The ammonium hypothesis—An additional explanation to the forest dieback in Europe.AMBIO, 14, 2-8 |
45 | Oguchi R, Hikosaka K, Hirose T (2003). Does the photosynthetic light-acclimation need change in leaf anatomy? Plant, Cell & Environment, 26, 505-512. |
46 | Ono K, Nishi Y, Watanable A, Terashima I (2001). Possible mechanisms of adaptive leaf senescence.Plant Biology, 3, 234-243. |
47 | Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18, 137-149. |
48 | Osnas JLD, Lichstein JW, Reich PB, Pacala SW (2013). Global leaf trait relationships: Mass, area, and the leaf economics spectrum.Science, 340, 741-744. |
49 | Pensa M, Karu H, Luud A, Kund K (2010). Within-species correlations in leaf traits of three boreal plant species along a latitudinal gradient.Plant Ecology, 208, 155-166. |
50 | Pontes LDS, Soussana JF, Louault F, Andueza D, Carrère P (2007). Leaf traits affect the above-ground productivity and quality of pasture grasses.Functional Ecology, 21, 844-853. |
51 | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
52 | Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003). The evolution of plant functional variation: Traits, spectra, and strategies.International Journal of Plant Sciences, 164(S3), S143-S164. |
53 | Richter A, Burrows JP, Nüss H, Granier C, Niemeier U (2005). Increase in tropospheric nitrogen dioxide over China observed from space.Nature, 437, 129-132. |
54 | Rose L, Rubarth MC, Hertel D, Leuschner C (2013). Management alters interspecific leaf trait relationships and trait-based species rankings in permanent meadows.Journal of Vegetation Science, 24, 239-250. |
55 | Royer DL (2009). Nutrient turnover rates in ancient terrestrial ecosystems.Palaios, 23, 421-423. |
56 | Royer DL, Miller IM, Peppe DJ, Hickey LJ (2010). Leaf economic traits from fossils support a weedy habit for early angiosperms.American Journal of Botany, 97, 438-445. |
57 | Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture.Plant Physiology, 156, 832-843. |
58 | Shipley B, Lechowicz MJ, Wright I, Reich PB (2006). Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 87, 535-541. |
59 | Silvertown J, Franco FB, Harper JL (1997). Plant Life Histories: Ecology, Phylogeny and Evolution. Cambridge University Press, Cambridge, UK. |
60 | Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization.Proceedings of the National Academy of Sciences of the United States of America, 102, 4387-4392. |
61 | Sultan SE (2000). Phenotypic plasticity for plant development, function and life history.Trends in Plant Science, 5, 537-542. |
62 | Tamm CO (1990). Nitrogen in Terrestrial Ecosystems: Questions of Productivity, Vegetational Change, and Ecological Stability. Springer, Berlin. 116. |
63 | Ti CP, Yan XY (2010). Estimation of atmospheric nitrogen wet deposition in China mainland from based on N emission data.Journal of Agro-Environment Science, 29, 1606-1611. (in Chinese with English abstract)[遆超普, 颜晓元 (2010). 基于氮排放数据的中国大陆大气氮素湿沉降量估算. 农业环境科学学报, 29, 1606-1611.] |
64 | Ulrich B (1995). The history and possible causes of forest decline in central Europe, with particular attention to the German situation.Environmental Reviews, 3, 262-276. |
65 | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997). Human alteration of the global nitrogen cycle: Sources and consequences.Ecological Applications, 7, 737-750. |
66 | Wan HW, Yang Y, Bai SQ, Xu YH, Bai YF (2008). Variations in leaf functional traits of six species along a nitrogen addition gradient in Leymus chinensis steppe in Inner Mongolia. Journal of Plant Ecology (Chinese Version), 32, 611-621. (in Chinese with English abstract)[万宏伟, 杨阳, 白世勤, 徐云虎, 白永飞 (2008). 羊草草原群落6种植物叶片功能特性对氮素添加的响应. 植物生态学报, 32, 611-621.] |
67 | Wang CS, Wang SP (2015). A review of research on responses of leaf traits to climate change.Chinese Journal of Plant Ecology, 39, 206-216. (in Chinese with English abstract)[王常顺, 汪诗平 (2015). 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 39, 206-216.] |
68 | Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: Some leading dimensions of variation between species.Annual Review of Ecology and Systematics, 33, 125-159. |
69 | Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies.New Phytologist, 143, 155-162. |
70 | Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemet Ülo, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005). Modulation of leaf economic traits and trait relationships by climate.Global Ecology and Biogeography, 14, 411-421. |
71 | Wright IJ, Reich PB, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats.Functional Ecology, 15, 423-434. |
72 | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature, 428, 821-827. |
73 | Wright JP, Sutton-Grier A (2012). Does the leaf economic spectrum hold within local species pools across varying environmental conditions?Functional Ecology, 26, 1390-1398. |
74 | Wright RF, Rasmussen L (1998). Introduction to the NITREX and EXMAN projects.Forest Ecology and Management, 101, 1-7. |
75 | Wyka T, Robakowski P, Zytkowiak R (2000). Leaf age as a factor in anatomical and physiological acclimative responses of Taxus baccata L. needles to contrasting irradiance environments. Photosynthesis Research, 95, 87-99. |
76 | Zhang JL, Zhu JJ, Cao KF (2007). Seasonal variation in photosynthesis in six woody species with different leaf phenology in a valley savanna in southwestern China. Trees, 21, 631-643. |
77 | Zhang WN, Liao ZY (2009). Research advances in the effect of nitrogen deposition on forest plants. Environmental Science Survey, 28(3), 21-24. (in Chinese)[张维娜, 廖周瑜 (2009). 氮沉降增加对森林植物影响的研究进展. 环境科学导刊, 28(3), 21-24.] |
78 | Zhao XF, Xu HL, Zhang P, Zhang QQ (2014). Influence of nutrient and water additions on functional traits of Salsola nitraria in desert grassland.Chinese Journal of Plant Ecology, 38, 134-146. (in Chinese with English abstract)[赵新风徐海量, 张鹏, 张青青 (2014). 养分与水分添加对荒漠草地植物钠猪毛菜功能性状的影响. 植物生态学报, 38, 134-146.] |
79 | Zheng XH, Fu CB, Xu XK, Yan XD, Huang Y, Han SH, Hu F, Chen GX (2002). The Asian nitrogen cycle case study.AMBIO, 31(2), 79-87. |
[1] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[2] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[3] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[4] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[5] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[6] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[7] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[8] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[9] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[10] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[11] | 罗来聪, 赖晓琴, 白健, 李爱新, 方海富, Nasir SHAD, 唐明, 胡冬南, 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(2): 206-215. |
[12] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[13] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[14] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[15] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19