植物生态学报 ›› 2017, Vol. 41 ›› Issue (12): 1251-1261.DOI: 10.17521/cjpe.2017.0169
刘群1, 庄丽燕1, 杨万勤1,2, 倪祥银1, 李婷婷1, 徐振锋1,2,*()
出版日期:
2017-12-10
发布日期:
2018-02-23
通讯作者:
徐振锋
基金资助:
LIU Qun1, ZHUANG Li-Yan1, YANG Wan-Qin1,2, NI Xiang-Yin1, LI Ting-Ting1, XU Zhen-Feng1,2,*()
Online:
2017-12-10
Published:
2018-02-23
Contact:
XU Zhen-Feng
摘要:
根系腐殖化过程中腐殖质的累积是土壤有机质形成和碳吸存的一个重要途径。该文采用凋落物袋法, 研究了川西亚高山粗枝云杉(Picea asperata)和岷江冷杉(Abies faxoniana)两种优势林木3个径级根系(0-2、2-5和5-10 mm)在冬季和生长季胡敏酸和富里酸累积特征。结果表明: 经过两年的腐殖化, 粗枝云杉和岷江冷杉根系胡敏酸和富里酸含量受径级显著影响, 并随径级增大而降低。不同径级间富里酸净累积量差异显著, 而胡敏酸净累积量差异不显著; 两个树种间胡敏酸和富里酸含量和净累积量差异不显著。胡敏酸在冬季降解而在生长季节累积, 其中粗枝云杉0-2、2-5和5-10 mm根系净累积量分别为8.0、10.8和7.6 g·kg-1, 岷江冷杉分别为15.2、8.0和7.8 g·kg-1。富里酸总体表现为降解, 其中粗枝云杉0-2、2-5和5-10 mm根系降解量为178.0、166.0和118.0 g·kg-1, 岷江冷杉分别为170.0、160.0和128.0 g·kg-1。根系径级对亚高山森林植物根系腐殖质累积有显著影响, 而径级影响与分解时期有一定关联。
刘群, 庄丽燕, 杨万勤, 倪祥银, 李婷婷, 徐振锋. 川西亚高山两种树木不同径级根系腐殖化过程中胡敏酸和富里酸的累积特征. 植物生态学报, 2017, 41(12): 1251-1261. DOI: 10.17521/cjpe.2017.0169
LIU Qun, ZHUANG Li-Yan, YANG Wan-Qin, NI Xiang-Yin, LI Ting-Ting, XU Zhen-Feng. Accumulation of humic acid and fulvic acid during root humification of three diameters of two dominant subalpine trees in western Sichuan, China. Chinese Journal of Plant Ecology, 2017, 41(12): 1251-1261. DOI: 10.17521/cjpe.2017.0169
物种 Species | 径级 Diameter (mm) | 碳 Carbon (C) (g·kg-1) | 氮 Nitrogen (N) (g·kg-1) | 磷 Phosphorus (P) (g·kg-1) | 碳氮比 C/N | 碳磷比 C/P | 木质素 Lignin (%) | 纤维素 Cellulose (%) | 木质素/N Lignin/N | 木质素/P Lignin/P | 木质素/纤维素 Lignin/Cellulose |
---|---|---|---|---|---|---|---|---|---|---|---|
粗枝云杉 Picea asperata | 0-2 | 496.4 ± 7.1 | 5.6 ± 0.4 | 0.34 ± 0.01 | 89 ± 4 | 1 450 ± 33 | 16 ± 0.6 | 28.9 ± 6.9 | 20.8 ± 3.3 | 51.7 ± 3.5 | 843 ± 40 |
2-5 | 496.6 ± 6.5 | 4.2 ± 0.2 | 0.33 ± 0.04 | 118 ± 5 | 1 538 ± 139 | 13 ± 1.3 | 26.1 ± 3.4 | 23.0 ± 1.6 | 62.0 ± 2.3 | 808 ± 76 | |
5-10 | 512.1 ± 7.8 | 2.6 ± 0.2 | 0.26 ± 0.04 | 195 ± 18 | 2 022 ± 291 | 10 ± 1.7 | 25.9 ± 6.6 | 32.3 ± 9.6 | 98.7 ± 6.3 | 1 022 ± 128 | |
岷江冷杉 Abies faxoniana | 0-2 | 498.8 ± 20.0 | 5.0 ± 0.4 | 0.32 ± 0.01 | 99 ± 5 | 1 559 ± 74 | 16 ± 1.5 | 38.8 ± 6.1 | 16.2 ± 5.7 | 77.2 ± 4.9 | 1 214 ± 3 8 |
2-5 | 533.9 ± 7.3 | 3.8 ± 0.6 | 0.30 ± 0.01 | 144 ± 19 | 1 760 ± 44 | 12 ± 1.9 | 34.7 ± 10.8 | 18.9 ± 5.7 | 93.6 ± 12.9 | 1 142 ± 19 | |
5-10 | 540.9 ± 13.3 | 2.4 ± 0.3 | 0.23 ± 0.04 | 231 ± 21 | 2 397 ± 360 | 10 ± 0.8 | 33.0 ± 6.6 | 32.8 ± 9.7 | 141.1 ± 14.6 | 1 465 ± 230 | |
物种 Species (S) | *** | *** | NS | *** | *** | *** | *** | *** | *** | * | |
径级 Diameter (D) | ** | *** | *** | *** | *** | *** | *** | *** | ** | ** | |
S × D | * | NS | NS | NS | *** | * | *** | NS | NS | NS |
表1 粗枝云杉和岷江冷杉不同径级根系的初始品质特征(平均值±标准误差, n = 3)
Table 1 Initial chemical quality in three root diameter classes of Picea asperata and Abies faxoniana (mean ± SE, n = 3)
物种 Species | 径级 Diameter (mm) | 碳 Carbon (C) (g·kg-1) | 氮 Nitrogen (N) (g·kg-1) | 磷 Phosphorus (P) (g·kg-1) | 碳氮比 C/N | 碳磷比 C/P | 木质素 Lignin (%) | 纤维素 Cellulose (%) | 木质素/N Lignin/N | 木质素/P Lignin/P | 木质素/纤维素 Lignin/Cellulose |
---|---|---|---|---|---|---|---|---|---|---|---|
粗枝云杉 Picea asperata | 0-2 | 496.4 ± 7.1 | 5.6 ± 0.4 | 0.34 ± 0.01 | 89 ± 4 | 1 450 ± 33 | 16 ± 0.6 | 28.9 ± 6.9 | 20.8 ± 3.3 | 51.7 ± 3.5 | 843 ± 40 |
2-5 | 496.6 ± 6.5 | 4.2 ± 0.2 | 0.33 ± 0.04 | 118 ± 5 | 1 538 ± 139 | 13 ± 1.3 | 26.1 ± 3.4 | 23.0 ± 1.6 | 62.0 ± 2.3 | 808 ± 76 | |
5-10 | 512.1 ± 7.8 | 2.6 ± 0.2 | 0.26 ± 0.04 | 195 ± 18 | 2 022 ± 291 | 10 ± 1.7 | 25.9 ± 6.6 | 32.3 ± 9.6 | 98.7 ± 6.3 | 1 022 ± 128 | |
岷江冷杉 Abies faxoniana | 0-2 | 498.8 ± 20.0 | 5.0 ± 0.4 | 0.32 ± 0.01 | 99 ± 5 | 1 559 ± 74 | 16 ± 1.5 | 38.8 ± 6.1 | 16.2 ± 5.7 | 77.2 ± 4.9 | 1 214 ± 3 8 |
2-5 | 533.9 ± 7.3 | 3.8 ± 0.6 | 0.30 ± 0.01 | 144 ± 19 | 1 760 ± 44 | 12 ± 1.9 | 34.7 ± 10.8 | 18.9 ± 5.7 | 93.6 ± 12.9 | 1 142 ± 19 | |
5-10 | 540.9 ± 13.3 | 2.4 ± 0.3 | 0.23 ± 0.04 | 231 ± 21 | 2 397 ± 360 | 10 ± 0.8 | 33.0 ± 6.6 | 32.8 ± 9.7 | 141.1 ± 14.6 | 1 465 ± 230 | |
物种 Species (S) | *** | *** | NS | *** | *** | *** | *** | *** | *** | * | |
径级 Diameter (D) | ** | *** | *** | *** | *** | *** | *** | *** | ** | ** | |
S × D | * | NS | NS | NS | *** | * | *** | NS | NS | NS |
因子 Factor | 胡敏酸含量的F值 F value for humic acid concentration | 胡敏酸净累积量的F值 F value for net accumulations of humic acid | 富里酸含量的F值 F value for fulvic acid concentration | 富里酸净累积量的F值 F value for net accumulations of fulvic acid | 胡敏酸/富里酸的F值 F value for humic acid to fulvic acid ratio |
---|---|---|---|---|---|
时期 Date (T) | 97.950*** | 46.690*** | 366.440*** | 82.531*** | 146.677*** |
树种 Species (S) | 0.067 | 0.356 | 0.154 | 0.001 | 1.123 |
径级 Diameter (D) | 63.535*** | 1.079 | 37.853*** | 19.003*** | 1.146 |
时期×物种 T × S | 1.270 | 0.899 | 4.519** | 4.622** | 2.266 |
时期×径级 T × D | 5.054** | 2.704* | 4.704** | 1.578 | 0.322 |
物种×径级 S × D | 3.751 | 1.871 | 4.609* | 0.710 | 1.145 |
时期×物种×径级 T × S × D | 1.642 | 1.272 | 2.141 | 2.348 | 0.532 |
表2 不同分解时期、物种、径级对胡敏酸含量和净累积量、富里酸含量和净累积量以及胡敏酸/富里酸影响的重复测量方差分析结果
Table 2 Results of repeated measures ANOVA testing for the effects for date, tree species and root diameter on concentrations and net accumulations of humic acid and fulvic acid as well as on humic acid to fulvic acid ratio
因子 Factor | 胡敏酸含量的F值 F value for humic acid concentration | 胡敏酸净累积量的F值 F value for net accumulations of humic acid | 富里酸含量的F值 F value for fulvic acid concentration | 富里酸净累积量的F值 F value for net accumulations of fulvic acid | 胡敏酸/富里酸的F值 F value for humic acid to fulvic acid ratio |
---|---|---|---|---|---|
时期 Date (T) | 97.950*** | 46.690*** | 366.440*** | 82.531*** | 146.677*** |
树种 Species (S) | 0.067 | 0.356 | 0.154 | 0.001 | 1.123 |
径级 Diameter (D) | 63.535*** | 1.079 | 37.853*** | 19.003*** | 1.146 |
时期×物种 T × S | 1.270 | 0.899 | 4.519** | 4.622** | 2.266 |
时期×径级 T × D | 5.054** | 2.704* | 4.704** | 1.578 | 0.322 |
物种×径级 S × D | 3.751 | 1.871 | 4.609* | 0.710 | 1.145 |
时期×物种×径级 T × S × D | 1.642 | 1.272 | 2.141 | 2.348 | 0.532 |
图2 粗枝云杉和岷江冷杉不同径级根系在不同采样日期的胡敏酸和富里酸含量(平均值±标准误差, n = 3)。*, p < 0.05。
Fig. 2 Concentrations of humic acid and fulvic acid in three root diameter classes of Picea asperata and Abies faxoniana on different sampling dates (mean ± SE, n = 3). *, p < 0.05.
图3 粗枝云杉和岷江冷杉不同径级根系不同分解时期的胡敏酸、富里酸净累积量(平均值±标准误差, n = 3)。W1, 第一年冬季; Gs1, 第一年生长季节; W2, 第二年冬季; Gs2, 第二年生长季节; 1st yr, 第一年; 2nd yr, 第二年; two yr, 两年。不同小写字母表示在同一树种不同径级之间差异显著(p < 0.05)。
Fig. 3 Net accumulation of humic acid and fulvic acid in three root diameter classes of Picea asperata and Abies faxoniana during the winter and growing season (mean ± SE, n = 3). W1, the first winter; Gs1, the first growing season; W2, the second winter; Gs2, the second growing season; 1st yr, the first year; 2nd yr, the second year; two yr, two years. Different lowercase letters show significant differences among root diameter classes for the same tree species (p < 0.05).
图4 粗枝云杉和岷江冷杉不同径级根系在不同分解时期的胡敏酸/富里酸(平均值±标准误差, n = 3)。i, 初始值; W1, 第一年冬季; Gs1, 第一年生长季节; W2, 第二年冬季; Gs2, 第二年生长季节。不同小写字母表示在同一树种不同径级之间差异显著(p < 0.05)。
Fig. 4 Humic acid and fulvic acid in three root diameter classes of Picea asperata and Abies faxoniana during winter and growing season (mean ± SE, n = 3). i, initial; W1, the first winter; Gs1, the first growing season; W2, the second winter; Gs2, the second growing season. Different lowercase letters show significant differences among root diameter classes for the same tree species (p < 0.05).
初始品质 Initial quality | 胡敏酸净累积量 Net accumulation of humic acid | 富里酸净累积量 Net accumulation of fulvic acid |
---|---|---|
碳 Carbon (C) | -0.276 | 0.402 |
氮 Nitrogen (N) | 0.221 | -0.805** |
磷 Phosphorus (P) | 0.326 | -0.664** |
木质素 Lignin | 0.329 | -0.223 |
纤维素 Cellulose | -0.302 | 0.760** |
碳氮比 C/N ratio | -0.275 | 0.795** |
碳磷比 C/P ratio | -0.172 | 0.632** |
木质素/氮 Lignin/N | -0.141 | 0.664** |
木质素/磷 Lignin/P | -0.068 | 0.344 |
木质素/纤维素 Lignin/Cellulose | 0.381 | -0.550* |
表3 分解两年后胡敏酸和富里酸净累积量与初始基质品质的相关关系
Table 3 Relationships between the net accumulation of humic acid and fulvic acid and the initial root quality after 2-year decomposition
初始品质 Initial quality | 胡敏酸净累积量 Net accumulation of humic acid | 富里酸净累积量 Net accumulation of fulvic acid |
---|---|---|
碳 Carbon (C) | -0.276 | 0.402 |
氮 Nitrogen (N) | 0.221 | -0.805** |
磷 Phosphorus (P) | 0.326 | -0.664** |
木质素 Lignin | 0.329 | -0.223 |
纤维素 Cellulose | -0.302 | 0.760** |
碳氮比 C/N ratio | -0.275 | 0.795** |
碳磷比 C/P ratio | -0.172 | 0.632** |
木质素/氮 Lignin/N | -0.141 | 0.664** |
木质素/磷 Lignin/P | -0.068 | 0.344 |
木质素/纤维素 Lignin/Cellulose | 0.381 | -0.550* |
1 |
Abakumov EV, Cajthaml T, Brus J, Frouz J (2013). Humus accumulation, humification, and humic acid composition in soils of two post-mining chronosequences after coal mining.Journal of Soils and Sediments, 13, 491-500.
DOI URL |
2 | Aber JD, Melillo JM (1991). Terrestrial Ecosystems. Saunders College Publication, Philadelphia. |
3 |
Amir S, Hafidi M, Lemee L, Merlina G, Guiresse M, Pinelli E, Revel JC, Bailly JR, Ambles A (2006). Structural characterization of humic acids, extracted from sewage sludge during composting, by thermochemolysis-gas chromatography- mass spectrometry.Process Biochemistry, 41, 410-422.
DOI URL |
4 |
Asli S, Neumann PM (2010). Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development.Plant and Soil, 336, 313-322.
DOI URL |
5 |
Aulen M, Shipley B, Bradley R (2011). Prediction of in situ root decomposition rates in an interspecific context from chemical and morphological traits. Annals of Botany, 109, 287-297.
DOI URL PMID |
6 | Berg B, McClaugherty C (2014). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. 3rd edn. Springer-Verlag, Berlin. 11-15. |
7 | B?hm W (1979). Methods of Studying Root Systems. Springer- Verlag, Berlin. |
8 |
Chien SW, Wang MC, Hsu JH, Seshaiah K (2006). Influence of fertilizers applied to a paddy-upland rotation on characteristics of soil organic carbon and humic acids.Journal of Agricultural and Food Chemistry, 54, 6790-6799.
DOI URL PMID |
9 |
Ciarkowska K, Miech Wka A (2017). The role of bilberry and alpine lady-fern in soil formation within the Carpathian subalpine spruce forest stands.Geoderma, 305, 162-172.
DOI URL |
10 |
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?Global Change Biology, 19, 988-995.
DOI URL |
11 |
Co?teaux MM, Bottner P, Berg B (1995). Litter decomposition, climate & litter quality.Trends in Ecology and Evolution, 10, 63-66.
DOI URL |
12 |
Deng RJ, Yang WQ, Feng RF, Hu JL, Qin JL, Qiong XJ (2009). Mass loss and element release of litter in the subalpine forest over one freeze-thaw season.Acta Ecologica Sinica, 29, 5730-5735.(in Chinese with English abstract) [邓仁菊, 杨万勤, 冯瑞芳, 胡建利, 秦嘉励, 熊雪晶 (2009). 季节性冻融期间亚高山森林凋落物的质量损失及元素释放. 生态学报, 29, 5730-5735.]
DOI URL |
13 | Dou S (2010). Soil Organic Matter. Science Press, Beijing. 84.(in Chinese) [窦森 (2010). 土壤有机质. 科学出版社, 北京. 84.] |
14 |
Dou S, Yu SQ, Zhang JJ (2007). Effects of carbon dioxide concentration on humus formation in cornstalk decomposition.Acta Pedologica Sinica, 44, 458-466.(in Chinese with English abstract) [窦森, 于水强, 张晋京 (2007). 不同CO2浓度对玉米秸秆分解期间土壤腐殖质形成的影响. 土壤学报, 44, 458-464.]
DOI URL |
15 |
Elliott J (2013). Evaluating the potential contribution of vegetation as a nutrient source in snowmelt runoff.Canadian Journal of Soil Science, 93, 435-443.
DOI URL |
16 |
Goebel M, Hobbie SE, Bulaj B, Zadworny M, Archibald DD, Oleksyn J, Reich PB, Eissensstat DM (2011). Decomposition of the finest root branching orders, linking belowground dynamics to fine-root function and structure.Ecological Monographs, 81, 89-102.
DOI URL |
17 |
Guo DL, Mitchell RJ, Hendricks JJ (2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest.Oecologia, 140, 450-456.
DOI URL |
18 | Hao XD, Zhou P, Cao YL (2017). Origins and evolution processes of humic substances in wastewater treatment.Chinese Journal of Environmental Engineering, 11, 1-11.(in Chinese with English abstract) [郝晓地, 周鹏, 曹亚莉 (2017). 污水处理中腐殖质的来源及其演变过程. 环境工程学报, 11, 1-11.] |
19 |
Henry (2008). Climate change and soil freezing dynamics: Historical trends and projected changes.Climatic Change, 87, 421-434.
DOI URL |
20 |
Hobbie SE (2008). Nitrogen effects on decomposition: A five-year experiment in eight temperate sites.Ecology, 89, 2633-2644.
DOI URL PMID |
21 | Hu JL, Yang WQ, Zhang J, Deng RJ (2009). Characteristics of biomass and carbon stock of fir and birch fine roots in subalpine forest of western Sichuan, China.Chinese Journal of Applied& Environmental Biology, 15, 313-317.(in Chinese with English abstract) [胡建利, 杨万勤, 张健, 邓仁菊 (2009). 川西亚高山冷杉和白桦细根生物量与碳储量特征. 应用与环境生物学报, 15, 313-317.] |
22 | Jin BB, Guo QX (2013). Root decomposition and nutrient dynamics of Quercus mongolica and Betula platyphylla. Acta Ecologica Sinica, 33, 2416-2424.(in Chinese with English abstract) [靳贝贝, 国庆喜 (2013). 蒙古栎、白桦根系分解及养分动态. 生态学报, 33, 2416-2424.] |
23 |
Kramer MG, Sollins P, Sletten RS, Swart PK (2003). N isotope fractionation and measures of organic matter alteration during decomposition.Ecology, 84, 2021-2025.
DOI URL |
24 |
Lehmann J, Kleber M (2015). The contentious nature of soil organic matter.Nature, 528, 60-68.
DOI URL PMID |
25 | Liu H, Yang WQ, Ni XY, Xiao S, Wu FZ (2015). Characters of different type of coarse woody debris humification in an alpine forest.Ecology and Environmental Sciences, 24, 1143-1149.(in Chinese with English abstract) [刘辉, 杨万勤, 倪祥银, 肖洒, 吴福忠 (2015). 高山森林不同类型粗木质残体腐殖化特征. 生态环境学报, 24, 1143-1149.] |
26 | Liu RL, Yang WQ, Tan B, Wang WJ, Ni XY, Wu FZ (2013). Effects of soil fauna on N and P dynamics at different stages during the first year of litter decomposition in subalpine and alpine forests of western Sichuan.Chinese Journal of Plant Ecology, 37, 1080-1090.(in Chinese with English abstract) [刘瑞龙, 杨万勤, 谭波, 王文君, 倪祥银, 吴福忠 (2013). 土壤动物对川西亚高山和高山森林凋落叶第一年不同分解时期N和P元素动态的影响. 植物生态学报, 37, 1080-1090.] |
27 |
Liu XH, Zou DY, Kang XF, Cheng YL, Wang HY, Zhou CJ, Wang SX (1999). The effect of persistent rotation fertilization on dynamic change in humic acid of brown earth.Chinese Journal of Soil Sciences, 30, 68-70.(in Chinese) [刘小虎, 邹德乙, 康笑峰, 程艳丽, 王洪岩, 周崇峻, 王绍新 (1999). 长期轮作施肥对棕壤腐殖酸动态变化的影响. 土壤通报, 30, 21-23.]
DOI URL |
28 |
Ludovici KH, Kress LW (2006). Decomposition and nutrient release from fresh and dried pine roots under two fertilizer regimes.Canadian Journal of Forest Research, 36, 105-111.
DOI URL |
29 |
Makita N, Kawamura A, Osawa A (2015). Size-dependent morphological and chemical property of fine root litter decomposition.Plant and Soil, 393, 283-295.
DOI URL |
30 |
Melillo JM, Aber JD, Muratore JF (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics.Ecology, 63, 621-626.
DOI URL |
31 | Ni XY, Yang WQ, Li H, Xu LY, He J, Wu FZ (2014a). Effects of snowpack on early foliar litter humification during winter in a subalpine forest of western Sichuan. Chinese Journal of Plant Ecology, 38, 540-549.(in Chinese with English abstract) [倪祥银, 杨万勤, 李晗, 徐李亚, 何洁, 吴福忠 (2014a). 雪被斑块对川西亚高山森林6种凋落叶冬季腐殖化的影响. 植物生态学报, 38, 540-549.] |
32 | Ni XY, Yang WQ, Tan B, He J, Xu LY, Li H, Wu FZ (2015). Accelerated foliar litter humification in forest gaps: Dual feedbacks of carbon sequestration during winter and the growing season in an alpine forest. Geoderma, s241-242, 136-144. |
33 | Ni XY, Yang WQ, Xu LY, He J, Li H, Wu FZ (2014b). Effects of winter snowpack on accumulation of humic acid and fulvic acid during humification of foliar litters in an alpine forest.Acta Pedologica Sinica, 51, 1138-1152.(in Chinese with English abstract) [倪祥银, 杨万勤, 徐李亚, 何洁, 李晗, 吴福忠 (2014b). 雪被斑块对高山森林凋落叶腐殖化过程中胡敏酸和富里酸累积的影响. 土壤学报, 51, 1138-1152.] |
34 |
Olajuyigbe S, Tobin B, Hawkins M, Nieuwenhuis M (2012). The measurement of woody root decomposition using two methodologies in a Sitka spruce forest ecosystem.Plant and Soil ,360, 77-91.
DOI URL |
35 |
Ponge JF, Chevalier R (2006). Humus index as an indicator of forest stand and soil properties.Forest Ecology and Management ,233, 165-175.
DOI URL |
36 |
Prescott CE, Maynard DG, Laiho R (2000). Humus in northern forests: Friend or foe?Forest Ecology and Management, 133, 23-36.
DOI URL |
37 |
Schimel JP, Bilbrough C, Welker JM (2004). Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities.Soil Biology & Biochemistry, 36, 217-227.
DOI URL |
38 |
Silver WL, Miya RK (2001). Global patterns in root decomposition: Comparisons of climate and litter quality effects.Oecologia, 129, 407-419.
DOI URL PMID |
39 | Smit AL, George E, Groenwold J (1999). Root observations and measurements at (transparent) interfaces with soil. In: Smit AL, Bengough AG, Engels C, Noordwijk MV, Pellerin S, vande Geijn SC eds. Root Methods. Springer- Verlag, New York. 236-266. |
40 | Stevenson FJ (1994). Humus Chemistry: Genesis, Composition, Reactions. 2nd edn. John Wiley & Sons, New York. 17. |
41 | Tang SH (2016). Root Decomposition of Different Diameters of Three Dominant Subalpine Trees and Its Responses to Experimental Warming in the Western Sichuan. Master degree dissertation, Sichuan Agricultural University, Chengdu.(in Chinese with English abstract) [唐仕姗 (2016). 川西亚高山3种优势林木不同径级根系分解及其对模拟增温的响应. 硕士学位论文, 四川农业大学, 成都.] |
42 |
Tang SH, Yang WQ, He W, Wang HP, Xiong L, Nie FY, Xu ZF (2015). Root decomposition, lignin and cellulose degradation of three dominant subalpine trees of different diameters in western Sichuan.Chinese Journal of Applied&Environmental Biology, 21, 754-761.(in Chinese with English abstract) [唐仕姗, 杨万勤, 何伟, 王海鹏, 熊莉, 聂富育, 徐振锋 (2015). 川西亚高山3种优势林木不同径级根系分解及木质素、纤维素降解特征. 应用与环境生物学报,21, 754-761.]
DOI URL |
43 |
Tuomela M, Hatakka A, Itavaara MVM (2000). Biodegradation of lignin in a compost environment: A review.Bioresource Technology, 72, 169-183.
DOI URL |
44 |
Wang H, Hong YT, Lin QH, Hong B, Zhu YX, Wang Y, Xu H (2010). Response of humification degree to monsoon climate during the Holocene from the Hongyuan peat bog, eastern Tibetan Plateau.Palaeogeography, 286, 171-177.
DOI URL |
45 | Wetterstedt J?M, Persson T, ?gren GRI (2010). Temperature sensitivity and substrate quality in soil organic matter decomposition: Results of an incubation study with three substrates.Global Change Biology, 16, 1806-1819. |
46 | Wu Y, Onipcenko VG (2007). The impact of snow-cover on alpine vegetation type of different aspects in the west of Sichuan Province.Acta Ecologica Sinica, 27, 5120-5129.(in Chinese with English abstract) [吴彦, Onipcenko VG (2007). 雪被对川西高山植被坡向性分异的影响. 生态学报, 27, 5120-5129.] |
47 | Yang WQ, Wang KY, Kellomki S, Gong HD (2005). Litter dynamics of three subalpine forests in western Sichuan.Pedosphere, 15, 653-659. |
48 | Zhang FD, Forkin AD (1994). Study on the decomposition and transformation of crop straws C in soils (in Chinese). Plant Nutrition and Fertilizer Science, 1, 27-38.(in Chinese with English abstract) [张夫道, Fokina D (1994). 作物秸秆碳在土壤中分解和转化规律的研究. 植物营养与肥料学报, 1, 27-38.] |
49 | Zhang XJ, Wu C, Mei, L, Han YZ, Wang ZQ (2006). Root decomposition and nutrient release ofFraxinus manshurica and Larix gmelinii plantations. Chinese Journal of Applied Ecology, 17, 1370-1376.(in Chinese with English abstract) [张秀娟, 吴楚, 梅莉, 韩有志, 王政权 (2006). 水曲柳和落叶松人工林根系分解与养分释放. 应用生态学报, 17, 1370-1376.] |
50 |
Zhang XY, Wang W (2015). The decomposition of fine and coarse roots: Their global patterns and controlling factors.Scientific Reports, 5, 9940. doi: 10.1038/srep09940.
DOI URL |
51 | Zhou J, Yang WQ, Wu FZ, Tan B, Duan F, Liu H (2017). Dynamics on humic acid and fulvic acid in the stump systems with different log years in thePinus massoniana plantations. Journal of University of Chinese Academy of Sciences, 34, 521-528.(in Chinese with English abstract) [周蛟, 杨万勤, 吴福忠, 谭波, 段斐, 刘辉 (2017). 不同采伐年限马尾松人工林伐桩的胡敏酸和富里酸动态特征. 中国科学院大学学报, 34, 521-528.] |
[1] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 何春梅, 李雨姗, 尹秋龙, 贾仕宏, 郝占庆. 秦岭皇冠暖温性落叶阔叶林优势树种的径级结构和数量特征[J]. 植物生态学报, 2023, 47(12): 1658-1667. |
[3] | 刘谣, 焦泽彬, 谭波, 李晗, 王丽霞, 刘思凝, 游成铭, 徐振锋, 张丽. 川西亚高山森林凋落物去除对土壤腐殖质动态的影响[J]. 植物生态学报, 2022, 46(3): 330-339. |
[4] | 拓锋, 刘贤德, 刘润红, 赵维俊, 敬文茂, 马剑, 武秀荣, 赵晶忠, 马雪娥. 祁连山大野口流域青海云杉种群空间格局及其关联性[J]. 植物生态学报, 2020, 44(11): 1172-1183. |
[5] | 吴盼, 彭希强, 杨树仁, 高亚男, 白丰桦, 衣世杰, 杜宁, 郭卫华. 山东省滨海湿地柽柳种群的空间分布格局及其关联性[J]. 植物生态学报, 2019, 43(9): 817-824. |
[6] | 温韩东, 林露湘, 杨洁, 胡跃华, 曹敏, 刘玉洪, 鲁志云, 谢有能. 云南哀牢山中山湿性常绿阔叶林20 hm2动态样地的物种组成与群落结构[J]. 植物生态学报, 2018, 42(4): 419-429. |
[7] | 邢娟, 郑成洋, 冯婵莹, 曾发旭. 河北塞罕坝樟子松人工林生长及碳储量的变化[J]. 植物生态学报, 2017, 41(8): 840-849. |
[8] | 张瑜, 金光泽. 腐烂等级、径级对典型阔叶红松林红松倒木物理化学性质的影响[J]. 植物生态学报, 2016, 40(12): 1276-1288. |
[9] | 梁爽, 许涵, 林家怡, 李意德, 林明献. 尖峰岭热带山地雨林优势树种白颜树空间分布格局[J]. 植物生态学报, 2014, 38(12): 1273-1282. |
[10] | 刘万德, 臧润国, 丁易, 张炜银, 苏建荣, 杨民, 蔡笃磊, 李儒财. 海南岛霸王岭热带季雨林树木的死亡率[J]. 植物生态学报, 2010, 34(8): 946-956. |
[11] | 刘莹, 王国梁, 刘国彬, 曲秋玲, 袁子成. 不同分类系统下油松幼苗根系特征的差异与联系[J]. 植物生态学报, 2010, 34(12): 1386-1393. |
[12] | 张春雨, 赵秀海, 赵亚洲. 长白山温带森林不同演替阶段群落结构特征[J]. 植物生态学报, 2009, 33(6): 1090-1100. |
[13] | 祝燕, 赵谷风, 张俪文, 沈国春, 米湘成, 任海保, 于明坚, 陈建华, 陈声文, 方腾, 马克平. 古田山中亚热带常绿阔叶林动态监测样地——群落组成与结构[J]. 植物生态学报, 2008, 32(2): 262-273. |
[14] | 杨景成, 黄建辉, 潘庆民, 韩兴国. 西双版纳不同热带生态系统土壤有机质的光谱学特性[J]. 植物生态学报, 2004, 28(5): 623-629. |
[15] | 达良俊, 杨永川, 宋永昌. 浙江天童国家森林公园常绿阔叶林主要组成种的种群结构及更新类型[J]. 植物生态学报, 2004, 28(3): 376-384. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19