植物生态学报 ›› 2016, Vol. 40 ›› Issue (4): 405-415.DOI: 10.17521/cjpe.2015.0208
所属专题: 碳循环
贾彦龙1,2, 李倩茹1,2, 许中旗1,*(), 桑卫国3
收稿日期:
2015-06-08
接受日期:
2016-01-18
出版日期:
2016-04-29
发布日期:
2016-04-30
通讯作者:
许中旗
基金资助:
Yan-Long JIA1,2, Qian-Ru LI1,2, Zhong-Qi XU1,*(), Wei-Guo SANG3
Received:
2015-06-08
Accepted:
2016-01-18
Online:
2016-04-29
Published:
2016-04-30
Contact:
Zhong-Qi XU
摘要:
为了探明华北落叶松(Larix gmelinii var. principis-rupprechtii)人工林的碳循环过程, 该研究以河北围场地区的华北落叶松人工林为例, 基于CO2FIX模型, 以在当地的实际调查数据、文献数据作为输入数据, 从生物量、土壤和木质林产品碳库3个方面探讨了华北落叶松人工林的碳循环过程和碳汇能力。结果表明: 华北落叶松人工林土壤碳库最大, 生物量碳库次之, 林产品碳库最小, 但是林产品碳库随时间呈逐渐增加的趋势; 在一个轮伐期内(50年), 每公顷华北落叶松人工林约固定了250 t碳, 其中约70%通过凋落物和采伐剩余物的方式进入土壤碳库, 约30%进入木质林产品碳库; 华北落叶松人工林在生长的大部分时间是一个碳的吸收汇, 而在森林采伐时成为暂时的排放源, 从长时间尺度上看, 每公顷华北落叶松人工林每年大约固定0.3 t左右的碳。该研究结果表明了木质林产品碳库在人工林碳循环中的重要作用, 这将有助于更加全面地认识人工林的碳循环过程和碳汇能力。
贾彦龙, 李倩茹, 许中旗, 桑卫国. 基于CO2FIX模型的华北落叶松人工林碳循环过程. 植物生态学报, 2016, 40(4): 405-415. DOI: 10.17521/cjpe.2015.0208
Yan-Long JIA, Qian-Ru LI, Zhong-Qi XU, Wei-Guo SANG. Carbon cycle of larch plantation based on CO2FIX model. Chinese Journal of Plant Ecology, 2016, 40(4): 405-415. DOI: 10.17521/cjpe.2015.0208
参数 Parameter | 数值 Value | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
模拟时长 Simulation length (a) | 120 | |||||||||||||||||
轮伐期 Rotation (a) | 50 | |||||||||||||||||
土壤初始碳密度 Initial carbon content of soil (t C·hm-2) | 158 | |||||||||||||||||
木材基本密度 Basic wood density (kg·m-3) | LP | UD | ||||||||||||||||
540 | 450 | |||||||||||||||||
含碳率 Carbon content (%) | 树干 Stem | 枝 Branch | 叶 Leaf | 根 Root | ||||||||||||||
LP | 49.71 | 51.00 | 51.07 | 53.37 | ||||||||||||||
UD | 50.00 | 50.00 | 50.00 | 50.00 | ||||||||||||||
周转率 Turnover rates | 枝 Branch | 叶 Leaf | 根 Root | |||||||||||||||
LP | 0.051) | 1 | 0.05 | |||||||||||||||
UD | 0.05 | 1 | 0.15 | |||||||||||||||
抚育采伐过程 Thinning or harvest | 林龄 Forest age (a) | |||||||||||||||||
14 | 21 | 31 | 45 | 50 | ||||||||||||||
LP | 0.42) | 0.4 | 0.4 | 0.5 | 1 | |||||||||||||
UD | 0.4 | 0.9 | 1 | 1 | 1 | |||||||||||||
采伐后木质林产品的分配 Product allocation for thinning and harvesting | 原木 Logwood | 纸浆材 Pulpwood | 采伐剩余物 Slash | |||||||||||||||
树干 Stem | 枝 Branch | 叶 Leaf | 树干 Stem | 枝 Branch | 叶 Leaf | 树干 Stem | 枝 Branch | 叶 Leaf | ||||||||||
LP | 0.5, 0.73) | 0 | 0 | 0 | 0 | 0 | 0.5, 0.3 | 1 | 1 | |||||||||
UD | 0, 0.64) | 0 | 0 | 0 | 0 | 0 | 1, 0.4 | 1 | 1 | |||||||||
产品期望寿命 Expected life time of products (a) | 长期产品LTP | 中期产品MTP | 短期产品STP | 垃圾场废弃林产品MD | 长期填埋林产品LD | |||||||||||||
20 | 10 | 1 | 10 | 145 |
表1 模拟华北落叶松人工林碳 动态的主要参数
Table 1 Main parameters in carbon dynamic simulation of larch (Larix gmelinii var. principis-rupprechtii) plantation
参数 Parameter | 数值 Value | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
模拟时长 Simulation length (a) | 120 | |||||||||||||||||
轮伐期 Rotation (a) | 50 | |||||||||||||||||
土壤初始碳密度 Initial carbon content of soil (t C·hm-2) | 158 | |||||||||||||||||
木材基本密度 Basic wood density (kg·m-3) | LP | UD | ||||||||||||||||
540 | 450 | |||||||||||||||||
含碳率 Carbon content (%) | 树干 Stem | 枝 Branch | 叶 Leaf | 根 Root | ||||||||||||||
LP | 49.71 | 51.00 | 51.07 | 53.37 | ||||||||||||||
UD | 50.00 | 50.00 | 50.00 | 50.00 | ||||||||||||||
周转率 Turnover rates | 枝 Branch | 叶 Leaf | 根 Root | |||||||||||||||
LP | 0.051) | 1 | 0.05 | |||||||||||||||
UD | 0.05 | 1 | 0.15 | |||||||||||||||
抚育采伐过程 Thinning or harvest | 林龄 Forest age (a) | |||||||||||||||||
14 | 21 | 31 | 45 | 50 | ||||||||||||||
LP | 0.42) | 0.4 | 0.4 | 0.5 | 1 | |||||||||||||
UD | 0.4 | 0.9 | 1 | 1 | 1 | |||||||||||||
采伐后木质林产品的分配 Product allocation for thinning and harvesting | 原木 Logwood | 纸浆材 Pulpwood | 采伐剩余物 Slash | |||||||||||||||
树干 Stem | 枝 Branch | 叶 Leaf | 树干 Stem | 枝 Branch | 叶 Leaf | 树干 Stem | 枝 Branch | 叶 Leaf | ||||||||||
LP | 0.5, 0.73) | 0 | 0 | 0 | 0 | 0 | 0.5, 0.3 | 1 | 1 | |||||||||
UD | 0, 0.64) | 0 | 0 | 0 | 0 | 0 | 1, 0.4 | 1 | 1 | |||||||||
产品期望寿命 Expected life time of products (a) | 长期产品LTP | 中期产品MTP | 短期产品STP | 垃圾场废弃林产品MD | 长期填埋林产品LD | |||||||||||||
20 | 10 | 1 | 10 | 145 |
华北落叶松人工林 Larch plantation | 林下植被 Understory | |||
---|---|---|---|---|
林龄 Forest age (a) | 树干生长量 Stem growth rate (m3·hm-2·a-1) | 林龄 Forest age (a) | 树干生长量 Stem growth rate (m3·hm-2·a-1) | |
0 | 0.50 | 0 | 0.50 | |
5 | 3.12 | 10 | 0.76 | |
10 | 6.27 | 15 | 1.35 | |
15 | 7.30 | 20 | 2.05 | |
20 | 7.20 | 25 | 0.83 | |
25 | 6.20 | 30 | 0.82 | |
30 | 5.20 | |||
35 | 4.40 | |||
40 | 3.70 | |||
45 | 3.10 | |||
50 | 2.70 |
表2 华北落叶松人工林及林下植被树干生长量
Table 2 Stem growth rate of larch and undergrowth vegetation
华北落叶松人工林 Larch plantation | 林下植被 Understory | |||
---|---|---|---|---|
林龄 Forest age (a) | 树干生长量 Stem growth rate (m3·hm-2·a-1) | 林龄 Forest age (a) | 树干生长量 Stem growth rate (m3·hm-2·a-1) | |
0 | 0.50 | 0 | 0.50 | |
5 | 3.12 | 10 | 0.76 | |
10 | 6.27 | 15 | 1.35 | |
15 | 7.30 | 20 | 2.05 | |
20 | 7.20 | 25 | 0.83 | |
25 | 6.20 | 30 | 0.82 | |
30 | 5.20 | |||
35 | 4.40 | |||
40 | 3.70 | |||
45 | 3.10 | |||
50 | 2.70 |
图1 全球历史气象网络数据与附近气象观测站月平均气温(A)和月降水量(B)的比较。
Fig. 1 Comparisons between data from Global Historical Climatology Network and data from monitoring site nearby for mean monthly temperature (A) and mean monthly precipitation (B).
图2 华北落叶松人工林生物碳储量模拟值与实测值的比较(平均值±标准偏差)。
Fig. 2 Comparison between simulated and measured values of biomass carbon storage in larch plantation (mean ± SD).
图6 一个轮伐期内华北落叶松人工林的碳流通(t C·hm-2)。NPP为净初级生产力, L & S为凋落物和采伐剩余物。数字表示一个轮伐期(50 a)内进入某一碳库总的碳通量或轮伐期后碳库最终的碳储量, 括号内的百分数表示该碳通量或碳储量与总净初级生产力之比。
Fig. 6 Carbon flow of larch plantation in a 50-year rotation (t C·hm-2). NPP is net primary productivity; L & S represents litter and logging slash; LTP, MTP, STP represent long term products, medium term products and short term products, respectively. Numbers in arrows represent carbon fluxes to certain carbon pool, and numbers in boxes represent carbon storage in certain carbon pool. The percentages in parentheses represent ratios of carbon fluxes or carbon storages to total net primary productivity.
1 | Bai YF (2010). Carbon Stocks of Harvested Wood Products in China. PhD dissertation, Chinese Academy of Forestry, Beijing. (in Chinese with English abstract)[白彦锋 (2010). 中国木质林产品碳储量. 博士学位论文, 中国林业科学研究院, 北京.] |
2 | Bai YF, Jiang CQ, Zhang SG (2009). Carbon stock and potential of emission reduction of harvested wood products in China.Acta Ecologica Sinica, 29, 399-405. (in Chinese with English abstract)[白彦锋, 姜春前, 张守攻 (2009). 中国木质林产品碳储量及其减排潜力. 生态学报, 29, 399-405.] |
3 | Brack CL, Richards GP (2002). Carbon accounting model for forests in Australia.Environmental Pollution, 116, S187-S194. |
4 | Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems.Science, 263, 185-190. |
5 | Du HM, Wang C, Gao HZ (2009). Carbon-sink function of artificial Larix principis-rupprechtii plantation.Chinese Journal of Eco-Agriculture, 17, 756-759. (in Chinese with English abstract)[杜红梅, 王超, 高红真 (2009). 华北落叶松人工林碳汇功能的研究. 中国生态农业学报, 17, 756-759.] |
6 | Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998.Science, 292, 2320-2322. |
7 | Fang JY, Guo ZD, Piao SL, Chen AP (2007). Terrestrial vegetation carbon sinks in China from 1981 to 2000.Science in China Series D: Earth Sciences, 37, 804-812. (in Chinese)[方精云, 郭兆迪, 朴世龙, 陈安平 (2007). 1981-2000年中国陆地植被碳汇的估算. 中国科学D辑: 地球科学, 37, 804-812.] |
8 | Fang JY, Liu GH, Zhu B, Wang XK, Liu SH (2006). Carbon budgets of three temperate forest ecosystems in Dongling Mt., Beijing, China.Science in China Series D: Earth Sciences, 36, 533-543. (in Chinese)[方精云, 刘国华, 朱彪, 王效科, 刘绍辉 (2006). 北京东灵山三种温带森林生态系统的碳循环. 中国科学D辑: 地球科学, 36, 533-543.] |
9 | Geng LJ, Xu ZQ, Zhang XR, Xi CX, Lu JP, Sun XM, Huang XR (2010). Biological carbon storage in Larix principis- rupprechtii plantations in north region of Yanshan Mountain.Journal of Northeast Forestry University, 38(6), 43-45, 52. (in Chinese with English abstract)[耿丽君, 许中旗, 张兴锐, 席常新, 卢金平, 孙晓梅, 黄选瑞 (2010). 燕山北部山地华北落叶松人工林生物碳贮量. 东北林业大学学报, 38(6), 43-45, 52.] |
10 | Gu FX, Tao B, Wen XF, Yu GR, Li KR (2010). Modeling long-term changes in carbon fluxes and storage in a subtropical coniferous plantation based on CEVSA2 model.Acta Ecologica Sinica, 30, 6598-6605. (in Chinese with English abstract)[顾峰雪, 陶波, 温学发, 于贵瑞, 李克让 (2010). 基于CEVSA2模型的亚热带人工针叶林长期碳通量及碳储量模拟. 生态学报, 30, 6598-6605.] |
11 | Huang ZL (2000). Application of a century model to management effects in the productivity of forests in Dinghushan.Acta Phytoecologica Sinica, 24, 175-179. (in Chinese with English abstract)[黄忠良 (2000). 运用Century模型模拟管理对鼎湖山森林生产力的影响. 植物生态学报, 24, 175-179.] |
12 | Jia YL, Xu ZQ, Ji XL, Xu XH, Huang XR (2012). Biological carbon storage of plantation and natural secondary forest in north region of Yanshan Mountain.Journal of Natural Resources, 27, 1241-1251. (in Chinese with English abstract)[贾彦龙, 许中旗, 纪晓林, 徐学华, 黄选瑞 (2012). 燕山北部山地人工林和天然次生林的生物碳贮量. 自然资源学报, 27, 1241-1251.] |
13 | Jiang FY, Sun H, Lin B, Liu Q (2009). Dynamic changes of top soil organic carbon in subalpine spruce plantation at different succession stages in western Sichuan Province.Chinese Journal of Applied Ecology, 20, 2581-2587. (in Chinese with English abstract)[姜发艳, 孙辉, 林波, 刘庆 (2009). 川西亚高山云杉人工林恢复过程中表层土壤碳动态变化. 应用生态学报, 20, 2581-2587.] |
14 | Kang XG, Cui XH (2001). The tree growth table of larch plantation.The Journal of Hebei Forestry Science and Technology, (3), 21-23. (in Chinese)[亢新刚, 崔相慧 (2001). 华北落叶松人工林生长过程表的编制. 河北林业科技, (3), 21-23.] |
15 | Kaul M, Mohren GMJ, Dadhwal VK (2010). Carbon storage and sequestration potential of selected tree species in India.Mitigation and Adaptation Strategies for Global Change, 15, 489-510. |
16 | Liu RG, Li N, Su HX, Sang WG (2009). Simulation and analysis on future carbon balance of three deciduous forests in Beijing mountain area, warm temperate zone of China.Chinese Journal of Plant Ecology, 33, 516-534. (in Chinese with English abstract)[刘瑞刚, 李娜, 苏宏新, 桑卫国 (2009). 北京山区3种暖温带森林生态系统未来碳平衡的模拟与分析. 植物生态学报, 33, 516-534.] |
17 | Ma QY, Chen XL, Wang J, Lan C, Kang FF, Cao WQ, Ma ZB, Li WY (2002). Carbon content rate in constructive species of main forest types in Northern China.Journal of Beijing Forestry University, 24(5/6), 96-100. (in Chinese with English abstract)[马钦彦, 陈遐林, 王娟, 蔺琛, 康峰峰, 曹文强, 马志波, 李文宇 (2002). 华北主要森林类型建群种的含碳率分析. 北京林业大学学报, 24(5/6), 96-100.] |
18 | Masera OR, Garza-Caligaris JF, Kanninen M, Karjalainen T, Liski J, Nabuurs GJ, Pussinen A, de Jong BHJ, Mohren GMJ (2003). Modeling carbon sequestration in afforestation, agroforestry and forest management projects: The CO2FIX V.2 approach.Ecological Modelling, 164, 177-199. |
19 | Nabuurs GJ, Schelhaas MJ (2002). Carbon profiles of typical forest types across Europe assessed with CO2FIX.Ecological Indicators, 213-223. |
20 | Negash M, Kanninen M (2015). Modeling biomass and soil carbon sequestration of indigenous agroforestry systems using CO2FIX approach.Agriculture, Ecosystems and Environment, 203, 147-155. |
21 | State Forestry Administration (2014). China Forests Resources Report—The Eighth National Forest Inventory. China Forestry Publishing House, Beijing.[国家林业局 (2014).中国森林资源报告——第八次全国森林资源清查. 中国林业出版社, 北京.] |
22 | Wang YM, Wang P, Yu LZ (2010). Effects of conversion from natural secondary forests to plantations on soil organic carbon in mountainous region of eastern Liaoning Province.Journal of Northeast Forestry University, 38(12), 54-57. (in Chinese with English abstract)[王彦梅, 王朋, 于立忠 (2010). 辽东山区天然次生林转化为人工林对土壤有机碳的影响. 东北林业大学学报, 38(12), 54-57.] |
23 | Zhang LM, Yu GR, Sun XM, Wen XF, Ren CY, Song X, Liu YF, Guan DX, Yan JH, Zhang YP (2006). Seasonal characteristics of carbon budget in forest ecosystems along the North-South Transect of East China.Science in China Series D: Earth Sciences, 36, 45-59. (in Chinese)[张雷明, 于贵瑞, 孙晓敏, 温学发, 任传友, 宋霞, 刘允芬, 关德新, 闫俊华, 张一平 (2006). 中国东部森林样带典型生态系统碳收支的季节变化. 中国科学D辑: 地球科学, 36, 45-59.] |
24 | Zhang XQ, Wu KH (2001). Fine-root production and turnover for forest ecosystems.Scientia Silvae Sinicae, 37(3), 126-138. (in Chinese with English abstract)[张小全, 吴可红 (2001). 森林细根生产和周转研究. 林业科学, 37(3), 126-138.] |
25 | Zhang XR, Xu ZQ, Ji XL, Jia YL, Huang XR, Lu JP, Zhang JS (2010). Soil organic carbon storage and its distribution of the typical communities in the north region of Yanshan Mountain.Journal of Soil and Water Conservation, 24(1), 186-190, 196. (in Chinese with English abstract)[张兴锐, 许中旗, 纪晓林, 贾彦龙, 黄选瑞, 卢金平, 张劲松 (2010). 燕山北部山地典型植物群落土壤有机碳贮量及其分布特征. 水土保持学报, 24(1), 186-190, 196.] |
[1] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[2] | 韩广轩, 李隽永, 屈文笛. 氮输入对滨海盐沼湿地碳循环关键过程的影响及机制[J]. 植物生态学报, 2021, 45(4): 321-333. |
[3] | 吕亚香, 戚智彦, 刘伟, 孙佳美, 潘庆民. 早春和夏季氮磷添加对内蒙古典型草原退化群落碳交换的影响[J]. 植物生态学报, 2021, 45(4): 334-344. |
[4] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[5] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[6] | 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020, 44(5): 494-514. |
[7] | 邢鹏, 李彪, 韩一萱, 顾秋锦, 万洪秀. 淡水生态系统对全球变化的响应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 565-574. |
[8] | 周贵尧, 周灵燕, 邵钧炯, 周旭辉. 极端干旱对陆地生态系统的影响: 进展与展望[J]. 植物生态学报, 2020, 44(5): 515-525. |
[9] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
[10] | 彭书时, 岳超, 常锦峰. 陆地生物圈模型的发展与应用[J]. 植物生态学报, 2020, 44(4): 436-448. |
[11] | 葛体达, 王东东, 祝贞科, 魏亮, 魏晓梦, 吴金水. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 360-372. |
[12] | 冯晓娟, 王依云, 刘婷, 贾娟, 戴国华, 马田, 刘宗广. 生物标志物及其在生态系统研究中的应用[J]. 植物生态学报, 2020, 44(4): 384-394. |
[13] | 张亮, 王志磊, 薛婷婷, 郝笑云, 杨晨露, 高飞飞, 王莹, 韩星, 李华, 王华. 葡萄园生态系统碳源/汇及碳减排策略研究进展[J]. 植物生态学报, 2020, 44(3): 179-191. |
[14] | 黄玫, 王娜, 王昭生, 巩贺. 磷影响陆地生态系统碳循环过程及模型表达方法[J]. 植物生态学报, 2019, 43(6): 471-479. |
[15] | 杨青霄, 田大栓, 曾辉, 牛书丽. 降水格局改变背景下土壤呼吸变化的主要影响因素及其调控过程[J]. 植物生态学报, 2017, 41(12): 1239-1250. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19