植物生态学报 ›› 2020, Vol. 44 ›› Issue (4): 384-394.DOI: 10.17521/cjpe.2019.0139
所属专题: 全球变化与生态系统; 生态学研究的技术和方法
冯晓娟1,2,*(),王依云1,2,刘婷1,贾娟1,戴国华1,马田1,2,刘宗广1
收稿日期:
2019-06-06
接受日期:
2019-08-22
出版日期:
2020-04-20
发布日期:
2019-10-21
通讯作者:
冯晓娟 ORCID:0000-0002-0443-0628
基金资助:
FENG Xiao-Juan1,2,*(),WANG Yi-Yun1,2,LIU Ting1,JIA Juan1,DAI Guo-Hua1,MA Tian1,2,LIU Zong-Guang1
Received:
2019-06-06
Accepted:
2019-08-22
Online:
2020-04-20
Published:
2019-10-21
Contact:
FENG Xiao-Juan ORCID:0000-0002-0443-0628
Supported by:
摘要:
生物标志物是环境和地质体中记载着原始生物母质分子结构信息的有机化合物, 其含量可以指征特定生物来源对天然有机质的相对贡献, 其组成和同位素信息还可以记录有机质的转化及环境信息。与传统元素及组分分析相比, 生物标志物为研究天然有机质的来源、动态变化和转化特征提供了具有高度专一性和灵敏度的工具, 因此, 近年来被广泛地应用于生态学和生物地球化学研究中。特别是, 与生态系统观测以及控制实验相结合, 生物标志物在揭示微生物的活性与碳源变化、土壤有机碳的稳定机制及其对全球变化的响应等方面显示了广阔的应用前景。近些年开发的生物标志物单体同位素分析也在生态系统碳氮周转与食物网研究等方面显示了巨大的研究潜力。基于此, 该文综述了生态系统研究中常用的生物标志物的种类、分析方法和应用方向, 总结了生物标志物研究目前存在的问题, 并对未来的研究方向进行了展望, 旨在为使用生物标志物的生态学和环境科学研究者提供参考。
冯晓娟, 王依云, 刘婷, 贾娟, 戴国华, 马田, 刘宗广. 生物标志物及其在生态系统研究中的应用. 植物生态学报, 2020, 44(4): 384-394. DOI: 10.17521/cjpe.2019.0139
FENG Xiao-Juan, WANG Yi-Yun, LIU Ting, JIA Juan, DAI Guo-Hua, MA Tian, LIU Zong-Guang. Biomarkers and their applications in ecosystem research. Chinese Journal of Plant Ecology, 2020, 44(4): 384-394. DOI: 10.17521/cjpe.2019.0139
图2 本文涉及的主要生物标志物的代表性单体结构示例(用罗马数字指示)。指征植物来源的生物标志物: 植物蜡质脂类, 包括长链的烷烃(I)、脂肪酸(II)等(Otto et al., 2005); 角质单体, 如短链的ω-羟基脂肪酸(III)等; 木质素酚类单体, 如香草醛(IV)、丁香酸(V)等(Thevenot et al., 2010); 软木脂单体, 如长链的α, ω-二元酸(VI)等(Otto et al., 2005)。指征微生物来源的生物标志物: 磷脂脂肪酸(PLFA; Frosteg?rd & B??th, 1996), 如亚油酸(VII)等; 甘油二烷基甘油四醚(GDGT; Schouten et al., 2013), 如GDGT-2 (VIII)等; 氨基糖(Joergensen, 2018), 如α-D-氨基葡萄糖(IX)和α-D-氨基半乳糖(X)等。此外, 中性糖(如α-D-葡萄糖(XI)等)和氨基酸(XII)普遍存在于植物和微生物中。
Fig. 2 Examples of typical monomer structures for the main types of biomarkers introduced in this paper. Plant-derived biomarkers: plant wax lipids including long-chain n-alkanes (I) and fatty acids (II), etc. (Otto et al., 2005); cutin monomers such as short-chain ω-hydroxyalkanoic acid (III); lignin phenols such as vanillin (IV) and syringic acid (V), etc. (Thevenot et al., 2010); suberin monomers such as long-chain α,ω-alkanedioic acid (VI; Otto et al., 2005). Micorbial-derived biomarkers: phospholipid fatty acids (PLFAs) such as linoleic acid (VII; Frosteg?rd & B??th, 1996); glycerol dialkyl glycerol tetraethers (GDGTs) such as GDGT-2 (VIII; Schouten et al., 2013); amino sugars, including α-D-glucosamine (IX) and α-D-galactosamine (X), etc. (Joergensen, 2018). In addition, neutral sugars such as α-D-glucose (XI) and amino acids with side chain (R group; XII) can be synthesized by both plants and microbes.
生物标志物 Biomarker | 分子组成 Molecular composition | 提取方法 Extraction method | 研究意义 Research implication | 关键参数 Key parameter |
---|---|---|---|---|
植物蜡质脂类 Plant lipids | 长链(>C20)正构烷烃、脂肪酸、脂肪醇、 固醇等 Long-chain (>C20) n-alkanes, n-alkanoic acids, n-alkanols, steroids, etc. | 溶剂萃取 Solvent extraction | 代表植物来源的脂类 Indicating lipids from terrestrial vegetation | ACL, CPI |
角质单体 Cutin monomers | 短链(C14-C18)羟基-环氧酸 Short-chain (C14-C18) hydroxy- and epoxy acids | 碱式水解 Base hydrolysis | 代表叶片角质来源的脂类 Indicating lipids from leaf cuticles | ω-C16/∑C16, ω-C18/∑C18 |
软木脂单体 Suberin monomers | 长链(C20-C32)脂肪酸、双酸、ω-羟基酸等 Long-chain (C20-C32) aliphatic acids, diacids and ω-hydroxy acids, etc. | 碱式水解 Base hydrolysis | 代表根系和树皮软木脂来源的脂类 Indicating lipids from suberin in roots and barks | |
磷脂脂肪酸 Phospholipid fatty acids (PLFAs) | 短链脂肪酸(<C20) Short-chain fatty acids (<C20) | Bligh-Dyer | 指征活体微生物生物量和群落结构 Indicating microbial biomass and community structure | F/B |
甘油二烷基甘油四醚Glycerol dialkyl glycerol tetraethers (GDGTs) | 类异戊二烯和支链GDGT Isoprenoid and branched GDGTs | 溶剂萃取 Solvent extraction | 古菌和细菌细胞膜脂 Indicating archaeal and bacterial membrane lipids | MBT, CBT |
中性糖 Neutral sugars | 葡萄糖、半乳糖、甘露糖、核糖、木糖和 阿拉伯糖等 Glucose, galactose, mannose. ribose, xylose, arabinose, etc. | 酸式水解 Acid hydrolysis | 区分植物和微生物来源的糖类 Indicating plant- and microbe-derived sugars | GM/AX, RF/AX |
木质素酚类 Lignin phenols | 带甲氧基的酚类化合物 Phenolic compounds with methoxyl groups | 碱性氧化铜氧化法 Alkaline CuO oxidation | 指示维管束植物来源的有机质和木质素氧化程度 Indicating lignin inputs from vascular plants and lignin oxidation stage | S/V, C/V, (Ad/Al)V, (Ad/Al)S |
氨基酸 Amino acids | 天冬氨酸、谷氨酸、丙氨酸等 Aspartic acid, glutamic acid, alanine, etc. | 酸式水解 Acid hydrolysis | 微生物、动植物及其蛋白质的代谢产物 Indicating proteinaceous inputs from microbes, animals and plants | D/L |
氨基糖 Amino sugars | 氨基葡萄糖、氨基半乳糖、甘露糖胺、 胞壁酸 Glucosamine, galactosamine, mannosamine, muramic acid | 酸式水解 Acid hydrolysis | 微生物细胞壁组分, 常指征环境中的微生物残体碳 Components of microbial cell wall; indicating microbial necromass in soils | GluN/MurN |
表1 生态系统研究中常用的生物标志物的分子构成、提取方法、研究意义和关键参数
Table 1 Molecular composition, extraction methods, research implications and key parameters of widely-used biomarkers in ecosystem research
生物标志物 Biomarker | 分子组成 Molecular composition | 提取方法 Extraction method | 研究意义 Research implication | 关键参数 Key parameter |
---|---|---|---|---|
植物蜡质脂类 Plant lipids | 长链(>C20)正构烷烃、脂肪酸、脂肪醇、 固醇等 Long-chain (>C20) n-alkanes, n-alkanoic acids, n-alkanols, steroids, etc. | 溶剂萃取 Solvent extraction | 代表植物来源的脂类 Indicating lipids from terrestrial vegetation | ACL, CPI |
角质单体 Cutin monomers | 短链(C14-C18)羟基-环氧酸 Short-chain (C14-C18) hydroxy- and epoxy acids | 碱式水解 Base hydrolysis | 代表叶片角质来源的脂类 Indicating lipids from leaf cuticles | ω-C16/∑C16, ω-C18/∑C18 |
软木脂单体 Suberin monomers | 长链(C20-C32)脂肪酸、双酸、ω-羟基酸等 Long-chain (C20-C32) aliphatic acids, diacids and ω-hydroxy acids, etc. | 碱式水解 Base hydrolysis | 代表根系和树皮软木脂来源的脂类 Indicating lipids from suberin in roots and barks | |
磷脂脂肪酸 Phospholipid fatty acids (PLFAs) | 短链脂肪酸(<C20) Short-chain fatty acids (<C20) | Bligh-Dyer | 指征活体微生物生物量和群落结构 Indicating microbial biomass and community structure | F/B |
甘油二烷基甘油四醚Glycerol dialkyl glycerol tetraethers (GDGTs) | 类异戊二烯和支链GDGT Isoprenoid and branched GDGTs | 溶剂萃取 Solvent extraction | 古菌和细菌细胞膜脂 Indicating archaeal and bacterial membrane lipids | MBT, CBT |
中性糖 Neutral sugars | 葡萄糖、半乳糖、甘露糖、核糖、木糖和 阿拉伯糖等 Glucose, galactose, mannose. ribose, xylose, arabinose, etc. | 酸式水解 Acid hydrolysis | 区分植物和微生物来源的糖类 Indicating plant- and microbe-derived sugars | GM/AX, RF/AX |
木质素酚类 Lignin phenols | 带甲氧基的酚类化合物 Phenolic compounds with methoxyl groups | 碱性氧化铜氧化法 Alkaline CuO oxidation | 指示维管束植物来源的有机质和木质素氧化程度 Indicating lignin inputs from vascular plants and lignin oxidation stage | S/V, C/V, (Ad/Al)V, (Ad/Al)S |
氨基酸 Amino acids | 天冬氨酸、谷氨酸、丙氨酸等 Aspartic acid, glutamic acid, alanine, etc. | 酸式水解 Acid hydrolysis | 微生物、动植物及其蛋白质的代谢产物 Indicating proteinaceous inputs from microbes, animals and plants | D/L |
氨基糖 Amino sugars | 氨基葡萄糖、氨基半乳糖、甘露糖胺、 胞壁酸 Glucosamine, galactosamine, mannosamine, muramic acid | 酸式水解 Acid hydrolysis | 微生物细胞壁组分, 常指征环境中的微生物残体碳 Components of microbial cell wall; indicating microbial necromass in soils | GluN/MurN |
[1] | Amelung W (2003). Nitrogen biomarkers and their fate in soil. Journal of Plant Nutrition and Soil Science, 166, 677-686. |
[2] | Amelung W, Zhang XD (2001). Determination of amino acid enantiomers in soils. Soil Biology & Biochemistry, 33, 553-562. |
[3] | Bianchi TS, Cui XQ, Blair NE, Burdige DJ, Eglinton TI, Galy V (2018). Centers of organic carbon burial and oxidation at the land-ocean interface. Organic Geochemistry, 115, 138-155. |
[4] |
Bligh E, Dyer W (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917.
URL PMID |
[5] | Boecklen WJ, Yarnes CT, Cook BA, James AC (2011). On the use of stable isotopes in trophic ecology. Annual Review of Ecology, Evolution, and Systematics, 42, 411-440. |
[6] | Bull ID, van Bergen PF, Nott CJ, Poulton PR, Evershed RP (2000). Organic geochemical studies of soils from the Rothamsted classical experiments—V. The fate of lipids in different long-term experiments. Organic Geochemistry, 31, 389-408. |
[7] |
Chikaraishi Y, Steffan SA, Ogawa NO, Ishikawa NF, Sasaki Y, Tsuchiya M, Ohkouchi N (2014). High-resolution food webs based on nitrogen isotopic composition of amino acids. Ecology and Evolution, 4, 2423-2449.
URL PMID |
[8] | Coppola AI, Wiedemeier DB, Galy V, Haghipour N, Hanke UM, Nascimento GS, Usman M, Blattmann TM, Reisser M, Freymond CV, Zhao M, Voss B, Wacker L, Schefuß E, Peucker-Ehrenbrink B, Abiven S, Schmidt MWI, Eglinton TI (2018). Global-scale evidence for the refractory nature of riverine black carbon. Nature Geoscience, 11, 584-588. |
[9] | Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8, 776-779. |
[10] | Crow SE, Lajtha K, Filley TR, Swanston CW, Bowden RD, Caldwell BA (2009). Sources of plant-derived carbon and stability of organic matter in soil: implications for global change. Global Change Biology, 15, 2003-2019. |
[11] | Dahl J, Moldowan J, Peters K, Claypool G, Rooney M, Michael G, Mello M, Kohnen M (1999). Diamondoid hydrocarbons as indicators of natural oil cracking. Nature, 399, 54-57. |
[12] |
Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173.
URL PMID |
[13] | Derenne S, Largeau C (2001). A review of some important families of refractory macromolecules: composition, origin, and fate in soils and sediments. Soil Science, 166, 833-847. |
[14] | Didyk B, Simoneit B, Brassell SC, Eglinton G (1978). Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272, 216-222. |
[15] | Dittmar T, Fitznar HP, Kattner G (2001). Origin and biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean as evident from D- and L-amino acids. Geochimica et Cosmochimica Acta, 65, 4103-4114. |
[16] |
Dolgova S, Popp BN, Courtoreille K, Espie RHM, Maclean B, McMaster M, Straka JR, Tetreault GR, Wilkie S, Hebert CE (2018). Spatial trends in a biomagnifying contaminant: application of amino acid compound-specific stable nitrogen isotope analysis to the interpretation of bird mercury levels. Environmental Toxicology and Chemistry, 37, 1466-1475.
URL PMID |
[17] | Douglas PMJ, Pagani M, Eglinton TI, Brenner M, Curtis JH, Breckenridge A, Johnston K (2018). A long-term decrease in the persistence of soil carbon caused by ancient Maya land use. Nature Geoscience, 11, 645-651. |
[18] | Eder E, Spielvogel S, Kӧlbl A, Albert G, Kӧgel-Knabner I (2010). Analysis of hydrolysable neutral sugars in mineral soils: improvement of alditol acetylation for gas chromatographic separation and measurement. Organic Geochemistry, 41, 580-585. |
[19] |
Eglinton G, Calvin M (1967). Chemical fossils. Scientific American, 216, 32-43.
URL PMID |
[20] |
Eglinton TI, Aluwihare LI, Bauer JE, Druffel ER, McNichol AP (1996). Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Analytical Chemistry, 68, 904-912.
DOI URL PMID |
[21] | Eglinton TI, Eglinton G (2008). Molecular proxies for paleoclimatology. Earth and Planetary Science Letters, 275, 1-16. |
[22] | Feng XJ, Gustafsson O, Holmes RM, Vonk JE, van Dongen BE, Semiletov IP, Dudarev OV, Yunker MB, Macdonald RW, Wacker L, Montlucon DB, Eglinton TI (2015). Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: C-14 characteristics of sedimentary carbon components and their environmental controls. Global Biogeochemical Cycles, 29, 1855-1873. |
[23] | Feng XJ, Simpson AJ, Wilson KP, Dudley Williams D, Simpson MJ (2008). Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nature Geoscience, 1, 836-839. |
[24] |
Feng XJ, Vonk JE, van Dongen BE, Gustafsson O, Semiletov IP, Dudarev OV, Wang ZH, Montlucon DB, Wacker L, Eglinton TI (2013). Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins. Proceedings of the National Academy of Sciences of the United States of America, 110, 14168-14173.
URL PMID |
[25] |
Ferrier-Pages C, Leal MC (2019). Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecology and Evolution, 9, 723-740.
DOI URL PMID |
[26] | Fogel ML, Griffin PL, Newsome SD (2016). Hydrogen isotopes in individual amino acids reflect differentiated pools of hydrogen from food and water in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 113, 201525703. DOI: 10.1073/pnas.1525703113. |
[27] | Frostegård A, Bååth E (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22, 59-65. |
[28] | Galy V, Eglinton T, France-Lanord C, Sylya S (2011). The provenance of vegetation and environmental signatures encoded in vascular plant biomarkers carried by the Ganges-Brahmaputra rivers. Earth and Planetary Science Letters, 304, 1-12. |
[29] | Glaser B, Turrión MB, Alef K (2004). Amino sugars and muramic acid—Biomarkers for soil microbial community structure analysis. Soil Biology & Biochemistry, 36, 399-407. |
[30] | Gleixner G, Czimczik CJ, Kramer C, Lühker B, Schmidt MW (2001). Plant compounds and their turnover and stabilization as soil organic matter//Schulze ED, Heimann M, Harrison S, Holland E, Lloyd J, Prentice IC, Schimel D. Global Biogeochemical Cycles in the Climate System. Elsevier, Amsterdam, Netherlands. 201-215. |
[31] |
Griepentrog M, Bodé S, Boeckx P, Hagedorn F, Heim A, Schmidt MW (2014). Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions. Global Change Biology, 20, 327-340.
URL PMID |
[32] | Gunina A, Kuzyakov Y (2015). Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate. Soil Biology & Biochemistry, 90, 87-100. |
[33] |
Hayes JM, Freeman KH, Popp BN, Hoham CH (1990). Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes. Organic Geochemistry, 16, 1115-1128.
URL PMID |
[34] | Hedges JI, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, Kögel-Knabner I, de Leeuw JW, Littke R, Michaelis W, Rullkötter J (2000). The molecularly- uncharacterized component of nonliving organic matter in natural environments. Organic Geochemistry, 31, 945-958. |
[35] | Hedges JI, Mann DC (1979). The characterization of plant tissues by their lignin oxidation products. Geochimica et Cosmochimica Acta, 43, 1803-1807. |
[36] |
Hernes PJ, Kaiser K, Dyda RY, Cerli C (2013). Molecular trickery in soil organic matter: hidden lignin. Environmental Science & Technology, 47, 9077-9085.
URL PMID |
[37] |
Hou JZ, Huang YS, Brodsky C, Alexandre MR, McNichol AP, King JW, Hu FS, Shen J (2010). Radiocarbon dating of individual lignin phenols: a new approach for establishing chronology of Late Quaternary lake sediments. Analytical Chemistry, 82, 7119-7126.
DOI URL PMID |
[38] | Huang XY, Meyers PA (2019). Assessing paleohydrologic controls on the hydrogen isotope compositions of leaf wax n-alkanes in Chinese peat deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, 516, 354-363. |
[39] | Ishikawa NF, Chikaraishi Y, Takano Y, Sasaki Y, Takizawa Y, Tsuchiya M, Tayasu I, Nagata T, Ohkouchi N (2018). A new analytical method for determination of the nitrogen isotopic composition of methionine: its application to aquatic ecosystems with mixed resources. Limnology and Oceanography: Methods, 16, 607-620. |
[40] |
Ishikawa NF, Togashi H, Kato Y, Yoshimura M, Kohmatsu Y, Yoshimizu C, Ogawa NO, Ohte N, Tokuchi N, Ohkouchi N, Tayasu I (2016). Terrestrial-aquatic linkage in stream food webs along a forest chronosequence: multi-isotopic evidence. Ecology, 97, 1146-1158.
URL PMID |
[41] | Jansen B, Wiesenberg GLB (2017). Opportunities and limitations related to the application of plant-derived lipid molecular proxies in soil science. Soil, 3, 211-234. |
[42] | Jex CN, Pate GH, Blyth AJ, Spencer RGM, Hernes PJ, Khan SJ, Baker A (2014). Lignin biogeochemistry: from modern processes to Quaternary archives. Quaternary Science Reviews, 87, 46-59. |
[43] | Joergensen RG (2018). Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils, 54, 559-568. |
[44] | Kirk TK, Farrell RL (1987). Enzymatic “combustion”: the microbial degradation of lignin. Annual Reviews in Microbiology, 41, 465-501. |
[45] |
Klotzbücher T, Kalbitz K, Cerli C, Hernes PJ, Kaiser K (2016). Gone or just out of sight? The apparent disappearance of aromatic litter components in soils. Soil, 2, 325-335.
DOI URL |
[46] | Kögel-Knabner I (2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology & Biochemistry, 34, 139-162. |
[47] |
Kögel-Knabner I (2017). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biology & Biochemistry, 105, A3-A8.
DOI URL |
[48] | Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008). Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 171, 61-82. |
[49] |
Lehmann J, Kleber M (2015). The contentious nature of soil organic matter. Nature, 528, 60-68.
DOI URL PMID |
[50] |
Liang C, Balser TC (2012). Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool. Nature Communications, 3, 1222. DOI: 10.1038/ncomms2224.
DOI URL PMID |
[51] | Liang C, Cheng G, Wixon DL, Balser TC (2011). An Absorbing Markov Chain approach to understanding the microbial role in soil carbon stabilization. Biogeochemistry, 106, 303-309. |
[52] |
Liang C, Schimel JP, Jastrow JD (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105. DOI: 10.1038/nmicrobiol.2017.105.
URL PMID |
[53] | Liu H, Liu WG (2015). Relationship of plant leaf wax n-alkanes molecular distribution characteristics and vegetation types. Journal of Earth Environment, 6, 168-179. |
[ 刘虎, 刘卫国 (2015). 植物叶蜡正构烷烃分子分布特征与植被类型的关系. 地球环境学报, 6, 168-179.] | |
[54] | Ma T, Dai GH, Zhu SS, Chen DM, Chen LT, Lü XT, Wang XB, Zhu JT, Zhang YJ, Ma WH, He JS, Bai YF, Han XG, Feng XJ (2019). Distribution and preservation of root- and shoot-derived carbon components in soils across the Chinese-Mongolian grasslands. Journal of Geophysical Research, 124, 420-431. |
[55] |
Ma T, Zhu SS, Wang ZH, Chen DM, Dai GH, Feng BW, Su XY, Hu HF, Li KH, Han WX, Liang C, Bai YF, Feng XJ (2018). Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications, 9, 3480. DOI: 10.1038/s41467-018-05891-1.
DOI URL PMID |
[56] | McCarthy MD, Benner R, Lee C, Fogel ML (2007). Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochimica et Cosmochimica Acta, 71, 4727-4744. |
[57] | Medina Contreras D, Cantera Kintz J, Sánchez González A, Mancera E (2018). Food web structure and trophic relations in a riverine mangrove system of the tropical eastern Pacific, central coast of Colombia. Estuaries and Coasts, 41, 1511-1521. |
[58] | Ohkouchi N, Chikaraishi Y, Close HG, Fry B, Larsen T, Madigan DJ, McCarthy MD, McMahon KW, Nagata T, Naito YI, Ogawa NO, Popp BN, Steffan S, Takano Y, Tayasu I, Wyatt ASJ, Yamaguchi YT, Yokoyama Y (2017). Advances in the application of amino acid nitrogen isotopic analysis in ecological and biogeochemical studies. Organic Geochemistry, 113, 150-174. |
[59] | Otto A, Shunthirasingham C, Simpson MJ (2005). A comparison of plant and microbial biomarkers in grassland soils from the Prairie Ecozone of Canada. Organic Geochemistry, 36, 425-448. |
[60] | Otto A, Simpson MJ (2005). Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from Western Canada. Biogeochemistry, 74, 377-409. |
[61] |
Otto A, Simpson MJ (2006). Sources and composition of hydrolysable aliphatic lipids and phenols in soils from western Canada. Organic Geochemistry, 37, 385-407.
DOI URL |
[62] |
Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56.
URL PMID |
[63] | Schouten S, Hopmans EC, Damsté JSS (2013). The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Organic Geochemistry, 54, 19-61. |
[64] | Sollins P, Kramer MG, Swanston C, Lajtha K, Filley T, Aufdenkampe AK, Wagai R, Bowden RD (2009). Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization. Biogeochemistry, 96, 209-231. |
[65] |
Sowers TD, Holden KL, Coward EK, Sparks DL (2019). Dissolved organic matter sorption and molecular fractionation by naturally occurring bacteriogenic iron (Oxyhydr) oxides. Environmental Science & Technology, 53, 4295-4304.
URL PMID |
[66] |
Steffan SA, Chikaraishi Y, Currie CR, Horn H, Gaines-Day HR, Pauli JN, Zalapa JE, Ohkouchi N (2015). Microbes are trophic analogs of animals. Proceedings of the National Academy of Sciences of the United States of America, 112, 15119-15124.
URL PMID |
[67] | Stevenson FJ (1982). Organic forms of nitrogen//Stevenson FJ. Nitrogen in Agricultural Soils. American Society of Agronomy, Madison. 67-122. |
[68] | Thevenot M, Dignac MF, Rumpel C (2010). Fate of lignins in soils: a review. Soil Biology & Biochemistry, 42, 1200-1211. |
[69] | Tierney J, Schouten S, Pitcher A, Hopmans EC, Sinninghe Damsté JS (2012). Core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in Sand Pond, Warwick, Rhode Island (USA): insights into the origin of lacustrine GDGTs. Geochimica et Cosmochimica Acta, 77, 561-581. |
[70] |
Tipple BJ, Berke MA, Doman CE, Khachaturyan S, Ehleringer JR (2013). Leaf-wax n-alkanes record the plant-water environment at leaf flush. Proceedings of the National Academy of Sciences of the United States of America, 110, 2659-2664.
URL PMID |
[71] | Treibs A (1936). Chlorophyll and hemin derivatives in organic mineral substances. Angewandte Chemie, 49, 682-686. |
[72] | van der Voort TS, Zell CI, Hagedorn F, Feng XJ, McIntyre CP, Haghipour N, Graf Pannatier E, Eglintone TI (2017). Diverse soil carbon dynamics expressed at the molecular level. Geophysical Research Letters, 44, 11840-11850. |
[73] |
Wang JZ, Ho SSH, Cao JJ, Huang RJ, Zhou JM, Zhao YZ, Xu HM, Liu SX, Wang GH, Shen ZX, Han YM (2015). Characteristics and major sources of carbonaceous aerosols in PM2. 5 from Sanya, China. Science of the Total Environment, 530-531, 110-119.
DOI URL PMID |
[74] |
Wang YY, Wang H, He JS, Feng XJ (2017). Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nature Communications, 8, 15972. DOI: 10.1038/ncomms15972.
URL PMID |
[75] | Wiesenberg G, Dorodnikov M, Kuzyakov Y (2010). Source determination of lipids in bulk soil and soil density fractions after four years of wheat cropping. Geoderma, 156, 267-277. |
[76] | Wiesenberg G, Schneckenberger K, Schwark L, Kuzyakov Y (2012). Use of molecular ratios to identify changes in fatty acid composition of Miscanthus × giganteus (Greef et Deu.) plant tissue, rhizosphere and root-free soil during a laboratory experiment. Organic Geochemistry, 46, 1-11. |
[77] | Xie SC, Liang B, Guo JQ, Yi Y, Evershed RP, Maddy D, Chambers FM (2003). Biomarkers and the related global change. Quaternary Sciences, 23, 521-528. |
[ 谢树成, 梁斌, 郭建秋, 易轶 , Evershed RP, Maddy D, Chambers FM (2003). 生物标志化合物与相关的全球变化. 第四纪研究, 23, 521-528.] | |
[78] | Xie SC, Wang ZY, Wang HM, Chen FH, An CB (2002). The occurrence of a grassy vegetation over the Chinese Loess Plateau since the last interglacier: the molecular fossil record. Science in China Series D: Earth Sciences, 45, 53-62. |
[79] | Zhang XD, Amelung W (1996). Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology & Biochemistry, 28, 1201-1206. |
[80] | Zhao L, Wu WC, Xu XT, Xu YP (2014). Soil organic matter dynamics under different land use in grasslands in Inner Mongolia (northern China). Biogeosciences, 11, 5103-5113. |
[81] |
Zhao MX, Dupont L, Eglinton G, Teece M (2003). n-Alkane and pollen reconstruction of terrestrial climate and vegetation for N. W. Africa over the last 160 kyr. Organic Geochemistry, 34, 131-143.
DOI URL |
[1] | 马书琴, 汪子微, 陈有超, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报, 2021, 45(5): 516-527. |
[2] | 韩广轩, 李隽永, 屈文笛. 氮输入对滨海盐沼湿地碳循环关键过程的影响及机制[J]. 植物生态学报, 2021, 45(4): 321-333. |
[3] | 吕亚香, 戚智彦, 刘伟, 孙佳美, 潘庆民. 早春和夏季氮磷添加对内蒙古典型草原退化群落碳交换的影响[J]. 植物生态学报, 2021, 45(4): 334-344. |
[4] | 王晴晴, 高燕, 王嵘. 全球变化对食物网结构影响机制的研究进展[J]. 植物生态学报, 2021, 45(10): 1064-1074. |
[5] | 李海东, 吴新卫, 肖治术. 种间互作网络的结构、生态系统功能及稳定性机制研究[J]. 植物生态学报, 2021, 45(10): 1049-1063. |
[6] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[7] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[8] | 邢鹏, 李彪, 韩一萱, 顾秋锦, 万洪秀. 淡水生态系统对全球变化的响应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 565-574. |
[9] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
[10] | 周贵尧, 周灵燕, 邵钧炯, 周旭辉. 极端干旱对陆地生态系统的影响: 进展与展望[J]. 植物生态学报, 2020, 44(5): 515-525. |
[11] | 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020, 44(5): 494-514. |
[12] | 彭书时, 岳超, 常锦峰. 陆地生物圈模型的发展与应用[J]. 植物生态学报, 2020, 44(4): 436-448. |
[13] | 葛体达, 王东东, 祝贞科, 魏亮, 魏晓梦, 吴金水. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 360-372. |
[14] | 张亮, 王志磊, 薛婷婷, 郝笑云, 杨晨露, 高飞飞, 王莹, 韩星, 李华, 王华. 葡萄园生态系统碳源/汇及碳减排策略研究进展[J]. 植物生态学报, 2020, 44(3): 179-191. |
[15] | 黄玫, 王娜, 王昭生, 巩贺. 磷影响陆地生态系统碳循环过程及模型表达方法[J]. 植物生态学报, 2019, 43(6): 471-479. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19