植物生态学报 ›› 2021, Vol. 45 ›› Issue (10): 1064-1074.DOI: 10.17521/cjpe.2020.0061
收稿日期:
2020-03-11
接受日期:
2020-08-03
出版日期:
2021-10-20
发布日期:
2020-11-30
通讯作者:
王嵘
作者简介:
(rwang@des.ecnu.edu.cn)基金资助:
WANG Qing-Qing, GAO Yan, WANG Rong()
Received:
2020-03-11
Accepted:
2020-08-03
Online:
2021-10-20
Published:
2020-11-30
Contact:
WANG Rong
Supported by:
摘要:
食物网主要依靠基于不同营养级间物种互作形成的上行与下行调控维持其结构。全球变化能够改变种间关系, 威胁生物多样性的维持, 然而目前对全球变化改变食物网结构的机制仍处于探索阶段。近年来通过大时空格局与多营养级食物网研究, 发现全球变化的作用机制主要可归结为3种: 物候错配、关键种丧失与生物入侵。该文聚焦于这3种机制, 综述各种机制造成的食物网结构变化并探讨相关的进化与生态驱动因素。三种干扰机制均通过改变原有种间关系, 影响食物网调控, 改变食物网结构。不同的是, 物候错配造成的种间关系变化是由于不同物种的物候对全球变化产生非同步响应所致; 关键种丧失则使营养级间取食/捕食关系发生变化甚至缺失; 而入侵物种通过竞争排除同营养级物种改变种间关系。最后, 该文提出食物网结构变化的实质是物种是否能够适应快速变化的生态环境, 并据此展望未来研究方向。随着全球变化影响日益加剧, 急需继续深入探索导致全球变化下食物网结构改变的机制, 为制定合理的生物多样性保护与生态修复规划提供重要理论支撑。
王晴晴, 高燕, 王嵘. 全球变化对食物网结构影响机制的研究进展. 植物生态学报, 2021, 45(10): 1064-1074. DOI: 10.17521/cjpe.2020.0061
WANG Qing-Qing, GAO Yan, WANG Rong. Review on impacts of global change on food web structure. Chinese Journal of Plant Ecology, 2021, 45(10): 1064-1074. DOI: 10.17521/cjpe.2020.0061
专业术语 Terminology | 解释 Explanation |
---|---|
上行调控 Bottom-up control | 通过低营养级物种的防御限制高营养级物种的可利用食物资源进而调控食物网中各物种的种群大小(Terborgh et al., The defenses of species at low trophic levels limit the availability of food resource for species at high trophic levels, regulating the population size of each species in a food web (Terborgh et al., |
下行调控 Top-down control | 通过高营养级物种对低营养级物种的捕食/取食控制食物网中各物种种群大小(Terborgh et al., Species at high trophic levels control the population size of each species in a food web through preying on or feeding on the species at low trophic levels (Terborgh et al., |
DNA条形码技术 DNA barcoding | DNA条形码是指基因组中能够代表该物种的且在种间有足够变异的、易扩增的DNA片段。通过获取一个或多个DNA条形码片段信息并与数据库中相关序列进行对比可快速、精确地完成物种鉴定(Hebert et al., The DNA fragments can represent the genomic characters of a species but with sufficient interspecific genetic variations and can be easily amplified. Rapid and accurate species identification can be achieved by using one to several DNA barcode fragments and comparing the obtained sequence information with related sequences in gene databases (Hebert et al., |
进化军备竞赛 Evolutionary arm race | 自然选择在不断提高捕食者发现和捕获猎物效率的同时也会不断改进猎物及时发现和逃避捕食者的能力, 这种相互适应的进化历程被称为进化军备竞赛(You et al., As a result of reciprocal selection, the efficiency of predators in finding and capturing preys and the ability of preys in detecting and eluding predators are simultaneously and continuously improved. This type of coadaptation in evolutionary history is named as the evolutionary arms race (You et al., |
内禀优势 Inherent superiority | 外来种在繁殖和扩散的过程中, 某些固有特征(如生理、生态、遗传和行为等)相对于本地种具有竞争优势, 从而导致其成功入侵(Zou et al., In reproduction and dispersal processes, many alien species have advantages compared with native species, due to their inherent characteristics in some aspects like physiology, ecology, genetics, and behavior, consequently resulting in successful invasions (Zou et al., |
入侵崩溃 Invasional meltdown | 两个或多个外来物种间产生互惠关系, 促进它们在新生境中的种群建立、繁殖与扩散, 最终导致这些物种共同入侵(Ricciardi & MacIsaac, The population establishment, reproduction and dispersal of two or more alien species in the novel environments were facilitated by their reciprocal mutualism(s), ultimately leading to the co-invasion of these species (Ricciardi & MacIsaac, |
表1 文中相关专业术语解释
Table 1 Explanation of terminology in this review
专业术语 Terminology | 解释 Explanation |
---|---|
上行调控 Bottom-up control | 通过低营养级物种的防御限制高营养级物种的可利用食物资源进而调控食物网中各物种的种群大小(Terborgh et al., The defenses of species at low trophic levels limit the availability of food resource for species at high trophic levels, regulating the population size of each species in a food web (Terborgh et al., |
下行调控 Top-down control | 通过高营养级物种对低营养级物种的捕食/取食控制食物网中各物种种群大小(Terborgh et al., Species at high trophic levels control the population size of each species in a food web through preying on or feeding on the species at low trophic levels (Terborgh et al., |
DNA条形码技术 DNA barcoding | DNA条形码是指基因组中能够代表该物种的且在种间有足够变异的、易扩增的DNA片段。通过获取一个或多个DNA条形码片段信息并与数据库中相关序列进行对比可快速、精确地完成物种鉴定(Hebert et al., The DNA fragments can represent the genomic characters of a species but with sufficient interspecific genetic variations and can be easily amplified. Rapid and accurate species identification can be achieved by using one to several DNA barcode fragments and comparing the obtained sequence information with related sequences in gene databases (Hebert et al., |
进化军备竞赛 Evolutionary arm race | 自然选择在不断提高捕食者发现和捕获猎物效率的同时也会不断改进猎物及时发现和逃避捕食者的能力, 这种相互适应的进化历程被称为进化军备竞赛(You et al., As a result of reciprocal selection, the efficiency of predators in finding and capturing preys and the ability of preys in detecting and eluding predators are simultaneously and continuously improved. This type of coadaptation in evolutionary history is named as the evolutionary arms race (You et al., |
内禀优势 Inherent superiority | 外来种在繁殖和扩散的过程中, 某些固有特征(如生理、生态、遗传和行为等)相对于本地种具有竞争优势, 从而导致其成功入侵(Zou et al., In reproduction and dispersal processes, many alien species have advantages compared with native species, due to their inherent characteristics in some aspects like physiology, ecology, genetics, and behavior, consequently resulting in successful invasions (Zou et al., |
入侵崩溃 Invasional meltdown | 两个或多个外来物种间产生互惠关系, 促进它们在新生境中的种群建立、繁殖与扩散, 最终导致这些物种共同入侵(Ricciardi & MacIsaac, The population establishment, reproduction and dispersal of two or more alien species in the novel environments were facilitated by their reciprocal mutualism(s), ultimately leading to the co-invasion of these species (Ricciardi & MacIsaac, |
图1 关键种丧失影响食物网结构示意图。黑色箭头表示营养级关系; 红色箭头表示消费者取食力度增强。关键顶级捕食者的缺失引起生态系统下行调控机制丧失, 刺激消费者密度快速增加从而加大对生产者的取食力度, 最终导致整个食物网崩溃; 关键消费者的丧失可能阻碍营养级间的正常能量流动, 抑制捕食者的能量来源, 同时改变表观竞争格局, 导致生产者之间竞争加剧, 物种数减少; 关键生产者的丧失能够增强消费者取食其他生产者的力度, 造成生产者大量灭绝, 最终威胁消费者和顶级捕食者的生存。
Fig. 1 Schematic diagram of the impacts of loss of keystone species on food web structure. The black arrows represent trophic relationships, and the red arrows indicate the strengthened consumption by consumers. Loss of key top predators causes the absence of top-down regulation, drastically increasing consumer density and feeding intensity on producers and consequently leading to meltdown of food webs. Local extinction of key consumers may restrict energy flow between trophic levels, detrimentally affecting top predators with a simultaneous consequence of aggravating inter-specific competition among producers, which can reduce the species richness of producers. Disappearance of key producers intensifies the feeding on the remnant producers, causing the extinction of these species and in turn threatening the existence of consumers and top predators.
图2 外来物种入侵影响食物网结构示意图。黑色箭头表示营养级关系; 红色箭头表示消费者取食力度或捕食者捕食强度增强。入侵捕食者在竞争排除同营养级中乡土种的同时由于其捕食偏好改变消费者表观竞争格局并影响低营养级; 入侵消费者通过竞争减少消费者物种数对生产者产生较大的取食压力, 同时阻断顶级捕食者的食物来源, 进而破坏食物网的上行和下行调控, 改变食物网结构; 在缺乏消费者取食的情况下, 入侵生产者通过竞争排除其他生产者并阻断能量流动, 导致消费者与捕食者灭绝, 引发整个食物网的崩溃。
Fig. 2 Schematic diagram of the impacts of alien invasive species on food web structure. The black arrows represent trophic relationships, and the red arrows indicate the increased consumption or the strengthened predation. Invasive predators can exclude native predators by competition and alter the interspecific competition of consumer due to their feeding preference, impacting the species composition at lower trophic levels. Invasive consumers exclude native consumers, intensify feeding on some producers and restrict food resources of top predators, disturbing top-down and bottom-up regulations and changing food web structure. In the absence of natural enemies, invasive producers exclude native producers and cut off energy flow, leading to massive extinction of consumers and top predators and meltdown of food webs.
[1] |
Althoff DM, Segraves KA, Johnson MTJ (2014). Testing for coevolutionary diversification: linking pattern with process. Trends in Ecology & Evolution, 29, 82-89.
DOI URL |
[2] |
Bardgett RD, van der Putten WH (2014). Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511.
DOI URL |
[3] |
Bascompte J (2009). Disentangling the web of life. Science, 325, 416-419.
DOI PMID |
[4] |
Both C, van Asch M, Bijlsma RG, van den Burg AB, Visser ME (2009). Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? Journal of Animal Ecology, 78, 73-83.
DOI URL |
[5] |
Both C, van Turnhout CAM, Bijlsma RG, Siepel H, van Strien AJ, Foppen RPB (2010). Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proceedings of the Royal Society B: Biological Sciences, 277, 1259-1266.
DOI URL |
[6] |
Bracken MES, Low NHN (2012). Realistic losses of rare species disproportionately impact higher trophic levels. Ecology Letters, 15, 461-467.
DOI URL |
[7] |
Butchart SHM, Walpole M, Collen B, van Strien AJ, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, et al. (2010). Global biodiversity: indicators of recent declines. Science, 328, 1164-1168.
DOI PMID |
[8] | Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59-67. |
[9] |
Croll DA, Maron JL, Estes JA, Danner EM, Byrd GV (2005). Introduced predators transform subarctic islands from grassland to tundra. Science, 307, 1959-1961.
PMID |
[10] |
Dalsgaard B, Trøjelsgaard K, Martín González AM, Nogués- Bravo D, Ollerton J, Petanidou T, Sandel B, Schleuning M, Wang ZH, Rahbek C, Sutherland WJ, Svenning JC, Olesen JM (2013). Historical climate-change influences modularity and nestedness of pollination networks. Ecography, 36, 1331-1340.
DOI URL |
[11] |
Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010). Co-invasion by Pinus and its mycorrhizal fungi. New Phytologist, 187, 475-484.
DOI PMID |
[12] | Dunne JA, Williams RJ, Martinez ND (2002). Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America, 99, 12917-12922. |
[13] |
Ehrenfeld JG (2010). Ecosystem consequences of biological invasions. Annual Review of Ecology, Evolution, and Systematics, 41, 59-80.
DOI URL |
[14] | Elton CS (1958). The Ecology of Invasions by Animals and Plants. Springer, Boston. |
[15] |
Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JBC, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, et al. (2011). Trophic downgrading of planet earth. Science, 333, 301-306.
DOI URL |
[16] |
Ewers RM, Didham RK (2006). Confounding factors in the detection of species responses to habitat fragmentation. Biological Reviews, 81, 117-142.
DOI URL |
[17] | Futuyma DJ, Agrawal AA (2009). Macroevolution and the biological diversity of plants and herbivores. Proceedings of the National Academy of Sciences of the United States of America, 106, 18054-18061. |
[18] |
Gallardo B, Clavero M, Sánchez MI, Vilà M (2016). Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biology, 22, 151-163.
DOI PMID |
[19] |
Gibson L, Lynam AJ, Bradshaw CJA, He FL, Bickford DP, Woodruff DS, Bumrungsri S, Laurance WF (2013). Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science, 341, 1508-1510.
DOI PMID |
[20] |
Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010). A framework for community interactions under climate change. Trends in Ecology & Evolution, 25, 325-331.
DOI URL |
[21] |
Goodell K, Parker IM (2017). Invasion of a dominant floral resource: effects on the floral community and pollination of native plants. Ecology, 98, 57-69.
DOI PMID |
[22] |
Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD (2015). Habitat fragmentation and its lasting impact on earth’s ecosystems. Science Advances, 1, e1500052. DOI: 10.1126/sciadv.1500052.
DOI URL |
[23] |
Hairston NG, Smith FE, Slobodkin LB (1960). Community structure, population control, and competition. The American Naturalist, 94, 421-425.
DOI URL |
[24] |
Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, et al. (2014). Consequences of biodiversity loss for litter decomposition across biomes. Nature, 509, 218-221.
DOI URL |
[25] |
Hansson LA, Nicolle A, Granéli W, Hallgren P, Kritzberg E, Persson A, Björk J, Nilsson PA, Brönmark C (2013). Food-chain length alters community responses to global change in aquatic systems. Nature Climate Change, 3, 228-233.
DOI URL |
[26] | Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270, 313-321. |
[27] |
Hoffmann AA, Sgrò CM (2011). Climate change and evolutionary adaptation. Nature, 470, 479-485.
DOI URL |
[28] |
Hughes BB, Eby R, van Dyke E, Tinker MT, Marks CI, Johnson KS, Wasson K (2013). Recovery of a top predator mediates negative eutrophic effects on seagrass. Proceedings of the National Academy of Sciences of the United States of America, 110, 15313-15318.
DOI PMID |
[29] |
Hulme PE (2009). Trade, transport and trouble: managing invasive species pathways in an era of globalization. Journal of Applied Ecology, 46, 10-18.
DOI URL |
[30] |
Ju RT, Li H, Shi ZR, Li B (2012). Progress of biological invasions research in China over the last decade. Biodiversity Science, 20, 581-611.
DOI URL |
[ 鞠瑞亭, 李慧, 石正人, 李博 (2012). 近十年中国生物入侵研究进展. 生物多样性, 20, 581-611.]
DOI |
|
[31] |
Kadoya T, Gellner G, McCann KS (2018). Potential oscillators and keystone modules in food webs. Ecology Letters, 21, 1330-1340.
DOI PMID |
[32] |
Kardol P, Wardle DA (2010). How understanding aboveground belowground linkages can assist restoration ecology. Trends in Ecology & Evolution, 25, 670-679.
DOI URL |
[33] |
Kiers TE, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010). Mutualisms in a changing world: an evolutionary perspective. Ecology Letters, 13, 1459-1474.
DOI PMID |
[34] |
Letnic M, Koch F, Gordon C, Crowther MS, Dickman CR (2009). Keystone effects of an alien top-predator stem extinctions of native mammals. Proceedings of the Royal Society B: Biological Sciences, 276, 3249-3256.
DOI PMID |
[35] | Li Y, Li GY, Mu JP, Sun SC (2008). Effects of consumer diversity on food web structure and ecosystem functioning: current knowledge and perspectives. Acta Ecologica Sinica, 28, 388-398. |
[ 李妍, 李国勇, 慕军鹏, 孙书存 (2008). 消费者多样性对食物网结构和生态系统功能的影响. 生态学报, 28, 388-398.] | |
[36] |
Lindeman RL (1942). The trophic-dynamic aspect of ecology. Ecology, 23, 399-418.
DOI URL |
[37] |
Liu YZ, Reich PB, Li GY, Sun SC (2011). Shifting phenology and abundance under experimental warming alters trophic relationships and plant reproductive capacity. Ecology, 92, 1201-1207.
DOI URL |
[38] |
May RM (1972). Will a large complex system be stable? Nature, 238, 413-414.
DOI URL |
[39] |
Memmott J, Waser NM, Price MV (2004). Tolerance of pollination networks to species extinctions. Proceedings of the Royal Society B: Biological Sciences, 271, 2605-2611.
PMID |
[40] |
Murphy GEP, Romanuk TN (2014). A meta-analysis of declines in local species richness from human disturbances. Ecology and Evolution, 4, 91-103.
DOI URL |
[41] |
Nallu S, Hill J, Don K, Sahagun C, Zhang W, Meslin C, Snell-Rood E, Clark NL, Morehouse NI, Bergelson J, Wheat CW, Kronforst MR (2017). The molecular genetic basis of herbivory between butterflies and their host-plants. Nature Ecology and Evolution, 2, 1418-1427.
DOI URL |
[42] |
Neutel AM, Heesterbeek JAP, van de Koppel J, Hoenderboom G, Vos A, Kaldeway C, Berendse F, de Ruiter PC (2007). Reconciling complexity with stability in naturally assembling food webs. Nature, 449, 599-602.
DOI URL |
[43] |
Olsen JL, Rouze P, Verhelst B, Lin Y, Bayer T, Collen J, Dattolo E de Paoli E, Dittami SM, Maumus F (2016). The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 530, 331-335.
DOI URL |
[44] |
Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012). Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344-1348.
DOI PMID |
[45] |
Pimm SL (1979). The structure of food webs. Theoretical Population Biology, 16, 144-158.
PMID |
[46] |
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25, 345-353.
DOI URL |
[47] |
Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012). A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Global Change Biology, 18, 1725-1737.
DOI URL |
[48] |
Ricciardi A, MacIsaac HJ (2000). Recent mass invasion of the North American Great Lakes by Ponto-Caspian species. Trends in Ecology & Evolution, 15, 62-65.
DOI URL |
[49] |
Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP, Schmitz OJ, Smith DW, Wallach AD, Wirsing AJ (2014). Status and ecological effects of the world’s largest carnivores. Science, 343, 1241484. DOI: 10.1126/science.1241484.
DOI URL |
[50] |
Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT, Galetti M, Hayward MW, Kerley GIH, Levi T, Lindsey PA, MacDonald DW, Malhi Y, Painter LE, Sandom CJ, Terborgh J, van Valkenburgh B (2015). Collapse of the world’s largest herbivores. Science Advances, 1, e1400103. DOI: 10.1126/sciadv.1400103.
DOI URL |
[51] |
Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze ED, Roscher C, Weigelt A, Allan E, Besler H, Bonkowski M, Buchmann N, Buscot F, Clement LW, et al. (2010). Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 468, 553-556.
DOI URL |
[52] |
Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil BS, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E, Vilà M (2013). Impacts of biological invasions: What’s what and the way forward. Trends in Ecology & Evolution, 28, 58-66.
DOI URL |
[53] |
Sydeman WJ, Poloczanska E, Reed TE, Thompson SA (2015). Climate change and marine vertebrates. Science, 350, 772-777.
DOI URL |
[54] |
Tao J, He DK, Kennard MJ, Ding CZ, Bunn SE, Liu CL, Jia YT, Che RX, Chen YF (2018). Strong evidence for changing fish reproductive phenology under climate warming on the Tibetan Plateau. Global Change Biology, 24, 2093-2104.
DOI URL |
[55] |
Taubert F, Fischer R, Groeneveld J, Lehmann S, Muller MS, Rodig E, Wiegand T, Huth A (2018). Global patterns of tropical forest fragmentation. Nature, 554, 519-522.
DOI URL |
[56] |
Terborgh J, Lopez L, Nuñez P, Rao M, Shahabuddin G, Orihuela G, Riveros M, Ascanio R, Adler GH, Lambert TD, Balbas L (2001). Ecological meltdown in predator-free forest fragments. Science, 294, 1923-1926.
PMID |
[57] |
Terborgh JW (2015). Toward a trophic theory of species diversity. Proceedings of the National Academy of Sciences of the United States of America, 112, 11415-11422.
DOI PMID |
[58] |
Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS, Burthe SJ, Helaouet P, Johns DG, Jones ID, Leech DI (2016). Phenological sensitivity to climate across taxa and trophic levels. Nature, 535, 241-245.
DOI URL |
[59] | Tong X, Wang R, Chen XY (2018). Expansion or invasion? A response to Nackley et al. Trends in Ecology & Evolution, 33, 234-235. |
[60] |
Traveset A, Richardson DM (2014). Mutualistic interactions and biological invasions. Annual Review of Ecology, Evolution, and Systematics, 45, 89-113.
DOI |
[61] |
Trisos CH, Merow C, Pigot AL (2020). The projected timing of abrupt ecological disruption from climate change. Nature, 580, 496-501.
DOI URL |
[62] |
Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11, 1351-1363.
PMID |
[63] |
Wabnitz C, Balazs G, Beavers S, Bjorndal KA, Bolten AB, Christensen V, Hargrove S, Pauly D (2010). Ecosystem structure and processes at Kaloko Honokohau, focusing on the role of herbivores, including the green sea turtle Chelonia mydas, in reef resilience. Marine Ecology Progress Series, 420, 27-44.
DOI |
[64] |
Wang R, Chen XY, Chen Y, Wang G, Dunn DW, Quinnell RJ, Compton SG (2019a). Loss of top-down biotic interactions changes the relative benefits for obligate mutualists. Proceedings of the Royal Society B: Biological Sciences, 286, 20182501. DOI: 10.1098/rspb.2018.2501.
DOI URL |
[65] |
Wang R, Shi YS, Zhang YX, Xu GF, Shen GC, Chen XY (2019b). Distance-dependent seed-seedling transition in the tree Castanopsis sclerophylla is altered by fragment size. Communications Biology, 2, 277. DOI: 10.1038/s42003-019-0528-x.
DOI URL |
[66] |
Wang R, Zhang X, Shi YS, Li YY, Wu JG, He FL, Chen XY (2020). Habitat fragmentation changes top-down and bottom-up controls of food webs. Ecology, 101, e03062. DOI: 10.1002/ecy.3062.
DOI |
[67] |
Wang SP, Brose U (2018). Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecology Letters, 21, 9-20.
DOI URL |
[68] |
Wang SP, Brose U, Gravel D (2019c). Intraguild predation enhances biodiversity and functioning in complex food webs. Ecology, 100, e02616. DOI: 10.1002/ecy.2616.
DOI |
[69] |
Wang YY, Xu J, Lei GC (2013). Proximate and ultimate determinants of food chain length. Acta Ecologica Sinica, 33, 5990-5996.
DOI URL |
[ 王玉玉, 徐军, 雷光春 (2013). 食物链长度远因与近因研究进展综述. 生态学报, 33, 5990-5996.] | |
[70] |
Wardle DA, Bardgett RD, Callaway RM, der Putten WHV (2011). Terrestrial ecosystem responses to species gains and losses. Science, 332, 1273-1277.
DOI PMID |
[71] | Weiner CN, Werner M, Linsenmair KE, Blüthgen N (2014). Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology, 95, 466-474. |
[72] |
Wilson MC, Chen XY, Corlett RT, Didham RK, Ding P, Holt RD, Holyoak M, Hu G, Hughes AC, Jiang L, Laurance WF, Liu JJ, Pimm SL, Robinson SK, Russo SE, Si XF, Wilcove DS, Wu JG, Yu MJ (2016). Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landscape Ecology, 31, 219-227.
DOI URL |
[73] |
You MS, Yue Z, He WY, Yang XH, Yang G, Xie M, Zhan DL, Baxter SW, Vasseur L, Gurr GM, Douglas CJ, Bai JL, Wang P, Cui K, Huang SG, et al. (2013). A heterozygous moth genome provides insights into herbivory and detoxification. Nature Genetics, 45, 220-225.
DOI URL |
[74] |
Zander A, Bersier L, Gray SM (2017). Effects of temperature variability on community structure in a natural microbial food web. Global Change Biology, 23, 56-67.
DOI PMID |
[75] |
Zettlemoyer MA, Schultheis EH, Lau JA (2019). Phenology in a warming world: differences between native and non- native plant species. Ecology Letters, 22, 1253-1263.
DOI PMID |
[76] |
Zhao L, Zhang HY, O’Gorman EJ, Tian W, Ma A, Moore JC, Borrett SR, Woodward G (2016). Weighting and indirect effects identify keystone species in food webs. Ecology Letters, 19, 1032-1040.
DOI PMID |
[77] |
Zou JW, Rogers WE, Siemann E (2007). Differences in morphological and physiological traits between native and invasive populations of Sapium sebiferum. Functional Ecology, 21, 721-730.
DOI URL |
[78] | Zuppinger-Dingley D, Schmid B, Petermann JS, Yadav V de Deyn GB, Flynn DFB (2014). Selection for niche differentiation in plant communities increases biodiversity effects. Nature, 515, 108-111. |
[1] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[2] | 何敏, 许秋月, 夏允, 杨柳明, 范跃新, 杨玉盛. 植物磷获取机制及其对全球变化的响应[J]. 植物生态学报, 2023, 47(3): 291-305. |
[3] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[4] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[5] | 秦文超, 陶至彬, 王永健, 刘艳杰, 黄伟. 资源脉冲对外来植物入侵影响的研究进展和展望[J]. 植物生态学报, 2021, 45(6): 573-582. |
[6] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[7] | 井新, 贺金生. 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望[J]. 植物生态学报, 2021, 45(10): 1094-1111. |
[8] | 邢鹏, 李彪, 韩一萱, 顾秋锦, 万洪秀. 淡水生态系统对全球变化的响应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 565-574. |
[9] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
[10] | 彭书时, 岳超, 常锦峰. 陆地生物圈模型的发展与应用[J]. 植物生态学报, 2020, 44(4): 436-448. |
[11] | 许光耀, 李洪远, 莫训强, 孟伟庆. 中国归化植物组成特征及其时空分布格局分析[J]. 植物生态学报, 2019, 43(7): 601-610. |
[12] | 单立山, 苏铭, 张正中, 王洋, 王珊, 李毅. 不同生境下荒漠植物红砂-珍珠猪毛菜混生根系的垂直分布规律[J]. 植物生态学报, 2018, 42(4): 475-486. |
[13] | 陈宝明, 韦慧杰, 陈伟彬, 朱政财, 原亚茹, 张永隆, 蓝志刚. 外来入侵植物对土壤氮转化主要过程及相关微生物的影响[J]. 植物生态学报, 2018, 42(11): 1071-1081. |
[14] | 蒋利玲, 曾从盛, 邵钧炯, 周旭辉. 闽江河口入侵种互花米草和本地种短叶茳芏的养分动态及植物化学计量内稳性特征[J]. 植物生态学报, 2017, 41(4): 450-460. |
[15] | 古春凤, 叶小齐, 吴明, 邵学新, 焦盛武. 草甘膦对加拿大一枝黄花和伴生植物白茅种间竞争关系的影响[J]. 植物生态学报, 2017, 41(4): 439-449. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19