植物生态学报 ›› 2018, Vol. 42 ›› Issue (11): 1071-1081.DOI: 10.17521/cjpe.2018.0138
陈宝明1,*(),韦慧杰1,陈伟彬1,朱政财2,原亚茹1,张永隆1,蓝志刚3
收稿日期:
2018-06-09
接受日期:
2018-11-05
出版日期:
2018-11-20
发布日期:
2019-03-13
通讯作者:
陈宝明
基金资助:
CHEN Bao-Ming1,*(),WEI Hui-Jie1,CHEN Wei-Bin1,ZHU Zheng-Cai2,YUAN Ya-Ru1,ZHANG Yong-Long1,LAN Zhi-Gang3
Received:
2018-06-09
Accepted:
2018-11-05
Online:
2018-11-20
Published:
2019-03-13
Contact:
Bao-Ming CHEN
Supported by:
摘要:
外来入侵植物不仅影响植物群落组成、生物多样性以及生态系统的结构和功能, 而且显著影响土壤氮(N)的转化过程。外来入侵植物对N循环影响的研究已成为入侵生态学的研究热点。N循环与凋落物的分解和养分释放有关, 外来入侵植物能够改变凋落物的组成与结构, 进而影响土壤的N转化过程。另外, 外来入侵植物的化感作用也会影响土壤N转化过程, 这些作用与土壤微生物的结构与功能变化密不可分。该文主要从凋落物分解与养分释放及外来入侵植物化感作用两个方面综述了外来入侵植物对土壤N转化的影响, 总结了外来入侵植物对土壤N转化相关土壤微生物(尤其是氨氧化细菌与氨氧化古菌)的影响, 探讨了土壤N转化对外来植物入侵的反馈, 并探讨了丛植菌根真菌与外来入侵植物的互相影响。
陈宝明, 韦慧杰, 陈伟彬, 朱政财, 原亚茹, 张永隆, 蓝志刚. 外来入侵植物对土壤氮转化主要过程及相关微生物的影响. 植物生态学报, 2018, 42(11): 1071-1081. DOI: 10.17521/cjpe.2018.0138
CHEN Bao-Ming, WEI Hui-Jie, CHEN Wei-Bin, ZHU Zheng-Cai, YUAN Ya-Ru, ZHANG Yong-Long, LAN Zhi-Gang. Effects of plant invasion on soil nitrogen transformation processes and its associated microbes. Chinese Journal of Plant Ecology, 2018, 42(11): 1071-1081. DOI: 10.17521/cjpe.2018.0138
[1] |
Allison SD, Vitousek PM ( 2004). Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oecologia, 141, 612-619.
DOI URL PMID |
[2] |
Angeloni NL, Jankowski KJ, Tuchman NC, Kelly JJ ( 2006). Effects of an invasive cattail species ( Typha × glauca) on sediment nitrogen and microbial community composition in a freshwater wetland. FEMS Microbiology Letters, 263, 86-92.
DOI URL PMID |
[3] | Bai YF, Guo SX, Li M ( 2011). Interactions between invasive plants and arbuscular mycorrhizal fungi: A review. Chinese Journal of Applied Ecology, 22, 2457-2463. |
[ 柏艳芳, 郭绍霞, 李敏 ( 2011). 入侵植物与丛枝菌根真菌的相互作用. 应用生态学报, 22, 2457-2463.] | |
[4] |
Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM ( 2003). Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science, 301, 1377-1379.
DOI URL PMID |
[5] |
Becerra PI, Catford JA, Inderjit, Luce McLeod M, Andonian K, Aschehoug ET, Montesinos D, Callaway RM ( 2018). Inhibitory effects of Eucalyptus globulus on understorey plant growth and species richness are greater in non-native regions. Global Ecology and Biogeography, 27, 68-76.
DOI URL |
[6] |
Bradley BA, Blumenthal DM, Wilcove DS, Ziska LH ( 2010). Predicting plant invasions in an era of global change. Trends in Ecology & Evolution, 25, 310-318.
DOI URL PMID |
[7] |
Bradley RL, Titus BD, Preston CP ( 2000). Changes to mineral N cycling and microbial communities in black spruce humus after additions of (NH4)2SO4 and condensed tannins extracted from Kalmia angustifolia and balsam fir. Soil Biology & Biochemistry, 32, 1227-1240.
DOI URL |
[8] |
Byrnes RC, Nùñez J, Arenas L, Rao I, Trujillo C, Alvarez C, Arango J, Rasche F, Chirinda N ( 2017). Biological nitrification inhibition by Brachiaria grasses mitigates soil nitrous oxide emissions from bovine urine patches. Soil Biology & Biochemistry, 107, 156-163.
DOI URL |
[9] |
Callaway RM, Aschehoug ET ( 2000). Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science, 290, 521-523.
DOI URL PMID |
[10] | Callaway RM, Bedmar EJ, Reinhart KO, Silvan CG, Klironomos J ( 2011). Effects of soil biota from different ranges on Robinia invasion: Acquiring mutualists and escaping pathogens. Ecology, 92, 1027-1035. |
[11] |
Callaway RM, Ridenour WM ( 2004). Novel weapons: Invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment, 2, 436-443.
DOI URL |
[12] |
Callaway RM, Thelen GC, Barth S, Ramsey PW, Gannon JE ( 2004 a). Soil fungi alter interactions between the invader Centaurea maculosa and North American natives. Ecology, 85, 1062-1071.
DOI URL |
[13] |
Callaway RM, Thelen GC, Rodriguez A, Holben WE ( 2004 b). Soil biota and exotic plant invasion. Nature, 427, 731-733.
DOI URL PMID |
[14] |
Castro-Díez P, Fierro-Brunnenmeister N, González-Muñoz N, Gallardo A ( 2012). Effects of exotic and native tree leaf litter on soil properties of two contrasting sites in the Iberian Peninsula. Plant and Soil, 350, 179-191.
DOI URL |
[15] |
Chapman SK, Newman GS, Hart SC, Schweitzer JA, Koch GW ( 2013). Leaf litter mixtures alter microbial community development: Mechanisms for non-additive effects in litter decomposition. PLOS ONE, 8, e62671. DOI: 10.1371/journal.?pone.0062671.
DOI URL PMID |
[16] |
Chen BM, Gao Y, Liao HX, Peng SL ( 2017). Differential responses of invasive and native plants to warming with simulated changes in diurnal temperature ranges. AoB Plants, 9, plx028. DOI: 10.1093/aobpla/plx028.
DOI URL PMID |
[17] | Chen BM, Ni GY, Ren WT, Peng SL ( 2007). Effects of aqueous extracts of Mikania micrantha on litter decomposition of native plants in South China. Allelopathy Journal, 20, 307-314. |
[18] | Chen BM, Peng SL, Chen LY, Li FR, Wang GX ( 2009 a). Effects of aqueous extracts of Mikania micrantha HBK on nutrients release from the forests litter at three succession stages in South China. Allelopathy Journal, 23, 453-460. |
[19] |
Chen BM, Peng SL, D’Antonio CM, Li DJ, Ren WT ( 2013). Non-additive effects on decomposition from mixing litter of the invasive Mikania micrantha H.B.K. with native plants. PLOS ONE, 8, e66289. DOI: 10.1371/journal.?pone. 0066289.
DOI URL PMID |
[20] |
Chen BM, Peng SL, Hou YP, Ren WT ( 2008). Efects of exotic plant Mikania micrantha H.B.K. on litter decomposition of several native plants. Acta Scientiarum Naturalium Universitatis Sunyatseni, 47, 44-47.
DOI URL |
[ 陈宝明, 彭少麟, 侯玉平, 任文韬 ( 2008). 外来植物薇甘菊对本地植物凋落物分解的影响. 中山大学学报(自然科学版), 47, 44-47.]
DOI URL |
|
[21] |
Chen BM, Peng SL, Ni GY ( 2009b). Effects of the invasive plant Mikania micrantha H.B.K. on soil nitrogen availability through allelopathy in South China. Biological Invasions, 11, 1291-1299.
DOI URL |
[22] |
Chen YL, Chen BD, Liu L, Hu YJ, Xu TL, Zhang X ( 2014). The role of arbuscular mycorrhizal fungi in soil nitrogen cycling. Acta Ecologica Sinica, 34, 4807-4815.
DOI URL |
[ 陈永亮, 陈保冬, 刘蕾, 胡亚军, 徐天乐, 张莘 ( 2014). 丛枝菌根真菌在土壤氮素循环中的作用. 生态学报, 34, 4807-4815.]
DOI URL |
|
[23] |
Chomel M, Fernandez C, Bousquet-Mélou A, Gers C, Monnier Y, Santonja M, Gauquelin T, Gros R, Lecareux C, Baldy V ( 2014). Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones. Journal of Ecology, 102, 411-424.
DOI URL |
[24] |
Chomel M, Guittonny-Larchevêque M, Fernandez C, Gallet C, DesRochers A, Paré D, Jackson BG, Baldy V ( 2016). Plant secondary metabolites: A key driver of litter decomposition and soil nutrient cycling. Journal of Ecology, 104, 1527-1541.
DOI URL |
[25] |
Cipollini D, Rigsby CM, Barto EK ( 2012). Microbes as targets and mediators of allelopathy in plants. Journal of Chemical Ecology, 38, 714-727.
DOI URL PMID |
[26] |
Conn C, Dighton J ( 2000). Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biology & Biochemistry, 32, 489-496.
DOI URL |
[27] |
Czaban W, Rasmussen J, Laursen BB, Vidkj?r NH, Sapkota R, Nicolaisen M, Fomsgaard IS ( 2018). Multiple effects of secondary metabolites on amino acid cycling in white clover rhizosphere. Soil Biology & Biochemistry, 123, 54-63.
DOI URL |
[28] |
D’Antonio CM, Flory SL ( 2017). Long-term dynamics and impacts of plant invasions. Journal of Ecology, 105, 1459-1461.
DOI URL |
[29] |
D’Antonio CM, Vitousek PM ( 1992). Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics, 23, 63-87.
DOI URL |
[30] |
Dassonville N, Guillaumaud N, Piola F, Meerts P, Poly F ( 2011). Niche construction by the invasive Asian knotweeds (species complex Fallopia): Impact on activity, abundance and community structure of denitrifiers and nitrifiers. Biological Invasions, 13, 1115-1133.
DOI URL |
[31] |
Dawson W, Schrama M ( 2016). Identifying the role of soil microbes in plant invasions. Journal of Ecology, 104, 1211-1218.
DOI URL |
[32] |
Di H, Cameron K, Shen J, Winefield C, O’Callaghan M, Bowatte S, He J ( 2009). Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience, 2, 621-624.
DOI URL |
[33] | Dukes JS, Chiariello NR, Loarie SR, Field CB ( 2011). Strong response of an invasive plant species ( Centaurea solstitialis L.) to global environmental changes. Ecological Applications, 21, 1887-1894. |
[34] |
Ehrenfeld JG ( 2003). Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 6, 503-523.
DOI URL |
[35] |
Ehrenfeld JG ( 2010). Ecosystem consequences of biological invasions. Annual Review of Ecology, Evolution, and Systematics, 41, 59-80.
DOI URL |
[36] |
Evans R, Rimer R, Sperry L, Belnap J ( 2001). Exotic plant invasion alters nitrogen dynamics in an arid grassland. Ecological Applications, 11, 1301-1310.
DOI URL |
[37] |
Finerty GE, Bello F, Bílá K, Berg MP, Dias ATC, Pezzatti GB, Moretti M ( 2016). Exotic or not, leaf trait dissimilarity modulates the effect of dominant species on mixed litter decomposition. Journal of Ecology, 104, 1400-1409.
DOI URL |
[38] |
Godoy O, Castro-Díez P, Van Logtestijn RSP, Cornelissen JHC, Valladares F ( 2010). Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: A broad phylogenetic comparison. Oecologia, 162, 781-790.
DOI URL PMID |
[39] |
Hättenschwiler S, Tiunov AV, Scheu S ( 2005). Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics, 36, 191-218.
DOI URL |
[40] |
Haubensak KA, D’Antonio CM ( 2011). The importance of nitrogen-fixation for an invader of a coastal California grassland. Biological Invasions, 13, 1275-1282.
DOI URL |
[41] |
Hawkes CV, Belnap J, D’Antonio C, Firestone MK ( 2006). Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses. Plant and Soil, 281, 369-380.
DOI URL |
[42] |
Hawkes CV, Wren IF, Herman DJ, Firestone MK ( 2005). Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecology Letters, 8, 976-985.
DOI URL |
[43] | Hellmann C, Sutter R, Rascher KG, Maguas C, Correia O, Werner C ( 2011). Impact of an exotic N2-fixing Acacia on composition and N status of a native Mediterranean community. Acta Oecologica, 37, 43-50. |
[44] |
Helsen K, Smith SW, Brunet J, Cousins SAO, de Frenne P, Kimberley A, Kolb A, Lenoir J, Ma S, Michaelis J, Plue J, Verheyen K, Speed JDM, Graae BJ ( 2018). Impact of an invasive alien plant on litter decomposition along a latitudinal gradient. Ecosphere, 9, e02097. DOI: 10.1002/?ecs2. 2097.
DOI URL |
[45] |
Hierro JL, Callaway RM ( 2003). Allelopathy and exotic plant invasion. Plant and Soil, 256, 29-39.
DOI URL |
[46] | Huang CC, Zhang RH, Fu WD, Song Z, Bai C, Wang R, Zhang GL ( 2018). Difference in 15N migration and phenotypic plasticity of invasive plant Alternanthera philoxeroides in different habitats. Ecology and Environmental Sciences, 27, 663-670. |
[ 黄成成, 张瑞海, 付卫东, 宋振, 柏超, 王然, 张国良 ( 2018). 空心莲子草在不同生境中氮素迁移和表型可塑性差异. 生态环境学报, 27, 663-670.] | |
[47] | Huang D, Sang WG, Zhu L, Song YY, Wang JP ( 2010). Effects of nitrogen and carbon addition and arbuscular mycorrhiza on alien invasive plant Ambrosia artemisiifolia. Chinese Journal of Applied Ecology, 21, 3056-3062. |
[ 黄栋, 桑卫国, 朱丽, 宋迎迎, 王晋萍 ( 2010). 氮碳添加和丛枝菌根对外来入侵植物豚草的影响. 应用生态学报, 21, 3056-3062.] | |
[48] |
Inderdjit S, Putten WH ( 2010). Impacts of soil microbial communities on exotic plant invasions. Trends in Ecology & Evolution, 25, 512-519.
DOI URL PMID |
[49] |
Inderjit, Evans H, Crocoll C, Bajpai D, Kaur R, Feng YL, Silva C, Carreon JT, Valiente-Banuet A, Gershenzon J, Callaway RM ( 2011 a). Volatile chemicals from leaf litter are associated with invasiveness of a Neotropical weed in Asia. Ecology, 92, 316-324.
DOI URL PMID |
[50] |
Inderjit, Wardle DA, Karban R, Callaway RM ( 2011 b). The ecosystem and evolutionary contexts of allelopathy. Trends in Ecology & Evolution, 26, 655-662.
DOI URL PMID |
[51] |
Isobe K, Koba K, Suwa Y, Ikutani J, Fang Y, Yoh M, Mo J, Otsuka S, Senoo K ( 2012). High abundance of ammonia-?oxidizing archaea in acidified subtropical forest soils in southern China after long-term N deposition. FEMS Microbiology Ecology, 80, 193-203.
DOI URL PMID |
[52] |
Jansa J, Smith FA, Smith SE ( 2008). Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist, 177, 779-789.
DOI URL PMID |
[53] |
Jo I, Fridley JD, Frank DA, Wilson GWT ( 2017). Invasive plants accelerate nitrogen cycling: Evidence from experimental woody monocultures. Journal of Ecology, 105, 1105-1110.
DOI URL |
[54] |
Joanisse GD, Bradley RL, Preston CM, Munson AD ( 2007). Soil enzyme inhibition by condensed litter tannins may drive ecosystem structure and processes: The case of Kalmia angustifolia. New Phytologist, 175, 535-546.
DOI URL PMID |
[55] |
Johansen A, Jakobsen I, Jensen ES ( 1992). Hyphal transport of 15N-labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N . New Phytologist, 122, 281-288.
DOI URL |
[56] | Kaproth MA, Eppinga MB, Molofsky J ( 2013). Leaf litter variation influences invasion dynamics in the invasive wetland grass Phalaris arundinacea. Biological Invasions, 15, 1819-1832. |
[57] |
Knops JMH, Bradley KL, Wedin DA ( 2002). Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecology Letters, 5, 454-466.
DOI URL |
[58] |
Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA ( 2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437, 543.
DOI URL PMID |
[59] |
Koukoura Z ( 1998). Decomposition and nutrient release from C3 and C4 plant litters in a natural grassland. Acta Oecologica, 19(2), 115-123.
DOI URL |
[60] |
Kourtev P, Huang W, Ehrenfeld J ( 1999). Differences in earthworm densities and nitrogen dynamics in soils under exotic and native plant species. Biological Invasions, 1, 237-245.
DOI URL |
[61] |
Kourtev PS, Ehrenfeld JG, Häggblom M ( 2002). Exotic plant species alter the microbial community structure and function in the soil. Ecology, 83, 3152-3166.
DOI URL |
[62] |
Kourtev PS, Ehrenfeld JG, Häggblom M ( 2003). Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biology & Biochemistry, 35, 895-905.
DOI URL |
[63] |
Kowalchuk GA, Stephen JR ( 2001). Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annual Review of Microbiology, 55, 485-529.
DOI URL |
[64] |
Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C ( 2006). Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442, 806.
DOI URL PMID |
[65] |
Ley RE, Schmidt SK ( 2002). Fungal and bacterial responses to phenolic compounds and amino acids in high altitude barren soils. Soil Biology & Biochemistry, 34, 989-995.
DOI URL |
[66] |
Li HN, Liu WX, Dai L, Wan FH, Cao YY ( 2009). Invasive Impacts of Ageratina adenophora(Asteraceae) on the changes of microbial community structure, enzyme activity and fertility in soil ecosystem. China Agriculture Science, 42, 3964-3971.
DOI URL |
[ 李会娜, 刘万学, 戴莲, 万方浩, 曹远银 ( 2009). 紫茎泽兰入侵对土壤微生物、酶活性及肥力的影响. 中国农业科学, 42, 3964-3971.]
DOI URL |
|
[67] |
Li JB, Wang XM, Xie RR, Chen YJ, Tong C ( 2017). Effects of Spartina alterniflora invasion on sediment nitrification-denitrification processes in the Cyperus malaccensis marsh of the Ming River Estuary. Acta Sctentiae Circumstantiae, 37, 1065-1073.
DOI URL |
[ 李家兵, 汪旭明, 谢蓉蓉, 陈蕴姬, 仝川 ( 2017). 闽江口互花米草入侵过程对短叶茳芏沼泽沉积物硝化-反硝化作用的影响. 环境科学学报, 37, 1065-1073.]
DOI URL |
|
[68] |
Li KL, Zhao XH, Liu HM, Yang DL, Qu B, Huangpu CH ( 2017). Effects of Flaveria bidentis invasion on diversity of soil ammonia-oxidizing archaea. Soils, 49, 1053-1057.
DOI URL |
[ 李科利, 赵晓红, 刘红梅, 杨殿林, 曲波, 皇甫超河 ( 2017). 黄顶菊入侵对土壤氨氧化古菌群落多样性的影响. 土壤, 49, 1053-1057.]
DOI URL |
|
[69] |
Li YP, Feng YL, Kang ZL, Zheng YL, Zhang JL, Chen YJ ( 2017). Changes in soil microbial communities due to biological invasions can reduce allelopathic effects. Journal of Applied Ecology, 54, 1281-1290.
DOI URL |
[70] |
Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B ( 2008). Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis. New Phytologist, 177, 706-714.
DOI URL |
[71] |
Liu G, Yang YB, Zhu ZH ( 2018). Elevated nitrogen allows the weak invasive plant Galinsoga quadriradiata to become more vigorous with respect to inter-specific competition. Scientific Reports, 8, 3136. DOI: 10.1038/s41598-018-?21546-z.
DOI URL PMID |
[72] |
Liu XW, He FL, Qi CM, Quan QG, Ao Y, Li Y, Luo Y, Yan DD, Cao AC ( 2016). Effect of invasive plants Ambrosia artemisiifolia L. on soil carbon and nitrogen transition. Acta Agriculturae Zhejiangensis, 28, 297-301.
DOI URL |
[ 刘小文, 何福林, 齐成媚, 全沁果, 敖艳, 李园, 骆鹰, 颜冬冬, 曹坳程 ( 2016). 外来植物豚草入侵对土壤碳氮转化的影响. 浙江农业学报, 28, 297-301.]
DOI URL |
|
[73] |
Lorenzo P, Pereira CS, Rodríguez-Echeverría S ( 2013). Differential impact on soil microbes of allelopathic compounds released by the invasive Acacia dealbata Link. Soil Biology & Biochemistry, 57, 156-163.
DOI URL |
[74] |
Mack MC, D’Antonio CM ( 2003). Exotic grasses alter controls over soil nitrogen dynamics in a Hawaiian woodland. Ecological Applications, 13, 154-166.
DOI URL |
[75] |
Mack MC, D’Antonio CM, Ley RE ( 2001). Alteration of ecosystem nitrogen dynamics by exotic plants: A case study of C4 grasses in Hawaii. Ecological Applications, 11, 1323-1335.
DOI URL |
[76] |
Maron JL, Connors PG ( 1996). A native nitrogen-fixing shrub facilitates weed invasion. Oecologia, 105, 302-312.
DOI URL PMID |
[77] |
McLeod ML, Cleveland CC, Lekberg Y, Maron JL, Philippot L, Bru D, Callaway RM ( 2016). Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grasslands. Journal of Ecology, 104, 994-1002.
DOI URL |
[78] |
Meisner A, de Boer W, Cornelissen JHC, van der Putten WH ( 2012). Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients. PLOS ONE, 7, e31596. DOI: 10.1371/journal.pone.0031596.
DOI URL PMID |
[79] | Ni G, Song L, Zhang J, Peng S ( 2006). Effects of root extracts of Mikania micrantha HBK on soil microbial community. Allelopathy Journal, 17, 247-254. |
[80] | Nijjer S, Rogers WE, Lee CTA, Siemann E ( 2008). The effects of soil biota and fertilization on the success of Sapium sebiferum. Applied Soil Ecology, 38, 1-11. |
[81] |
Nuccio EE, Hodge A, Pett-Ridge J, Herman DJ, Weber PK, Firestone MK ( 2013). An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environmental Microbiology, 15, 1870-1881.
DOI URL PMID |
[82] |
Parker LW, Santos PF, Phillips J, Whitford WG ( 1984). Carbon and nitrogen dynamics during the decomposition of litter and roots of a Chihuahuan desert annual,Lepidium Lasiocarpum. Ecological Monographs, 54, 339-60.
DOI URL |
[83] |
Pinzone P, Potts D, Pettibone G, Warren R ( 2018). Do novel weapons that degrade mycorrhizal mutualisms promote species invasion? Plant Ecology, 219, 539-548.
DOI URL |
[84] |
Piper CL, Lamb EG, Siciliano SD ( 2015). Smooth brome changes gross soil nitrogen cycling processes during invasion of a rough fescue grassland. Plant Ecology, 216, 235-246.
DOI URL |
[85] |
Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M ( 2012). A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Global Change Biology, 18, 1725-1737.
DOI URL PMID |
[86] |
Ridenour WM, Callaway RM ( 2001). The relative importance of allelopathy in interference: The effects of an invasive weed on a native bunchgrass. Oecologia, 126, 444-450.
DOI URL PMID |
[87] |
Rodgers VL, Wolfe BE, Werden LK, Finzi AC ( 2008). The invasive species Alliaria petiolata(garlic mustard) increases soil nutrient availability in northern hardwood conifer forests. Oecologia, 157, 459-471.
DOI URL PMID |
[88] |
Rodríguez-Echeverría S, Crisóstomo JA, Nabais C, Freitas H ( 2009). Belowground mutualists and the invasive ability of Acacia longifolia in coastal dunes of Portugal. Biological Invasions, 11, 651-661.
DOI URL |
[89] |
Roley SS, Tank JL, Grace MR, Cook PLM ( 2018). The influence of an invasive plant on denitrification in an urban wetland. Freshwater Biology, 63, 353-365.
DOI URL |
[90] | Rooth JE, Stevenson JC, Cornwell JC ( 2003). Increased sediment accretion rates following invasion by Phragmites australis: The role of litter. Estuaries, 26, 475-483. |
[91] |
Rothstein DE, Vitousek PM, Simmons BL ( 2004). An exotic tree alters decomposition and nutrient cycling in a Hawaiian montane forest. Ecosystems, 7, 805-814.
DOI URL |
[92] |
Scherer-Lorenzen M ( 2008). Functional diversity affects decomposition processes in experimental grasslands. Functional Ecology, 22, 547-555.
DOI URL |
[93] |
Shannon-Firestone S, Reynolds HL, Phillips RP, Flory SL, Yannarell A ( 2015). The role of ammonium oxidizing communities in mediating effects of an invasive plant on soil nitrification. Soil Biology & Biochemistry, 90, 266-274.
DOI URL |
[94] |
Sharma GP, Raghubanshi AS ( 2009). Lantana invasion alters soil nitrogen pools and processes in the tropical dry deciduous forest of India. Applied Soil Ecology, 42, 134-140.
DOI URL |
[95] |
Shen LH, Guo QX, Lin WX, Chen Y, Huang Z ( 2007). Impacts of invasive alien weed Solidago canadensis L. on microbial population in the root soil. Chinese Agricultural Science Bulletin, 23, 323-327.
DOI URL |
[ 沈荔花, 郭琼霞, 林文雄, 陈颖, 黄振 ( 2007). 加拿大一枝黄花对土壤微生物区系的影响研究. 中国农学通报, 23, 323-327.]
DOI URL |
|
[96] |
Sheppard C, Burns B, Stanley M ( 2016). Future-proofing weed management for the effects of climate change: Is New Zealand underestimating the risk of increased plant invasions? New Zealand Journal of Ecology, 40, 398-405.
DOI URL |
[97] |
Song LY, Chow WS, Sun LL, Li CH, Peng CL ( 2010 a). Acclimation of photosystem II to high temperature in two Wedelia species from different geographical origins: Implications for biological invasions upon global warming. Journal of Experimental Botany, 61, 4087-4096.
DOI URL PMID |
[98] |
Song LY, Li CH, Peng SL ( 2010 b). Elevated CO2 increases energy-use efficiency of invasiveWedelia trilobata over its indigenous congener. Biological Invasions, 12, 1221-1230.
DOI URL |
[99] |
Souto XC, Chiapusio G, Pellissier F ( 2000). Relationships between phenolics and soil microorganisms in spruce forests: Significance for natural regeneration. Journal of Chemical Ecology, 26, 2025-2034.
DOI URL |
[100] |
Souza-Alonso P, Novoa A, González L ( 2014). Soil biochemical alterations and microbial community responses under Acacia dealbata Link invasion. Soil Biology & Biochemistry, 79, 100-108.
DOI URL |
[101] |
Stark JM, Norton JM ( 2015). The invasive annual cheatgrass increases nitrogen availability in 24-year-old replicated field plots. Oecologia, 177, 799-809.
DOI URL PMID |
[102] |
Taylor BR, Parkinson D, Parsons WF ( 1989). Nitrogen and lignin content as predictors of litter decay rates: A microcosm test. Ecology, 70, 97-104.
DOI URL |
[103] |
Tharayil N, Alpert P, Bhowmik P, Gerard P ( 2013). Phenolic inputs by invasive species could impart seasonal variations in nitrogen pools in the introduced soils: A case study with Polygonum cuspidatum. Soil Biology & Biochemistry, 57, 858-867.
DOI URL |
[104] |
Thorpe AS, Callaway RM ( 2011). Biogeographic differences in the effects of Centaurea stoebe on the soil nitrogen cycle: Novel weapons and soil microbes. Biological Invasions, 13, 1435-1445.
DOI URL |
[105] |
Thorpe AS, Thelen GC, Diaconu A, Callaway RM ( 2009). Root exudate is allelopathic in invaded community but not in native community: Field evidence for the novel weapons hypothesis. Journal of Ecology, 97, 641-645.
DOI URL |
[106] |
Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C ( 2005). Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environmental Microbiology, 7, 1985-1995.
DOI URL PMID |
[107] | Uddin MN, Robinson RW, Buultjens A, Al Harun MAY, Shampa SH ( 2017). Role of allelopathy of Phragmites australis in its invasion processes. Journal of Experimental Marine Biology and Ecology, 486, 237-244. |
[108] |
van der Putten WH, Klironomos JN, Wardle DA ( 2007). Microbial ecology of biological invasions. ISME Journal, 1, 28-37.
DOI URL PMID |
[109] |
Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO ( 2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304, 66-74.
DOI URL |
[110] |
Veresoglou SD, Chen B, Rillig MC ( 2012 a). Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology & Biochemistry, 46, 53-62.
DOI URL |
[111] |
Veresoglou SD, Shaw LJ, Hooker JE, Sen R ( 2012 b). Arbuscular mycorrhizal modulation of diazotrophic and denitrifying microbial communities in the (mycor) rhizosphere of Plantago lanceolata. Soil Biology & Biochemistry, 53, 78-81.
DOI URL |
[112] |
Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P ( 2011). Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14, 702-708.
DOI URL PMID |
[113] |
Vivanco JM, Bais HP, Stermitz FR, Thelen GC, Callaway RM ( 2004). Biogeographical variation in community response to root allelochemistry: Novel weapons and exotic invasion. Ecology Letters, 7, 285-292.
DOI URL |
[114] |
Vogt KA, Vogt DJ, Bloomfield J ( 1991). Input of organic matter to the soil by tree roots. In: McMichael BL, Persson H eds. Plant Roots and Their Environment. Elsevier, Amsterdam. 171-190.
DOI URL |
[115] |
Walling SZ, Zabinski CA ( 2006). Defoliation effects on arbuscular mycorrhizae and plant growth of two native bunchgrasses and an invasive forb. Applied Soil Ecology, 32, 111-117.
DOI URL |
[116] |
Wan HH, Liu WX, Wan FH ( 2011). Allelopathic effect of Ageratina adenophora(Spreng.) leaf litter on four herbaceous plants in invaded regions. Chinese Journal of Eco-Agriculture, 19, 130-134.
DOI URL |
[ 万欢欢, 刘万学, 万方浩 ( 2011). 紫茎泽兰叶片凋落物对入侵地4种草本植物的化感作用. 中国生态农业学报, 19, 130-134.]
DOI URL |
|
[117] |
Wang C, Xiao H, Liu J, Wang L, Du D ( 2015 a). Insights into ecological effects of invasive plants on soil nitrogen cycles. American Journal of Plant Sciences, 6, 34-46.
DOI URL |
[118] |
Wang H, Su J, Zheng T, Yang X ( 2015 b). Insights into the role of plant on ammonia-oxidizing bacteria and archaea in the mangrove ecosystem. Journal of Soils and Sediments, 15, 1212-1223.
DOI URL |
[119] |
Wang RL, Staehelin C, Peng SL, Wang WT, Xie XM, Lu HN ( 2010). Responses of Mikania micrantha, an invasive weed to elevated CO2: Induction of β-Caryophyllene synthase, changes in emission capability and allelopathic potential of β-Caryophyllene. Journal of Chemical Ecology, 36, 1076-1082.
DOI URL PMID |
[120] | Warren RJ, Labatore A, Candeias M ( 2017). Allelopathic invasive tree (Rhamnus cathartica) alters native plant communities. Plant Ecology, 218, 1233-1241. |
[121] |
Watkins AJ, Nicol GW, Shaw LJ ( 2009). Use of an artificial root to examine the influence of 8-hydroxyquinoline on soil microbial activity and bacterial community structure. Soil Biology & Biochemistry, 41, 580-585.
DOI URL |
[122] |
Windham L, Ehrenfeld JG ( 2003). Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh. Ecological Applications, 13, 883-896.
DOI URL |
[123] | Xiao H, Schaefer DA, Yang X ( 2017). pH drives ammonia oxidizing bacteria rather than archaea thereby stimulate nitrification under Ageratina adenophora colonization. Soil Biology & Biochemistry, 114, 12-19. |
[124] |
Yelenik S, Stock W, Richardson D ( 2004). Ecosystem level impacts of invasive Acacia saligna in the South African fynbos. Restoration Ecology, 12, 44-51.
DOI URL |
[125] |
Yu XJ, Yu D, Ma KP ( 2004). Relationships between allelopathy and invasiveness by E upatorium adenophorum at different sites. Acta Phytoecologica Sinica, 28, 773-780.
DOI URL |
[ 于兴军, 于丹, 马克平 ( 2004). 不同生境条件下紫茎泽兰化感作用的变化与入侵力关系的研究. 植物生态学报, 28, 773-780.]
DOI URL |
|
[126] |
Zhang QF, Peng JJ, Chen Q, Li XF, Xu CY, Yin HB, Yu S ( 2011). Impacts of Spartina alterniflora invasion on abundance and composition of ammonia oxidizers in estuarine sediment. Journal of Soils and Sediments, 11, 1020-1031.
DOI URL |
[127] | Zhang S, Jin Y, Tang J, Chen X ( 2009). The invasive plant Solidago canadensis L. suppresses local soil pathogens through allelopathy. Applied Soil Ecology, 41, 215-222. |
[128] |
Zhang ZY, Ding CL, Xiao M ( 2012). The diversity of invasive plant Spartina alterniflora rhizosphere bacteria in a tidal salt marshes at Chongming Dongtan in the Yangtze River estuary. Acta Ecologica Sinica, 32, 6636-6646.
DOI URL |
[ 章振亚, 丁陈利, 肖明 ( 2012). 崇明东滩湿地不同潮汐带入侵植物互花米草根际细菌的多样性. 生态学报, 32, 6636-6646.]
DOI URL |
|
[129] |
Zhao TQ, Zhang K, Zheng H, Chen FL, Lin XQ ( 2011). Pathways of exotic plant impacts on nitrogen cycling in terrestrial ecosystme. Ecological Science, 30, 207-212.
DOI URL |
[ 赵同谦, 张凯, 郑华, 陈法霖, 林学强 ( 2011). 外来植物对陆地生态系统氮循环的影响途径. 生态科学, 30, 207-212.]
DOI URL |
|
[130] | Zhu X, Li Y, Feng Y, Ma K ( 2017). Response of soil bacterial communities to secondary compounds released from Eupatorium adenophorum. Biological Invasions, 19, 1471-1481. |
[131] |
Zubek S, Majewska ML, Błaszkowski J, Stefanowicz AM, Nobis M, Kapusta P ( 2016). Invasive plants affect arbuscular mycorrhizal fungi abundance and species richness as well as the performance of native plants grown in invaded soils. Biology and Fertility of Soils, 52, 879-893.
DOI URL |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[3] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[4] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[5] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[6] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[7] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[8] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[9] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
[10] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[11] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[12] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[13] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[14] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[15] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19