植物生态学报 ›› 2017, Vol. 41 ›› Issue (3): 348-358.DOI: 10.17521/cjpe.2016.0236
王芑丹1, 杨温馨1, 黄洁钰1, 徐昆1, 王佩1,2,*()
出版日期:
2017-03-10
发布日期:
2017-04-12
通讯作者:
王佩
作者简介:
* 通信作者Author for correspondence (E-mail:基金资助:
Qi-Dan WANG1, Wen-Xin YANG1, Jie-Yu HUANG1, Kun XU1, Pei WANG1,2,*()
Online:
2017-03-10
Published:
2017-04-12
Contact:
Pei WANG
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
灌丛化是干旱半干旱草原一种常见的全球性变化现象, 由于野外土壤、灌丛和草本的蒸散耗水难于拆分的限制, 关于灌丛化蒸散耗水效应的研究较少。该文将已有的二源模型应用于我国内蒙古灌丛化草原估算其蒸散发, 并用波文比系统观测结果对模型进行了率定。研究结果表明改进的模型可以较好地重建灌丛化草地的蒸散发特征; 敏感性分析结果表明模型输入变量及参数对蒸散发组分拆分结果产生的误差较小。在此基础上进行了灌丛化的情景模拟, 研究其耗水效应。结果表明: 灌丛化对蒸散发总量影响较小, 而对蒸散发组分影响较大。灌丛化初期盖度5%、中期盖度15%及后期盖度为30%的情境下, 对应的生长季内蒸散发(ET)平均值分别为182.97、180.38和176.72 W·m-2; 土壤蒸发(E)占蒸散发比率(E/ET)平均值分别为52.9%、53.9%和55.5%。灌丛化从初期到中期、中期至后期, 蒸散发降幅平均值分别为0.34%和0.44%, E/ET升幅分别达2.04%及3.25%。该研究结果表明在内蒙古太仆寺旗站点灌丛化导致的土壤水分差异并不明显, 但随着灌丛化加剧, 灌丛逐渐替代草本, 改变了原有的生态系统结构, 植被叶面积指数变小, 导致冠层导度降低。研究结果强调我国半干旱草原区灌丛化加剧对生态系统总蒸散耗水量影响不大, 但其土壤蒸发无效损耗快速增加会导致系统水分利用效率降低。
王芑丹, 杨温馨, 黄洁钰, 徐昆, 王佩. 灌丛化的蒸散耗水效应数值模拟研究——以内蒙古灌丛化草原为例. 植物生态学报, 2017, 41(3): 348-358. DOI: 10.17521/cjpe.2016.0236
Qi-Dan WANG, Wen-Xin YANG, Jie-Yu HUANG, Kun XU, Pei WANG. Shrub encroachment effect on the evapotranspiration and its component—A numerical simulation study of a shrub encroachment grassland in Nei Mongol, China. Chinese Journal of Plant Ecology, 2017, 41(3): 348-358. DOI: 10.17521/cjpe.2016.0236
输入变量 Input variables | 参数 Parameter | 参数物理意义 Physical meaning of parameters | 单位 Unit |
---|---|---|---|
气象数据 Meteorological data | Sd | 向下短波辐射 Downward short-wave radiation, | W·m-2 |
ha | 相对湿度 Relative humidity | % | |
Ld | 向下长波辐射 Downward long-wave radiation | W·m-2 | |
P | 大气压 Air pressure | hPa | |
Ta | 气温 Air temperature | ℃ | |
u | 水平风速 Horizontal wind speed | m·s-1 | |
植被属性 Vegetation property | LAI | 叶面积指数 Leaf area index | m-2·m-2 |
Zv | 植被高度 Vegetation height | m | |
土壤属性 Soil property | Tsoil | 土壤热通量测量深度土壤温度 Soil temperature at depth Zsoil | ℃ |
θ | 根系层土壤含水量 Volumetric soil water content of root layer | m-3·m-3 | |
常数 Constant | CLAI | 冠层集聚度 Clumping factor for permittivity of canopy | 无量纲 Dimensionless |
θs | 土壤饱和含水量 Saturated soil water content | m-3·m-3 | |
rst_min | 最小气孔阻抗 Minimum stomata resistance | s·m-1 | |
rst_max | 最大气孔阻抗 Maximum stomata resistance | s·m-1 | |
Zsoil | 土壤热通量测量深度 Depth of ground heat flux measurement | m | |
αG | 地表反照率 Albedo of ground surface | 无量纲 Dimensionless | |
αV | 植被冠层反照率 Albedo of vegetation canopy | 无量纲 Dimensionless | |
λss | 土壤表层热传导系数 Thermal conductivity of surface soil | W·m-1·K-1 | |
能量通量输出 Output energy flux | σ | 斯蒂芬玻尔兹曼常数 Stefan-Boltzmann constant | W·m-2·K-4 |
lET | 潜热通量 Latent heat flux | W·m-2 | |
植被冠层输出 Output vegetation canopy layer | TL | 植被冠层温度 Vegetation canopy temperature | ℃ |
T | 植物蒸散量 Plant evapotranspiration | kg·m-2·s-1 | |
土壤层输出 Output of soil layer | TG | 10 cm土壤温度 Soil temperature at 10 cm depth | ℃ |
E | 土壤蒸发量 Soil transpiration | kg·m-2·s-1 |
表1 双源模型的输入变量、参数及输出
Table 1 List of input variables, parameters, and outputs for the two-source model
输入变量 Input variables | 参数 Parameter | 参数物理意义 Physical meaning of parameters | 单位 Unit |
---|---|---|---|
气象数据 Meteorological data | Sd | 向下短波辐射 Downward short-wave radiation, | W·m-2 |
ha | 相对湿度 Relative humidity | % | |
Ld | 向下长波辐射 Downward long-wave radiation | W·m-2 | |
P | 大气压 Air pressure | hPa | |
Ta | 气温 Air temperature | ℃ | |
u | 水平风速 Horizontal wind speed | m·s-1 | |
植被属性 Vegetation property | LAI | 叶面积指数 Leaf area index | m-2·m-2 |
Zv | 植被高度 Vegetation height | m | |
土壤属性 Soil property | Tsoil | 土壤热通量测量深度土壤温度 Soil temperature at depth Zsoil | ℃ |
θ | 根系层土壤含水量 Volumetric soil water content of root layer | m-3·m-3 | |
常数 Constant | CLAI | 冠层集聚度 Clumping factor for permittivity of canopy | 无量纲 Dimensionless |
θs | 土壤饱和含水量 Saturated soil water content | m-3·m-3 | |
rst_min | 最小气孔阻抗 Minimum stomata resistance | s·m-1 | |
rst_max | 最大气孔阻抗 Maximum stomata resistance | s·m-1 | |
Zsoil | 土壤热通量测量深度 Depth of ground heat flux measurement | m | |
αG | 地表反照率 Albedo of ground surface | 无量纲 Dimensionless | |
αV | 植被冠层反照率 Albedo of vegetation canopy | 无量纲 Dimensionless | |
λss | 土壤表层热传导系数 Thermal conductivity of surface soil | W·m-1·K-1 | |
能量通量输出 Output energy flux | σ | 斯蒂芬玻尔兹曼常数 Stefan-Boltzmann constant | W·m-2·K-4 |
lET | 潜热通量 Latent heat flux | W·m-2 | |
植被冠层输出 Output vegetation canopy layer | TL | 植被冠层温度 Vegetation canopy temperature | ℃ |
T | 植物蒸散量 Plant evapotranspiration | kg·m-2·s-1 | |
土壤层输出 Output of soil layer | TG | 10 cm土壤温度 Soil temperature at 10 cm depth | ℃ |
E | 土壤蒸发量 Soil transpiration | kg·m-2·s-1 |
日期 Date | 土壤水观测深度 Depth of observed soil moisture (cm) | 灌丛斑块观测土壤体积含水量 Observed multilayer volumetric soil moisture at the shrub patches (%) | 草地斑块观测土壤体积含水量 Observed multilayer volumetric soil moisture at the grass patches (%) | 灌丛可利用的土壤体积含水量 Available volumetric water content by shrub (%) | 草本可利用土 壤体积含水量 Available soil volumetric water content by grass (%) | 不同灌丛化情景下植被可利用土壤体积含水量 Available volumetric water content by plant under three scenarios of shrub encroachment (%) | ||
---|---|---|---|---|---|---|---|---|
5%盖度 5% coverage | 15%盖度 15% coverage | 30%盖度 30% coverage | ||||||
6月16日 June 16th | 0-10 | 30.1 | 30.0 | 18.1 | 22.6 | 22.42 | 21.97 | 21.30 |
10-20 | 22.2 | 22.6 | ||||||
20-40 | 10.0 | 8.8 | ||||||
40-60 | 10.7 | 9.8 | ||||||
60-100 | 17.7 | 15.5 | ||||||
7月14日 July 14th | 0-10 | 9.3 | 9.4 | 11.6 | 9.0 | 9.0 | 9.3 | 9.7 |
10-20 | 10.2 | 9.0 | ||||||
20-40 | 8.1 | 8.3 | ||||||
40-60 | 13.3 | 8.1 | ||||||
60-100 | 17.0 | 12.7 | ||||||
8月11日 Aug. 11th | 0-10 | 8.9 | 7.9 | 9.7 | 7.4 | 7.5 | 7.8 | 8.1 |
10-20 | 8.6 | 7.4 | ||||||
20-40 | 6.9 | 7.3 | ||||||
40-60 | 8.8 | 7.7 | ||||||
60-100 | 15.4 | 11.8 | ||||||
9月13日 Sept. 13th | 0-10 | 8.7 | 8.8 | 11.2 | 8.5 | 8.6 | 8.9 | 9.3 |
10-20 | 8.8 | 8.5 | ||||||
20-40 | 9.1 | 10.4 | ||||||
40-60 | 12.1 | 12.4 | ||||||
60-100 | 17.5 | 15.9 |
表2 实际观测灌丛及草本斑块的体积土壤含水量(%)及其模型中不同灌丛化情景下的加权处理
Table 2 Summary of measured soil moisture in shrub and grassland patches and representation of averaged soil water in each scenarios of shrub encroachment under each observation day
日期 Date | 土壤水观测深度 Depth of observed soil moisture (cm) | 灌丛斑块观测土壤体积含水量 Observed multilayer volumetric soil moisture at the shrub patches (%) | 草地斑块观测土壤体积含水量 Observed multilayer volumetric soil moisture at the grass patches (%) | 灌丛可利用的土壤体积含水量 Available volumetric water content by shrub (%) | 草本可利用土 壤体积含水量 Available soil volumetric water content by grass (%) | 不同灌丛化情景下植被可利用土壤体积含水量 Available volumetric water content by plant under three scenarios of shrub encroachment (%) | ||
---|---|---|---|---|---|---|---|---|
5%盖度 5% coverage | 15%盖度 15% coverage | 30%盖度 30% coverage | ||||||
6月16日 June 16th | 0-10 | 30.1 | 30.0 | 18.1 | 22.6 | 22.42 | 21.97 | 21.30 |
10-20 | 22.2 | 22.6 | ||||||
20-40 | 10.0 | 8.8 | ||||||
40-60 | 10.7 | 9.8 | ||||||
60-100 | 17.7 | 15.5 | ||||||
7月14日 July 14th | 0-10 | 9.3 | 9.4 | 11.6 | 9.0 | 9.0 | 9.3 | 9.7 |
10-20 | 10.2 | 9.0 | ||||||
20-40 | 8.1 | 8.3 | ||||||
40-60 | 13.3 | 8.1 | ||||||
60-100 | 17.0 | 12.7 | ||||||
8月11日 Aug. 11th | 0-10 | 8.9 | 7.9 | 9.7 | 7.4 | 7.5 | 7.8 | 8.1 |
10-20 | 8.6 | 7.4 | ||||||
20-40 | 6.9 | 7.3 | ||||||
40-60 | 8.8 | 7.7 | ||||||
60-100 | 15.4 | 11.8 | ||||||
9月13日 Sept. 13th | 0-10 | 8.7 | 8.8 | 11.2 | 8.5 | 8.6 | 8.9 | 9.3 |
10-20 | 8.8 | 8.5 | ||||||
20-40 | 9.1 | 10.4 | ||||||
40-60 | 12.1 | 12.4 | ||||||
60-100 | 17.5 | 15.9 |
图1 不同灌丛化情景下草原生态系统加权平均叶面积指数、植被高度、土壤体积含水量的变化。
Fig. 1 Weighted mean leaf area index, vegetation height and volumetric water content in soil of grassland ecosystem under three shrub encroachment scenarios.
图2 波文比实测值与模拟输出蒸散发(潜热)值对比。
Fig. 2 Comparison of evapotranspiration (express as latent heat flux) between measured by the energy balanced Bowen ratio system and predicted during measurement period.
参数符号 Parameter code | 参数名称 Parameter name | lET | T/ET |
---|---|---|---|
rst_min | 最小气孔阻抗 Minimum stomata resistance | -0.28 ± 0.14 | -0.08 ± 0.02 |
rst_max | 最大气孔阻抗 Maximum stomata resistance | -0.01 ± 0.08 | 0.00 ± 0.01 |
αV | 植被冠层反照率 Albedo of vegetation canopy | -0.17 ± 0.23 | -0.02 ± 0.03 |
αG | 地表反照率 Albedo of ground surface | -0.01 ± 0.06 | 0.01 ± 0.01 |
CLAI | 冠层集聚度 Clumping factor for permittivity of vegetation | 0.02 ± 0.01 | 0.06 ± 0.03 |
λss | 土壤表层热传导系数 Thermal conductivity of surface soil | -0.05 ± 0.02 | 0.06 ± 0.02 |
Sd | 向下短波辐射 Downward short-wave radiation, | 0.72 ± 0.31 | 0.00 ± 0.20 |
Ld | 向下长波辐射 Downward long-wave radiation | 0.84 ± 0.58 | -0.03 ± 0.04 |
u | 水平风速 Horizontal wind speed | 0.08 ± 0.15 | 0.00 ± 0.03 |
Ta | 气温 Air temperature | 0.74 ± 0.64 | 0.21 ± 0.19 |
ha | 相对湿度 Relative humidity | -1.31 ± 1.02 | 0.12 ± 0.22 |
P | 大气压 Air pressure | -0.04 ± 0.15 | -0.01 ± 0.03 |
LAI | 叶面积指数 Leaf area index | 0.42 ± 0.26 | 0.26 ± 0.25 |
Zv | 植被高度 Vegetation height | 0.23 ± 0.53 | 0.03 ± 0.09 |
Tsoil | 土壤热通量测量深度土壤温度 Soil temperature at depth Zsoil | 0.24 ± 0.14 | -0.17 ± 0.10 |
θ | 土壤体积含水量 Volumetric soil water content | 0.42 ± 0.43 | 0.12 ± 0.11 |
表3 指定模型参数及测量参数对蒸散发(ET)和蒸散比率(T/ET)敏感性系数(Si)的平均值±标准偏差(SD)
Table 3 Mean and standard deviation (SD) of the sensitivity coefficients (Si) of evapotranspiration (ET) and transpiration fraction (T/ET) to the assigned model parameters and measured parameters (mean ± SD)
参数符号 Parameter code | 参数名称 Parameter name | lET | T/ET |
---|---|---|---|
rst_min | 最小气孔阻抗 Minimum stomata resistance | -0.28 ± 0.14 | -0.08 ± 0.02 |
rst_max | 最大气孔阻抗 Maximum stomata resistance | -0.01 ± 0.08 | 0.00 ± 0.01 |
αV | 植被冠层反照率 Albedo of vegetation canopy | -0.17 ± 0.23 | -0.02 ± 0.03 |
αG | 地表反照率 Albedo of ground surface | -0.01 ± 0.06 | 0.01 ± 0.01 |
CLAI | 冠层集聚度 Clumping factor for permittivity of vegetation | 0.02 ± 0.01 | 0.06 ± 0.03 |
λss | 土壤表层热传导系数 Thermal conductivity of surface soil | -0.05 ± 0.02 | 0.06 ± 0.02 |
Sd | 向下短波辐射 Downward short-wave radiation, | 0.72 ± 0.31 | 0.00 ± 0.20 |
Ld | 向下长波辐射 Downward long-wave radiation | 0.84 ± 0.58 | -0.03 ± 0.04 |
u | 水平风速 Horizontal wind speed | 0.08 ± 0.15 | 0.00 ± 0.03 |
Ta | 气温 Air temperature | 0.74 ± 0.64 | 0.21 ± 0.19 |
ha | 相对湿度 Relative humidity | -1.31 ± 1.02 | 0.12 ± 0.22 |
P | 大气压 Air pressure | -0.04 ± 0.15 | -0.01 ± 0.03 |
LAI | 叶面积指数 Leaf area index | 0.42 ± 0.26 | 0.26 ± 0.25 |
Zv | 植被高度 Vegetation height | 0.23 ± 0.53 | 0.03 ± 0.09 |
Tsoil | 土壤热通量测量深度土壤温度 Soil temperature at depth Zsoil | 0.24 ± 0.14 | -0.17 ± 0.10 |
θ | 土壤体积含水量 Volumetric soil water content | 0.42 ± 0.43 | 0.12 ± 0.11 |
图3 不同灌丛化情景下的蒸散发时间序列。每个日期的数据包含了从9:00至16:00的每小时蒸散发数据。
Fig. 3 The temporal series of evapotranspiration under three shrub encroachment scenarios. For each day, there is hourly- mean evapotranspiration from 9:00 to 16:00.
图4 不同灌丛化情景下的蒸散发组分时间序列。每个日期的数据包含了从9:00至16:00的每个小时蒸散发组分数据。
Fig. 4 The temporal series of evapotranspiration components (T/ET) under three shrub encroachment scenarios. For each day, there is hourly-mean T/ET from 9:00 to 16:00.
6月10日 June 10th | 6月11日 June 11th | 6月13日 June 13th | 7月8日 July 8th | 7月9日 July 9th | 7月13日 July 13th | 7月8日 July 8th | 8月13日 Aug. 13th | 8月17日 Aug. 17th | 9月3日 Sept. 3rd | |
---|---|---|---|---|---|---|---|---|---|---|
降水量 Precipitation (mm) | 6.6 | 6.6 | 6.6 | 14.4 | 14.4 | 1.2 | 6.2 | 1.2 | 6 | 0.2 |
降雨时间间隔 Interval between rainfall events (d) | 1 | 2 | 4 | 1 | 2 | 2 | 1 | 1 | 1 | 2 |
月降水量 Monthly precipitation (mm) | 135.6 | 135.6 | 135.6 | 142.3 | 142.3 | 142.3 | 80.9 | 80.9 | 80.9 | 51.3 |
蒸散比(平均值±日变化) Transpiration fraction (mean ± diurnal variation) | 0.41 ± 0.01 | 0.39 ± 0.01 | 0.47 ± 0.01 | 0.55 ± 0.02 | 0.57 ± 0.03 | 0.56 ± 0.02 | 0.42 ± 0.04 | 0.41 ± 0.05 | 0.40 ± 0.01 | 0.45 ± 0.03 |
表4 降雨事件蒸散比例及其特征统计
Table 4 Statistics data of precipitation and transpiration fraction (T/ET) in each observation day
6月10日 June 10th | 6月11日 June 11th | 6月13日 June 13th | 7月8日 July 8th | 7月9日 July 9th | 7月13日 July 13th | 7月8日 July 8th | 8月13日 Aug. 13th | 8月17日 Aug. 17th | 9月3日 Sept. 3rd | |
---|---|---|---|---|---|---|---|---|---|---|
降水量 Precipitation (mm) | 6.6 | 6.6 | 6.6 | 14.4 | 14.4 | 1.2 | 6.2 | 1.2 | 6 | 0.2 |
降雨时间间隔 Interval between rainfall events (d) | 1 | 2 | 4 | 1 | 2 | 2 | 1 | 1 | 1 | 2 |
月降水量 Monthly precipitation (mm) | 135.6 | 135.6 | 135.6 | 142.3 | 142.3 | 142.3 | 80.9 | 80.9 | 80.9 | 51.3 |
蒸散比(平均值±日变化) Transpiration fraction (mean ± diurnal variation) | 0.41 ± 0.01 | 0.39 ± 0.01 | 0.47 ± 0.01 | 0.55 ± 0.02 | 0.57 ± 0.03 | 0.56 ± 0.02 | 0.42 ± 0.04 | 0.41 ± 0.05 | 0.40 ± 0.01 | 0.45 ± 0.03 |
[1] | Anderson MC, Norman JM, Mecikalski JR, Torn RD, Kustas WP, Basara JB (2004). A multiscale remote sensing model for disaggregating regional fluxes to micrometeorological scales. Journal of Hydrometeorology, 5, 343-363. |
[2] | Breshears DD, Barnes FJ (1999). Interrelationships between plant functional types and soil moisture heterogeneity for semiarid landscapes within the grassland/forest continuum: A unified conceptual model. Landscape Ecology, 4, 465-478. |
[3] | Beven K (1979). A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. Journal of Hydrology, 44, 169-190. |
[4] | Bowen IS (1926). The ratio of heat losses by conduction and by evaporation from any water surface. Physical Review, 27, 779-787. |
[5] | Brenner AJ, Incoll LD (1997). The effect of clumping and stomatal response on evaporation from sparsely vegetated shrublands. Agricultural and Forest Meteorology, 84, 187-205. |
[6] | Huxman TE, Wilcox BP, Breshears DD, Scott RL, Snyder KA, Small EE, Hultine K, Pockman WT, Jackson RB (2005). Ecohydrological implications of woody plant encroach¬ment. Ecology, 86, 308-319. |
[7] | Gao Q, Liu T (2015). Causes and consequences of shrub encroachment in arid and semiarid region: A disputable issue. Arid Land Geography, 38, 1202-1212. (in Chinese with English abstract)[高琼, 刘婷 (2015). 干旱半干旱区草原灌丛化的原因及影响——争议与进展. 干旱区地理, 38, 1202-1212.] |
[8] | Chen LY, Shen HH, Fang JY (2014). Shrub-encroached grassland: A new vegetation type. Chinese Journal of Nature, 36, 391-396. (in Chinese with English abstract)[陈蕾伊, 沈海花, 方精云 (2014). 灌丛化草原: 一种新的植被景观. 自然杂志, 36, 391-396.] |
[9] | House JI, Archer S, Breshears DD, Scholes RJ (2003). Conundrums in mixed woody-herbaceous plant systems. Journal of Biogeography, 30, 1763-1777. |
[10] | Li S, Kang SZ, Zhang L, Li FS, Zhu ZL, Zhang BZ (2008). A comparison of three methods for determining vineyard evapotranspiration in the arid desert regions of northwest China. Hydrological Processes, 22, 4554-4564. |
[11] | Li XY, Zhang SY, Peng HY, Hu X, Ma YJ (2013). Soil water and temperature dynamics in shrub-encroached grasslands and climatic implications: Results from Inner Mongolia steppe ecosystem of north China. Agricultural and Forest Meteorology, 171-172, 20-30. |
[12] | Li ZC, Hu X (2015). Effects of shrub (Caragana microphylla) encroachment on soil porosity of degraded sandy grassland. Acta Pedologica Sinica, 52, 242-248. (in Chinese with English abstract)[李宗超, 胡霞 (2015). 小叶锦鸡儿灌丛化对退化沙质草地土壤孔隙特征的影响. 土壤学报, 52, 242-248.] |
[13] | Loik ME, Breshears DD, Lauenroth WK, Belnap J (2004). A multi-scale perspective of water pulses in dryland ecosystems: Climatology and ecohydrology of the western USA. Oecologia, 141, 269-281. |
[14] | Moran MS, Scott RL, Keefer TO, Emmerich WE, Hernandez M, Nearing GS, Paige GB, Cosh MH, O’Neill PE (2009). Partitioning evapotranspiration in semiarid grassland and shrubland ecosystems using time series of soil surface temperature. Agricultural and Forest Meteorology, 149, 59-72. |
[15] | Martens SN, Breshears DD, Meyer CW (2000). Spatial distributions of understory light along the grassland/forest continuum: Effects of cover, height, and spatial pattern of tree canopies. Ecological Modeling, 126, 79-93. |
[16] | Wang P, Yamanaka T (2014). Application of a two-source model for partitioning evapotranspiration and assessing its controls in temperate grasslands in central Japan. Ecohydrology, 7, 345-353. |
[17] | Wang P, Yamanaka T, Li XY, Wei ZW (2015). Partitioning evapotranspiration in a temperate grassland ecosystem: Numerical modeling with isotopic tracers. Agricultural and Forest Meteorology, 208, 16-31. |
[18] | Wang P, Li XY, Huang YM, Liu SM, Xu ZW, Wu XC, Ma YJ (2016). Numerical modeling the isotopic composition of evapotranspiration in an arid artificial oasis cropland ecosystem with high-frequency water vapor isotope measurement. Agricultural & Forest Meteorology, 230-231, 79-88. |
[19] | Walter H (1971). Ecology of Tropical and Subtropical Vegetation. Oliver and Boyd, Edinburgh. 207-236. |
[20] | Walker J, Bullen F, Williams BG (1993). Ecohydrological changes in the Murray-Darling Basin. I. The number of trees cleared over two centuries. Journal of Applied Ecology, 30, 265-273. |
[21] | Peng HY, Li XY, Li GY, Zhang ZH, Zhang SY, Li L, Zhao GQ, Jiang ZY, Ma YJ (2013). Shrub encroachment with increasing anthropogenic disturbance in the semiarid Inner Mongolian grasslands of China. Catena, 109, 39-48. |
[22] | Peng HY, Li XY, Tong SY (2014). Advance in shrub encroachment in arid and semiarid region. Acta Prataculturae Sinica, 23(2), 313-322. (in Chinese with English abstract)[彭海英, 李小雁, 童绍玉 (2014). 干旱半干旱区草原灌丛化研究进展. 草业学报, 23(2), 313-322.] |
[23] | Peng HY (2012). Spatial Pattern of Shrub Patches and Its Ecohydrological Mechanism at the Typical Steppe in Inner Mongolia. PhD dissertation, Beijing Normal University, Beijing. (in Chinese with English abstract)[彭海英 (2012). 内蒙古典型草原小叶锦鸡儿灌丛空间分布格局及其生态水文机理. 博士学位论文, 北京师范大学, 北京.] |
[24] | Qiu GY, Yano T, Momii K (1998). An improved methodology to measure evaporation from bare soil based on comparison of surface temperature with a dry soil surface. Journal of Hydrology, 210, 93-105. |
[25] | Reynolds JF, Kemp PR, Tenhunen JD (2000). Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan Desert: A modeling analysis. Plant Ecology, 150, 145-159. |
[26] | Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990). Biological feedbacks in global desertification. Science, 247, 1043-1048. |
[27] | Scott RL, Huxman TE, Cable WL, Emmerich WE (2006). Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihuahuan Desert shrubland. Hydrological Processes, 20, 3227-3243. |
[28] | van Auken OW (2000). Shrub invasions of North American semiarid grasslands. Annual Review of Ecology & Systematics, 31, 197-215. |
[29] | Yamanaka T (2009). Interdisciplinary perspectives on hydrological cycle in arid zones. Annals of Arid Zone, 48, 341-357. |
[30] | Zhang ZH, Li XY, Jiang ZY, Peng HY, Li L, Zhao GQ (2013). Changes in some soil properties induced by re-conversion of cropland into grassland in the semiarid steppe zone of Inner Mongolia, China. Plant & Soil, 373, 89-106. |
[31] | Zhang H, Shi PJ, Zheng QH (2001). Research progress in relationship between shrub invasion and soil heterogeneity in a natural semiarid grassland. Acta Phytoecologica Sinica, 25, 366-370. (in Chinese with English abstract)[张宏, 史培军, 郑秋红 (2001). 半干旱地区天然草地灌丛化与土壤异质性关系研究进展. 植物生态学报, 25, 366-370.] |
[32] | Zheng XR, Zhao GQ, Li XY, Li L, Wu HW, Zhang SY, Zhang ZH (2015). Application of stable hydrogen isotope in study of water sources for Caragana microphylla bushland in Inner Mongol. Chinese Journal of Plant Ecology, 39, 184-196. (in Chinese with English abstract)[郑肖然, 赵国琴, 李小雁, 李柳, 吴华武, 张思毅, 张志华 (2015). 氢同位素在内蒙古小叶锦鸡儿灌丛水分来源研究中的应用. 植物生态学报, 39, 184-196.] |
[1] | 王秀英, 陈奇, 杜华礼, 张睿, 马红璐. 基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究[J]. 植物生态学报, 2023, 47(7): 912-921. |
[2] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[3] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[4] | 黄樱, 陈挚, 石喆, 熊博文, 鄢春华, 邱国玉. 蒸散发广义互补原理中关键参数αe的时空变化特征及计算方法分析[J]. 植物生态学报, 2022, 46(3): 300-310. |
[5] | 李鑫豪, 田文东, 李润东, 靳川, 蒋燕, 郝少荣, 贾昕, 田赟, 查天山. 北京松山落叶阔叶林生态系统水热通量对环境因子的响应[J]. 植物生态学报, 2021, 45(11): 1191-1202. |
[6] | 丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞. 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响[J]. 植物生态学报, 2020, 44(1): 33-43. |
[7] | 张璞进, 清华, 张雷, 徐延达, 木兰, 晔薷罕, 邱晓, 常虹, 沈海花, 杨劼. 内蒙古灌丛化草原毛刺锦鸡儿种群结构和空间分布格局[J]. 植物生态学报, 2017, 41(2): 165-174. |
[8] | 刘涛宇, 赵霞, 沈海花, 胡会峰, 黄文江, 方精云. 灌丛化草原灌木和草本植物光谱特征差异及灌木盖度反演——以内蒙古镶黄旗为例[J]. 植物生态学报, 2016, 40(10): 969-979. |
[9] | 熊育久,邱国玉,谢芳. 内蒙古太仆寺旗退耕草地植物种类变化与水分收支[J]. 植物生态学报, 2014, 38(5): 425-439. |
[10] | 张宏, 史培军, 郑秋红. 半干旱地区天然草地灌丛化与土壤异质性关系研究进展[J]. 植物生态学报, 2001, 25(3): 366-370. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19