植物生态学报 ›› 2020, Vol. 44 ›› Issue (7): 752-762.DOI: 10.17521/cjpe.2019.0337
朱林1,2,*(), 王甜甜1,2, 赵学琳1,2, 祁亚淑3, 许兴1,2
收稿日期:
2019-12-03
接受日期:
2020-06-17
出版日期:
2020-07-20
发布日期:
2020-07-03
通讯作者:
*朱林: ORCID:0000-0002-1234-5837,E-mail:zhulinscience@126.com
基金资助:
ZHU Lin1,2,*(), WANG Tian-Tian1,2, ZHAO Xue-Lin1,2, QI Ya-Shu3, XU Xing1,2
Received:
2019-12-03
Accepted:
2020-06-17
Online:
2020-07-20
Published:
2020-07-03
Contact:
ZHU Lin: ORCID:0000-0002-1234-5837,E-mail:zhulinscience@126.com
Supported by:
摘要:
为探讨紫花苜蓿(Medicago sativa)及斜茎黄耆(沙打旺, Astragalus laxmannii)与禾本科牧草混播后的水力提升现象, 揭示深、浅根性牧草的种间关系, 为混播草地的建植提供理论依据, 该研究开展了室外“上下盆”分根盆栽试验、采用土壤水分测定及“重水” (D2O, 氘(D)含量>99.9%)标记法估算了苜蓿及斜茎黄耆分别与‘冬牧70’黑麦(Secale cereal ‘Dongmu 70’)不同混播比例(豆科:禾本科分别为3:7、5:5、7:3)条件下水力提升的发生情况及其对伴生牧草生长生理性状的影响。结果表明: ‘冬牧70’黑麦与斜茎黄耆混播后的产量显著高于其与紫花苜蓿混播后的产量, 同一种禾豆牧草混播组合不同混播比例中, 以AC2 (紫花苜蓿:‘冬牧70’黑麦为5:5)和BC3 (斜茎黄耆:‘冬牧70’黑麦为7:3)混播组合的总产量最高。不同单混播组合的单株整个生育期内日均提水量存在显著差异, 两种豆科牧草在混播时日均提水量均高于单播时, 斜茎黄耆单混播时的日均提水量显著高于紫花苜蓿, BC2组合(斜茎黄耆:‘冬牧70’黑麦为5:5)的日均提水量高于其他混播组合。在用标记水处理下盆土壤后, 各组合上下盆土壤水氢稳定同位素比率(δD)值显著升高。不同禾豆牧草组合上盆土壤水δD及禾本科牧草茎秆水δD、整株碳同位素分辨率(Δ13C)和产量数据表明, 在斜茎黄耆与‘冬牧70’黑麦混播比例为3:7、紫花苜蓿与‘冬牧70’黑麦混播比例为5:5时, 禾本科牧草水分状况或产量好于其他混播比例。以上结果表明, 两种深浅根豆科牧草与浅根性禾本科牧草混播种植时发生了水力提升现象, 两种豆科牧草提升的水分可以被伴生的禾本科牧草所吸收利用。
朱林, 王甜甜, 赵学琳, 祁亚淑, 许兴. 紫花苜蓿和斜茎黄耆水力提升作用及其对伴生植物的效应. 植物生态学报, 2020, 44(7): 752-762. DOI: 10.17521/cjpe.2019.0337
ZHU Lin, WANG Tian-Tian, ZHAO Xue-Lin, QI Ya-Shu, XU Xing. Hydraulic lift of Medicago sativa and Astragalus laxmannii and its effect on their neighborhood plants. Chinese Journal of Plant Ecology, 2020, 44(7): 752-762. DOI: 10.17521/cjpe.2019.0337
组合 Combination | 豆科 Leguminosae | 禾本科 Gramineae | 禾+豆总产量 Sum of Leguminosae and Gramineae |
---|---|---|---|
AA | 5 802.90 ± 326.7b | 5 802.9 ± 326.70b | |
BB | 7 861.99 ± 504.85a | 7 861.99 ± 504.85a | |
AC1 | 4 365.35 ± 232.90c | 525.89 ± 52.98c | 4 891.25 ± 285.88b |
AC2 | 4 832.31 ± 511.98c | 703.87 ± 57.05c | 5 536.18 ± 454.93b |
AC3 | 4 125.48 ± 518.69c | 284.56 ± 20.69c | 4 410.05 ± 539.38b |
BC1 | 4 829.60 ± 538.53c | 2 617.29 ± 142.73a | 7 266.63 ± 268.33a |
BC2 | 5 082.16 ± 184.05bc | 1 501.70 ± 665.95b | 6 583.86 ± 481.90a |
BC3 | 5 982.88 ± 490.54b | 1 386.05 ± 545.77b | 7 549.20 ± 72.24a |
表1 不同混播组合下各混播组合的产量(平均值±标准偏差)
Table 1 Yield of forages in different sowing combinations (Mean ± SD)
组合 Combination | 豆科 Leguminosae | 禾本科 Gramineae | 禾+豆总产量 Sum of Leguminosae and Gramineae |
---|---|---|---|
AA | 5 802.90 ± 326.7b | 5 802.9 ± 326.70b | |
BB | 7 861.99 ± 504.85a | 7 861.99 ± 504.85a | |
AC1 | 4 365.35 ± 232.90c | 525.89 ± 52.98c | 4 891.25 ± 285.88b |
AC2 | 4 832.31 ± 511.98c | 703.87 ± 57.05c | 5 536.18 ± 454.93b |
AC3 | 4 125.48 ± 518.69c | 284.56 ± 20.69c | 4 410.05 ± 539.38b |
BC1 | 4 829.60 ± 538.53c | 2 617.29 ± 142.73a | 7 266.63 ± 268.33a |
BC2 | 5 082.16 ± 184.05bc | 1 501.70 ± 665.95b | 6 583.86 ± 481.90a |
BC3 | 5 982.88 ± 490.54b | 1 386.05 ± 545.77b | 7 549.20 ± 72.24a |
图2 4-10月份各单混播组合土壤含水量的昼夜变化。 AA、BB表示紫花苜蓿及斜茎黄耆单播, AC1、AC2、AC3与BC1、BC2、BC3分别表示比例为3:7、5:5、7:3的禾豆牧草混播组合。
Fig. 2 Differences in the soil water content between the mid-day and mid-night for the different mixed sowing or single sowing combinations from April to October. AA and BB represent single sowing of Medicago sativa and Astragalus laxmannii, respectively. AC1, AC2, AC3, BC1, BC2 and BC3 represent the mixed sowing combinations of Medicago sativa and Astragalus laxmannii with gramineous forage in proportions of 3:7, 5:5 and 7:3, respectively.
图3 4-10月份各单混播组合土壤含水量日最大值、最小值及昼夜差值(平均值+标准偏差)。 AA、BB表示紫花苜蓿及斜茎黄耆单播, AC1、AC2、AC3与BC1、BC2、BC3分别表示比例为3:7、5:5、7:3的禾豆牧草混播组合。不同小写字母表示不同混播方式间的土壤含水量差异显著(p < 0.05)。
Fig. 3 The maximum, minimum of daily soil water content and differences in the soil water content between the mid-day and mid-night for the different mixed sowing or single sowing combinations from April to October (mean + SD). AA and BB represent single sowing of Medicago sativa and Astragalus laxmannii, respectively. AC1, AC2, AC3, BC1, BC2 and BC3 represent the mixed sowing combinations of Medicago sativa and Astragalus laxmannii with gramineous forage in lowercase proportions of 3:7, 5:5 and 7:3, respectively. Different lowercase letters represent differences in soil water content between different mixed sowing combinations at the level of 0.05.
组合 Combination | 平均值 Mean (g·plant-1·d-1) | 标准偏差 SD |
---|---|---|
AA | 36.63d | 3.07 |
AC1 | 37.55d | 4.51 |
AC2 | 46.58c | 8.66 |
AC3 | 47.36c | 6.37 |
BB | 44.41c | 7.15 |
BC1 | 45.65c | 5.08 |
BC2 | 70.09a | 6.92 |
BC3 | 62.70b | 10.11 |
F (df = 3) | 37.25** |
表2 各混播组合中平均每株豆科作物根系每天的提水量
Table 2 Hydraulic lift water of leguminous crops in mixed combinations of different water treatments
组合 Combination | 平均值 Mean (g·plant-1·d-1) | 标准偏差 SD |
---|---|---|
AA | 36.63d | 3.07 |
AC1 | 37.55d | 4.51 |
AC2 | 46.58c | 8.66 |
AC3 | 47.36c | 6.37 |
BB | 44.41c | 7.15 |
BC1 | 45.65c | 5.08 |
BC2 | 70.09a | 6.92 |
BC3 | 62.70b | 10.11 |
F (df = 3) | 37.25** |
图4 不同单混播组合下盆、上盆土壤水氢稳定同位素比率(δD)(平均值+标准偏差)。16个土壤样品来自8个单混播组合的上下盆土壤。 AA、BB表示紫花苜蓿及斜茎黄耆单播, AC1、AC2、AC3与BC1、BC2、BC3分别表示比例为3:7、5:5、7:3的禾豆牧草混播组合。
Fig. 4 Soil water hydrogen stable isotope ratio (δD) in the bottom and upper pots of different combinations (mean + SD). Sixteen soil samples from the upper and bottom pots of eight single or mixed sowing combinations, totally. AA and BB represent single sowing of Medicago sativa and Astragalus laxmannii, respectively. AC1, AC2, AC3, BC1, BC2 and BC3 represent the mixed sowing combinations of Medicago sativa and Astragalus laxmannii with gramineous forage in proportions of 3:7, 5:5 and 7:3, respectively.
图5 各单混播组合植物茎秆氢稳定同位素比率(δD)(平均值+标准偏差)。14个植物样品来自8个单混播组合。 AA、BB表示紫花苜蓿及斜茎黄耆单播, AC1、AC2、AC3与BC1、BC2、BC3分别表示比例为3:7、5:5、7:3的禾豆牧草混播组合。
Fig. 5 Plant stem water hydrogen stable isotope ratio (δD) of single or mixed sowing combinations (mean + SD). Fourteen plant samples from eight single or mixed sowing combinations, totally. AA and BB represent single sowing of Medicago sativa and Astragalus laxmannii, respectively. AC1, AC2, AC3, BC1, BC2 and BC3 represent the mixed sowing combinations of Medicago sativa and Astragalus laxmannii with gramineous forage in proportions of 3:7, 5:5 and 7:3, respectively.
图6 不同水分处理、混播比例下各混播组合中碳同位素分辨率(?13C)的变化(平均值+标准偏差)。14个植物样品来自8个单混播组合。 AA、BB表示紫花苜蓿及斜茎黄耆单播, AC1、AC2、AC3与BC1、BC2、BC3分别表示比例为3:7、5:5、7:3的禾豆牧草混播组合。不同小写字母表示不同混播方式间的植物整株?13C值差异显著(p < 0.05)。
Fig. 6 Comparison of ?13C in each combination under different water treatments and mixed seeding rates (mean + SD). Fourteen plant samples from eight single or mixed sowing combinations, totally. AA and BB represent single sowing of Medicago sativa and Astragalus laxmannii, respectively. AC1, AC2, AC3, BC1, BC2 and BC3 represent the mixed sowing combinations of Medicago sativa and Astragalus laxmannii with gramineous forage in lowercase proportions of 3:7, 5:5 and 7:3, respectively. Different lowercase letters represent differences in whole plant ?13C between different mixed sowing combinations at the level of 0.05.
[1] | Alamusa , Zhou LF (2011). Empirical test of hydraulic lift in 21 plant species in the Horqin sandy land, Inner Mongolia. Journal of Beijing Forestry University, 33(1), 70-77. |
[ 阿拉木萨, 周丽芳 (2011). 科尔沁沙地21种植物水分提升作用的实证检验. 北京林业大学学报, 33(1), 70-77.] | |
[2] |
Badeck FW, Tcherkez G, Nogués S, Piel C, Ghashghaie J (2005). Post-photosynthetic fractionation of stable carbon isotopes between plant organs—A wide spread phenomenon. Rapid Communications in Mass Spectrometry, 19, 1381-1391.
URL PMID |
[3] | Brooksbank K, White DA, Veneklaas EJ, Carter JL (2011). Hydraulic redistribution in Eucalyptus kochii subsp. borealis with variable access to fresh groundwater. Trees, 25, 735-744. |
[4] |
Caldwell MM, Dawson TE, Richards JH (1998). Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia, 113, 151-161.
URL PMID |
[5] | Couvreur V, Vanderborght J, Draye X, Javaux M (2014). Dynamic aspects of soil water availability for isohydric plants: focus on root hydraulic resistances. Water Resources Research, 50, 8891-8906. |
[6] |
Dawson TE (1996). Determining water use by trees and forests from isotopic, energy balance and transpiration analyses: the roles of tree size and hydraulic lift. Tree Physiology, 16, 263-272.
URL PMID |
[7] | Eriksen J, Askegaard M, Søegaard K (2010). Residual effect and nitrate leaching in grass-arable rotations: effect of grassland proportion, sward type and fertilizer history. Soil Use & Management, 24, 373-382. |
[8] | Farquhar GD, Ehleringer FR, Hubick KT (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology, 40, 503-537. |
[9] | Farquhar GD, Richards RA (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology, 11, 539-552. |
[10] | Hao XM, Chen YN, Li WH, Guo B, Zhao RF (2009). Evidence and ecological effects of hydraulic lift in Populus euphratica. Chinese Journal of Plant Ecology, 33, 1125-1131. |
[ 郝兴明, 陈亚宁, 李卫红, 郭斌, 赵锐锋 (2009). 胡杨根系水力提升作用的证据及其生态学意义. 植物生态学报, 33, 1125-1131.] | |
[11] | He WM, Zhang XS (2001). Water sharing in the roots of four shrubs of the mu us sandy desert. Acta Phytoecologica Sinica, 25, 630-633. |
[ 何维明, 张新时 (2001). 水分共享在毛乌素沙地4种灌木根系中的存在状况. 植物生态学报, 25, 630-633.] | |
[12] | Hirota I, Sakuratani T, Sato T, Higuchi H, Nawata E (2004). A split-root apparatus for examining the effects of hydraulic lift by trees on the water status of neighboring crops. Agroforestry Systems, 60, 181-187. |
[13] | Li HX, Yang XD, Lü GH (2018). Relationships between hydraulic lift of Haloxylon ammodendron with growth condition, abundance and richness of shallow-rooted plants. Bulletin of Soil and Water Conservation, 38, 75-81. |
[ 李宏侠, 杨晓东, 吕光辉 (2018). 梭梭水力提升与浅根系植物优势度、丰富度和多度的关系. 水土保持通报, 38, 75-81. ] | |
[14] | Li W, Hu ZZ, Ni Y, Li SZ, Ni SL (2007). The relationship of hydraulic lift in alfalfa and maize and their drought resistance study on mechanism of hydraulic lift in root system of plant (II). Acta Agrestia Sinica, 15, 515-518. |
[ 李唯, 胡自治, 倪郁, 李尚忠, 倪胜利 (2007). 苜蓿、玉米根系提水作用与耐旱性的关系——植物根系提水作用机理研究II. 草地学报, 15, 515-518.] | |
[15] | Liu XL, Zhang HR, Fu H (2007). Root hydraulic lift and nutrition activity in Astraglus adsurgens with fertilization. Acta Botanica Boreali-Occidentalia Sinica, 27, 2507-2513. |
[ 刘小莉, 张洪荣, 傅华 (2007). 施肥对沙打旺根系提水及土壤养分活性的影响. 西北植物学报, 27, 2507-2513.] | |
[16] | Meunier F, Rothfuss Y, Bariac T, Biron P, Richard P, Durand JL, Couvreur V, Vanderborght J, Javaux M (2017). Measuring and modeling hydraulic lift of Lolium multiflorum using stable water isotopes. Vadose Zone Journal, 17, 1-15. |
[17] | Paynel F, Murray PJ, Cliquet JB (2001). Root exudates: a pathway for short-term N transfer from clover to ryegrass. Plant and Soil, 229, 235-243. |
[18] | Peñuelas J, Filella I (2003). Deuterium labeling of roots provides evidence of deep water access and hydraulic lift by Pinus nigra, in a Mediterranean forest of NE Spain. Environmental and Experimental Botany, 49, 201-208. |
[19] | Shan L, Zhang SQ, Li WR (2008). Productivity and drought resistance of alfalfa. Journal of Agricultural Science and Technology, 10, 12-17. |
[ 山仑, 张岁岐, 李文娆 (2008). 论苜蓿的生产力与抗旱性. 中国农业科技导报, 10, 12-17.] | |
[20] | Sun GC, Zhao P, Cai XA, Zeng XP, Liu XJ, Rao XQ, Wang H (2008). Carbon isotope discrimination in leaf juice of Acacia mangium and its relation to water-use efficiency. Chinese Journal of Ecology, 27, 497-503. |
[ 孙谷畴, 赵平, 蔡锡安, 曾小平, 刘晓静, 饶兴权, 王华 (2008). 马占相思叶片液汁碳同位素甄别率和水分利用效率. 生态学杂志, 27, 497-503.] | |
[21] | Wan CG, Xu WW, Sosebee RE, Machado S, Archer T (2000). Hydraulic lift in drought-tolerant and susceptible maize hybrids. Plant and Soil, 219, 117-126. |
[22] | Wang X, Zeng ZH, Hu YG, Zhu B (2007). Progress and prospect on mixture of Gramineae herbage and Leguminosae herbage. Chinese Journal of Grassland, 29, 92-98. |
[ 王旭, 曾昭海, 胡跃高, 朱波 (2007). 豆科与禾本科牧草混播效应研究进展. 中国草地学报, 29, 92-98.] | |
[23] | Wu XH (1999). Root development of pea and oat mixture sward with plastic mulching. Journal of Gansu Agricultural University, 34, 120-124. |
[ 吴序卉 (1999). 地膜覆盖下豆禾混播草地根系的动态研究. 甘肃农业大学学报, 34, 120-124.] | |
[24] |
Xu BC, Shan L, Li FM (2005). Responses of Medicago sativa and Astragalus adsurgens seedlings growth and water use to soil moisture regime. Chinese Journal of Applied Ecology, 16, 2328-2332.
URL PMID |
[ 徐炳成, 山仑, 李凤民 (2005). 苜蓿与沙打旺苗期生长和水分利用对土壤水分变化的反应. 应用生态学报, 16, 2328-2332.]
PMID |
|
[25] | Xue XH, Niu DC, Fu H, Zhang HR (2007). Studies on mechanism of hydraulic lift by Astragalus laxmannii. Acta Botanica Boreali-Occidentalia Sinica, 27, 2269-2274. |
[ 薛小红, 牛得草, 傅华, 张洪荣 (2007). 沙打旺根系提水作用及其机理研究. 西北植物学报, 27, 2269-2274.] | |
[26] | Yang YD, Zhang JS, Cai GJ, Mo BR, Chai CS, Wang ZT (2008). Soil moisture dynamics of alfalfa pasture at different eco- sites in Gullied Loess Area. Pratural Science, 25(10), 25-28. |
[ 杨永东, 张建生, 蔡国军, 莫保儒, 柴春山, 王子婷 (2008). 黄土丘陵区不同立地条件下紫花苜蓿地土壤水分动态变化. 草业科学, 25(10), 25-28.] | |
[27] | Yu TF, Feng Q, Si JH, Zhang XY (2014). Patterns, magnitude and controlling factors of hydraulic redistribution by Populus euphratica roots. Journal of Beijing Forestry University, 36(2), 22-29. |
[ 鱼腾飞, 冯起, 司建华, 张小由 (2014). 胡杨根系水力再分配的模式、大小及其影响因子. 北京林业大学学报, 36(2), 22-29.] | |
[28] | Zhang YL, Zhang LJ, Yu TF, Pan D (2019). Effects of grass- legume combinations and intercropping patterns on the forage yield and yield stability. Acta Agrestia Sinica, 27, 1410-1418. |
[ 张永亮, 张丽娟, 于铁峰, 潘东 (2019). 禾豆组合与间作方式对牧草产量及产量稳定性的影响. 草地学报, 27, 1410-1418.] | |
[29] | Zhu L, Zheng SX, Xu X, Hou ZJ (2014). Effects of irrigation on mixed sowing of leguminous and graminaceous forage. Pratacultural Science, 31, 1752-1760. |
[ 朱林, 郑淑欣, 许兴, 侯志军 (2014). 宁夏中部灌水量对豆-禾牧草混播的影响. 草业科学, 31, 1752-1760.] |
[1] | 刘洋 马煦 邸楠 曾子航 付海曼 李新 席本野. 毛白杨根系液流与水力再分配特征[J]. 植物生态学报, 2023, 47(1): 0-0. |
[2] | 方运霆, 刘冬伟, 朱飞飞, 图影, 李善龙, 黄韶楠, 全智, 王盎. 氮稳定同位素技术在陆地生态系统氮循环研究中的应用[J]. 植物生态学报, 2020, 44(4): 373-383. |
[3] | 席本野, 邸楠, 曹治国, 刘金强, 李豆豆, 王烨, 李广德, 段劼, 贾黎明, 张瑞娜. 树木吸收利用深层土壤水的特征与机制: 对人工林培育的启示[J]. 植物生态学报, 2018, 42(9): 885-905. |
[4] | 袁国富, 张佩, 薛沙沙, 庄伟. 沙丘多枝柽柳灌丛根层土壤含水量变化特征与根系水力提升证据[J]. 植物生态学报, 2012, 36(10): 1033-1042. |
[5] | 郝兴明, 陈亚宁, 李卫红, 郭斌, 赵锐锋. 胡杨根系水力提升作用的证据及其生态学意义[J]. 植物生态学报, 2009, 33(6): 1125-1131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19