植物生态学报 ›› 2012, Vol. 36 ›› Issue (10): 1033-1042.DOI: 10.3724/SP.J.1258.2012.01033
袁国富1,*(), 张佩1,2, 薛沙沙1,2, 庄伟1,2
收稿日期:
2012-05-04
接受日期:
2012-07-17
出版日期:
2012-05-04
发布日期:
2012-09-26
通讯作者:
袁国富
作者简介:
E-mail: yuangf@igsnrr.ac.cnYUAN Guo-Fu1,*(), ZHANG Pei1,2, XUE Sha-Sha1,2, ZHUANG Wei1,2
Received:
2012-05-04
Accepted:
2012-07-17
Online:
2012-05-04
Published:
2012-09-26
Contact:
YUAN Guo-Fu
摘要:
分析干旱区深根型荒漠植物的根层土壤水分是揭示荒漠植物与土壤水分关系机理的重要方面。在黑河中游一片风沙侵蚀区域的多枝柽柳(Tamarix ramosissima)人工林地中, 对表层0.3 m到3 m深的土壤不同深度的含水量进行了连续的动态观测。结果显示, 多枝柽柳根系层土壤含水量可以分为明显不同的3层: 浅层(0.2-1.7 m深)相对湿润层、中间(1.7-2.7 m深)相对干层和深层(2.7 m以下)有效含水层。在多枝柽柳生长盛期, 浅层相对湿润层土壤含水量呈现明显的昼夜变化特征, 同时, 在晚上植物根系与浅层土壤之间存在正水势梯度, 这说明存在根系水力提升现象。水力提升是干旱气候下根层浅层土壤含水量保持相对湿润的主要原因, 并因此维系浅层根系的发育, 也为多枝柽柳具备的防风固沙功能提供了可能的解释。据初步估算, 多枝柽柳根系水力提升占每天耗水量的5%-8%, 耗水的主要水分来源仍然是充足的土壤深层有效含水层。
袁国富, 张佩, 薛沙沙, 庄伟. 沙丘多枝柽柳灌丛根层土壤含水量变化特征与根系水力提升证据. 植物生态学报, 2012, 36(10): 1033-1042. DOI: 10.3724/SP.J.1258.2012.01033
YUAN Guo-Fu, ZHANG Pei, XUE Sha-Sha, ZHUANG Wei. Change characteristics in soil water content in root zone and evidence of root hydraulic lift in Tamarix ramosissima thickets on sand dunes. Chinese Journal of Plant Ecology, 2012, 36(10): 1033-1042. DOI: 10.3724/SP.J.1258.2012.01033
容重 Bulk density (g·cm-3) | 田间持水量 Field capacity (cm3·cm-3) | 凋萎系数 Wilting point (cm3·cm-3) | 饱和导水率 Saturated hydraulic conductivity (cm·min-1) | 水分特征曲线函数 Soil water characteristic curve function | |
---|---|---|---|---|---|
黄沙土 Yellow sand soil | 1.58 | 0.052 | 0.028 | 0.33 | ψm = -200.38e-173.83θ |
青沙土 Grey sand soil | 1.64 | 0.038 | 0.014 | 0.77 | ψm = -16.875e-181.49θ |
表1 观测场地两种质地土壤的主要物理参数
Table 1 Main physical parameters of soil with two textures in observation site
容重 Bulk density (g·cm-3) | 田间持水量 Field capacity (cm3·cm-3) | 凋萎系数 Wilting point (cm3·cm-3) | 饱和导水率 Saturated hydraulic conductivity (cm·min-1) | 水分特征曲线函数 Soil water characteristic curve function | |
---|---|---|---|---|---|
黄沙土 Yellow sand soil | 1.58 | 0.052 | 0.028 | 0.33 | ψm = -200.38e-173.83θ |
青沙土 Grey sand soil | 1.64 | 0.038 | 0.014 | 0.77 | ψm = -16.875e-181.49θ |
图2 观测期间土壤含水量和土壤基质势的剖面分布特征。A, 土壤含水量。B, 相对有效含水量。C, 土壤基质势。
Fig. 2 Profile characteristics of soil water content and soil matric potential during observation period. A, Soil water content. B, Available water fraction. C, Soil matric potential.
图4 不同层次土壤含水量的昼夜变化。A, 浅层(0.2-1.7 m)。B, 中间层(1.7-2.9 m)。C, 深层(2.9-3.2 m)。
Fig. 4 Diurnal variations of soil water content in different soil layers. A, Shallow layer (0.2-1.7 m). B, Middle layer (1.7-2.9 m). C, Deep layer (2.9-3.2 m).
图5 2010年8月26-27日全天24小时多枝柽柳茎水势与浅层(0.2-1.7 m)土壤基质势变化的比较(平均值±标准偏差)。
Fig. 5 Comparisons of stem water potential of Tamarix ramosissima and soil matric potential in the shallow soil layer (0.2- 1.7 m) during a 24-hour period at 26-27 August 2010 (mean ± SD).
1 | Burgess SSO, Adams MA, Turner NC, Ong CK ( 1998). The redistribution of soil water by tree root systems. Oecologia, 115, 306-311. |
2 | Caldwell MM, Dawson TE, Richards JH ( 1998). Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia, 113, 151-161. |
3 | Campbell GS, Norman JM ( 1998). An Introduction to Environmental Biophysics 2nd edn. Springer-Verlag, New York. 135. |
4 | Chen YN ( 陈亚宁), Wang Q ( 王强), Li WH ( 李卫红), Ruan X ( 阮晓), Chen YP ( 陈亚鹏), Zhang LH ( 张丽华 ) ( 2006). Rational groundwater table indicated by the eco- physiological parameters of the vegetation: a case study of ecological restoration in the lower reaches of the Tarim River. Chinese Science Bulletin (科学通报), 51, 8-15. (in Chinese) |
5 | Dawson TE ( 1993). Hydraulic lift and water use by plants: implications for water balance, performance and plant- plant interactions. Oecologia, 95, 565-574. |
6 | Domec JC, King JS, Noormets A, Treasure E, Gavazzi MJ, Sun G, McNulty SG ( 2010). Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange. New Phytologist, 187, 171-183. |
7 | Du JH ( 杜建会), Yan P ( 严平), Dong YX ( 董玉祥 ) ( 2010). The progress and prospects of nebkhas in arid areas. Journal of Geographical Sciences (地理学报), 20, 712-728. (in Chinese with English abstract) |
8 | Feng Q ( 冯起), Cheng GD ( 程国栋 ) ( 1999). Moisture distribution and movement in sandy lands of China. Acta Pedologica Sinica (土壤学报), 36, 225-236. (in Chinese with English abstract) |
9 | Gries D, Zeng F, Foetzki A, Arndt SK, Bruelheide H, Thomas FM, Zhang X, Runge M ( 2003). Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table. Plant, Cell & Environment, 26, 725-736. |
10 |
Hao XM ( 郝兴明), Chen YN ( 陈亚宁), Li WH ( 李卫红), Guo B ( 郭斌), Zhao RF ( 赵锐锋 ) ( 2009). Evidence and ecological effects of hydraulic lift in Populus euphratica. Chinese Journal of Plant Ecology (植物生态学报), 33, 1125-1131. (in Chinese with English abstract)
DOI URL |
11 | He WM ( 何维明), Zhang XS ( 张新时 ) ( 2001). Water sharing in the roots of four shrubs of the Mu Us Sandy Desert. Acta Phytoecologica Sinica (植物生态学报), 25, 630-633. (in Chinese with English abstract) |
12 | Hultine KR, Cable WL, Burgess SSO, Williams DG ( 2003a). Hydraulic redistribution by deep roots of a Chihuahuan Desert phreatophyte. Tree Physiology, 23, 353-360. |
13 |
Hultine KR, Williams DG, Burgess SSO, Keefer TO ( 2003b). Contrasting patterns of hydraulic redistribution in three desert phreatophytes. Oecologia, 135, 167-175.
DOI URL |
14 | Leffler AJ, Ivans CY, Ryel RJ, Caldwell MM ( 2004). Gas exchange and growth responses of the desert shrubs Artemisia tridentata and Chrysothamnus nauseosus to shallow- vs. deep-soil water in a glasshouse experiment. Environmental and Experimental Botany, 51, 9-19. |
15 | Li XY ( 李向义), Lin LS ( 林丽莎), Zhao Q ( 赵强 ) ( 2009). Distribution of dominant plant species and characteristic of its communities on the foreland of Cele Oasis in relation to groundwater level. Arid Land Geography (干旱区地理), 32, 906-911. (in Chinese with English abstract) |
16 | Liu FM ( 刘发民), Zhang YH ( 张应华), Wu YQ ( 仵彦卿), Zhang XJ ( 张小军 ) ( 2002). Soil water regime under the shrubberies of Haloxylon ammodendron in the desert regions of the Heihe river watershed. Arid Zone Research (干旱区研究), 12, 43-47. (in Chinese with English abstract) |
17 | Liu MZ ( 刘美珍), Sun JX ( 孙建新), Jiang GM ( 蒋高明), Dong M ( 董鸣 ) ( 2006). Hydraulic redistribution in plant-soil systems. Acta Ecologica Sinica (生态学报), 26, 1550-1557. (in Chinese with English abstract) |
18 | Mooney HA, Gulmon SL, Rundel PW, Ehleringer J ( 1980). Further observations on the water relations of Prosopis tamarugo of the Northern Atacama Desert. Oecologia, 44, 177-180. |
19 | Moreira MZ, Scholz FG, Bucci SJ, Sternberg LS, Goldstein G, Meinzer FC, Franco AC ( 2003). Hydraulic lift in a neotropical savanna. Functional Ecology, 17, 573-581. |
20 | Plamboeck AH, Dawson TE, Egerton-Warburton LM, North M, Bruns TD, Querejeta JL ( 2007). Water transfer via ectomycorrhizal fungal hyphae to conifer seedlings. Mycorrhiza, 17, 439-447. |
21 | Qong M, Takamura H, Hudaberdi M ( 2002). Formation and internal structure of Tamarix cones in the Taklimakan Desert. Journal of Arid Environments, 50, 81-97. |
22 | Qu YP ( 屈艳萍 ) ( 2006). Water Consumption of Three Typical Irrigated Plants for Wind Sheltering and Sand Fixation in the Shiyang River Basin (石羊河流域三种典型人工种植防风固沙植物的耗水规律研究). PhD dissertation, Northwest Agriculture & Forestry University, Yangling. 39-43. (in Chinese with English abstract) |
23 | Richards JH, Caldwell MM ( 1987). Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia, 73, 486-489. |
24 | Si JH, Feng Q, Zhang XY, Liu W, Su YH, Zhang YW ( 2005). Growing season evapotranspiration from Tamarix ramosissima stands under extreme arid conditions in northwest China. Environmental Geology, 48, 861-870. |
25 | Wang Z ( 王志), Wang L ( 王蕾), Liu LY ( 刘连友), Hasi ( 哈斯), Peng RY ( 彭如燕), Liu TK ( 刘天科), Zheng QH ( 郑秋红), Zhuang YM ( 庄艳美 ) ( 2007). Preliminary study on the spatiotemporal distribution of moisture content in sand dunes in the southern marginal zone of the Mu Us Desert. Arid Zone Research (干旱区研究), 24, 61-65. (in Chinese with English abstract) |
26 | Warren JM, Brooks JR, Meinzer FC, Eberhart JL ( 2008). Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytologist, 178, 382-394. |
27 | Xia XC ( 夏训诚), Zhao YJ ( 赵元杰), Wang FB ( 王富葆), Cao QY ( 曹琼英), Mu GJ ( 穆桂金), Zhao JF ( 赵景峰 ) ( 2004). Stratification features of Tamarix cone and its possible age significance. Chinese Science Bulletin (科学通报), 49, 1539-1540. (in Chinese) |
28 | Xu GQ ( 徐贵青), Li Y ( 李彦 ) ( 2009). Roots distribution of three desert shrubs and their response to precipitation under co-occurring conditions. Acta Ecologica Sinica (生态学报), 29, 130-137. (in Chinese with English abstract) |
29 | Xu H, Li Y ( 2006). Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events. Plant and Soil, 285, 5-17. |
30 | Xu H, Li Y, Xu GQ, Zou T ( 2007). Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant, Cell & Environment, 30, 399-409. |
31 | Yang WK ( 杨维康), Zhang DY ( 张道远), Zhang LY ( 张立运), Yin LK ( 尹林克 ) ( 2004). Study on ecological types and habitat similarity of Tamarix L. in Xinjiang. Arid Land Geography (干旱区地理), 27, 186-192. (in Chinese with English abstract) |
32 | Yin LK ( 尹林克 ) ( 1995). Tamarix spp.—The keyston species of desert ecosystem. Arid Zone Research (干旱区研究), 12, 43-47. (in Chinese with English abstract) |
33 | Zhang DY ( 张道远), Yin LK ( 尹林克), Pan BR ( 潘伯荣 ) ( 2003). Study on drought-resisting mechanism of Tamrix L. and assessing of its potential application. Journal of Desert Research (中国沙漠), 23, 252-256. (in Chinese with English abstract) |
34 | Zhang L ( 张丽), Dong ZC ( 董增川), Huang XL ( 黄晓玲 ) ( 2004). Modeling on relation between major plants growth and groundwater depth in arid area. Journal of Desert Research (中国沙漠), 24, 110-113. (in Chinese with English abstract) |
35 | Zhang P ( 张佩), Yuan GF ( 袁国富), Zhuang W ( 庄伟), Xue SS ( 薛沙沙 ) ( 2011). Ecophysiological responses and adapta- tion of Tamarix ramosissima to changes in groundwater depth in the Heihe river basin. Acta Ecologica Sinica (生态学报), 31, 6677-6687. (in Chinese with English abstract) |
[1] | 祖姆热提•于苏甫江, 董正武, 成鹏, 叶茂, 刘隋赟昊, 李生宇, 赵晓英. 多枝柽柳水分利用策略对沙堆堆积过程的响应[J]. 植物生态学报, 2024, 48(1): 113-126. |
[2] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[3] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[4] | 刘洋, 马煦, 邸楠, 曾子航, 付海曼, 李新, 席本野. 毛白杨根系液流与水力再分配特征[J]. 植物生态学报, 2023, 47(1): 123-133. |
[5] | 朱林, 王甜甜, 赵学琳, 祁亚淑, 许兴. 紫花苜蓿和斜茎黄耆水力提升作用及其对伴生植物的效应[J]. 植物生态学报, 2020, 44(7): 752-762. |
[6] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[7] | 席本野, 邸楠, 曹治国, 刘金强, 李豆豆, 王烨, 李广德, 段劼, 贾黎明, 张瑞娜. 树木吸收利用深层土壤水的特征与机制: 对人工林培育的启示[J]. 植物生态学报, 2018, 42(9): 885-905. |
[8] | 宋小艳, 王根绪, 冉飞, 杨燕, 张莉, 肖瑶. 东北大兴安岭演替初期泰加林灌草层典型植物开花物候与生长对模拟暖干化气候的响应[J]. 植物生态学报, 2018, 42(5): 539-549. |
[9] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[10] | 李晋波, 姚楠, 赵英, 范庭, 张建国, 兰志龙, 易军, 司炳成. 不同放牧条件下锡林郭勒典型草原土壤水分分布特征及降水入渗估算[J]. 植物生态学报, 2018, 42(10): 1033-1042. |
[11] | 柴曦, 李英年, 段呈, 张涛, 宗宁, 石培礼, 何永涛, 张宪洲. 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子[J]. 植物生态学报, 2018, 42(1): 6-19. |
[12] | 朱志成, 黄银, 许丰伟, 邢稳, 郑淑霞, 白永飞. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响[J]. 植物生态学报, 2017, 41(9): 938-952. |
[13] | 徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017, 41(7): 761-769. |
[14] | 葛晓改, 周本智, 肖文发, 王小明, 曹永慧, 叶明. 生物质炭添加对毛竹林土壤呼吸动态和温度敏感性的影响[J]. 植物生态学报, 2017, 41(11): 1177-1189. |
[15] | 张蔷, 李家湘, 谢宗强. 氮添加对亚热带山地杜鹃灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 95-104. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19