植物生态学报 ›› 2012, Vol. 36 ›› Issue (10): 1043-1053.DOI: 10.3724/SP.J.1258.2012.01043
所属专题: 全球变化与生态系统
刘涛1,2, 张永贤4, 许振柱1,*(), 周广胜1,3,*(
), 侯彦会1,2, 林琳4
收稿日期:
2012-01-18
接受日期:
2012-07-15
出版日期:
2012-01-18
发布日期:
2012-09-26
通讯作者:
许振柱,周广胜
作者简介:
gszhou@ibcas.ac.cn
LIU Tao1,2, ZHANG Yong-Xian4, XU Zhen-Zhu1,*(), ZHOU Guang-Sheng1,3,*(
), HOU Yan-Hui1,2, LIN Lin4
Received:
2012-01-18
Accepted:
2012-07-15
Online:
2012-01-18
Published:
2012-09-26
Contact:
XU Zhen-Zhu,ZHOU Guang-Sheng
摘要:
利用红外辐射增温装置模拟短期持续增温和降水增加交互作用对内蒙古荒漠草原土壤呼吸作用的影响, 结果表明: 土壤含水量对月土壤呼吸的影响显著大于土壤温度增加的影响, 生长旺季的月土壤呼吸显著大于生长末季; 土壤温度和水分增加都显著影响日土壤呼吸, 但二者的交互作用对土壤呼吸无显著影响。荒漠草原7‒8月平均土壤呼吸速率为1.35 μmol CO2·m -2·s -1, 7月份为2.08 μmol CO2·m -2·s -1, 8月份为0.63 μmol CO2·m -2·s -1。土壤呼吸与地下各层根系生物量呈幂函数关系, 0‒10 cm土层的根系生物量对土壤呼吸的解释率(79.2%)明显高于10‒20 cm土层的解释率(31.6%)。0-10 cm土层的根系生物量是根系生物量的主体, 根系生物量对土壤呼吸的影响具有层次性。在未来全球变暖和降水格局变化的情景下, 荒漠草原土壤水分含量是影响生物量的主导环境因子, 而根系生物量的差异是造成土壤呼吸异质性的主要生物因素, 土壤含水量可通过影响根系生物量控制土壤呼吸的异质性。
刘涛, 张永贤, 许振柱, 周广胜, 侯彦会, 林琳. 短期增温和增加降水对内蒙古荒漠草原土壤呼吸的影响. 植物生态学报, 2012, 36(10): 1043-1053. DOI: 10.3724/SP.J.1258.2012.01043
LIU Tao, ZHANG Yong-Xian, XU Zhen-Zhu, ZHOU Guang-Sheng, HOU Yan-Hui, LIN Lin. Effects of short-term warming and increasing precipitation on soil respiration of desert steppe of Inner Mongolia. Chinese Journal of Plant Ecology, 2012, 36(10): 1043-1053. DOI: 10.3724/SP.J.1258.2012.01043
日期 Date | 降水增幅15% Precipitation (+15%) (L) | 降水增幅30% Precipitation (+30%) (L) |
---|---|---|
6月7日 7 June | 5.20 | 10.30 |
6月14日 14 June | 5.20 | 10.30 |
6月21日 21 June | 5.20 | 10.30 |
6月28日 28 June | 7.30 | 14.60 |
7月5日 5 July | 8.90 | 17.80 |
7月12日 12 July | 8.90 | 17.80 |
7月19日 19 July | 8.90 | 17.80 |
7月26日 26 July | 9.00 | 18.10 |
8月2日 2 August | 9.80 | 19.50 |
8月9日 9 August | 9.80 | 19.50 |
8月16日 16 August | 9.80 | 19.50 |
8月23日 23 August | 9.80 | 19.50 |
表1 基于过去30年(1978-2007年)日平均降水量的浇水量
Table 1 Increased amount of water based on daily average precipitation in the past 30 years (1978-2007)
日期 Date | 降水增幅15% Precipitation (+15%) (L) | 降水增幅30% Precipitation (+30%) (L) |
---|---|---|
6月7日 7 June | 5.20 | 10.30 |
6月14日 14 June | 5.20 | 10.30 |
6月21日 21 June | 5.20 | 10.30 |
6月28日 28 June | 7.30 | 14.60 |
7月5日 5 July | 8.90 | 17.80 |
7月12日 12 July | 8.90 | 17.80 |
7月19日 19 July | 8.90 | 17.80 |
7月26日 26 July | 9.00 | 18.10 |
8月2日 2 August | 9.80 | 19.50 |
8月9日 9 August | 9.80 | 19.50 |
8月16日 16 August | 9.80 | 19.50 |
8月23日 23 August | 9.80 | 19.50 |
时间 Time | 增温处理 Warming treatment | |||||
---|---|---|---|---|---|---|
对照样地土壤温度 Soil temperature in control spot (℃) | 增温样地土壤温度 Soil temperature in warming spot (℃) | 对照样地土壤呼吸 Soil respiration in control spot (μmol CO2·m?2·s?1) | 增温样地土壤呼吸 Soil respiration in warming spot (μmol CO2·m?2·s?1) | t | p | |
7月 July | 25.13 | 29.36 | 2.22 | 2.29 | 0.30 | 0.768 |
8月 August | 26.22 | 30.79 | 0.80 | 0.94 | ?1.28 | 0.219 |
表2 增温对土壤呼吸月变化的影响(t-test, p < 0.05)
Table 2 Effects of warming on monthly soil respiration (t-test, p < 0.05)
时间 Time | 增温处理 Warming treatment | |||||
---|---|---|---|---|---|---|
对照样地土壤温度 Soil temperature in control spot (℃) | 增温样地土壤温度 Soil temperature in warming spot (℃) | 对照样地土壤呼吸 Soil respiration in control spot (μmol CO2·m?2·s?1) | 增温样地土壤呼吸 Soil respiration in warming spot (μmol CO2·m?2·s?1) | t | p | |
7月 July | 25.13 | 29.36 | 2.22 | 2.29 | 0.30 | 0.768 |
8月 August | 26.22 | 30.79 | 0.80 | 0.94 | ?1.28 | 0.219 |
时间 Time | 增温处理 Warming treatment | ||||||
---|---|---|---|---|---|---|---|
对照样地土壤温度 Soil temperature in control spot (℃) | 增温样地土壤温度 Soil temperature in warming spot (℃) | 对照样地土壤呼吸 Soil respiration in control spot (μmol CO2·m?2·s?1) | 增温样地土壤呼吸 Soil respiration in warming spot (μmol CO2·m?2·s?1) | t | p | ||
7月7日 7 July | 6:00?12:00 | 13.96 | 17.33 | 3.05 | 2.31 | 1.47 | 0.170 |
12:00?20:00 | 19.91 | 23.26 | 3.86 | 3.49 | 0.88 | 0.400 | |
20:00?6:00 | 15.76 | 18.85 | 1.12 | 0.96 | 2.20 | 0.045 | |
8月10日 10 August | 6:00?12:00 | 25.59 | 30.35 | 1.22 | 1.45 | ?1.07 | 0.305 |
12:00?20:00 | 39.33 | 44.28 | 1.12 | 1.36 | ?1.82 | 0.089 | |
20:00?6:00 | 27.32 | 31.91 | 0.43 | 0.47 | ?0.63 | 0.538 |
表3 增温对土壤呼吸日变化的影响(t-test, p < 0.05)
Table 3 Effects of warming on daily soil respiration (t-test, p < 0.05)
时间 Time | 增温处理 Warming treatment | ||||||
---|---|---|---|---|---|---|---|
对照样地土壤温度 Soil temperature in control spot (℃) | 增温样地土壤温度 Soil temperature in warming spot (℃) | 对照样地土壤呼吸 Soil respiration in control spot (μmol CO2·m?2·s?1) | 增温样地土壤呼吸 Soil respiration in warming spot (μmol CO2·m?2·s?1) | t | p | ||
7月7日 7 July | 6:00?12:00 | 13.96 | 17.33 | 3.05 | 2.31 | 1.47 | 0.170 |
12:00?20:00 | 19.91 | 23.26 | 3.86 | 3.49 | 0.88 | 0.400 | |
20:00?6:00 | 15.76 | 18.85 | 1.12 | 0.96 | 2.20 | 0.045 | |
8月10日 10 August | 6:00?12:00 | 25.59 | 30.35 | 1.22 | 1.45 | ?1.07 | 0.305 |
12:00?20:00 | 39.33 | 44.28 | 1.12 | 1.36 | ?1.82 | 0.089 | |
20:00?6:00 | 27.32 | 31.91 | 0.43 | 0.47 | ?0.63 | 0.538 |
图4 降水对土壤呼吸月变化的影响(平均值±标准误差)。W0, 自然降水; W15, 降水增幅15%; W30, 降水增幅30%。不同的小写字母表示同一月份不同降水增幅处理下土壤呼吸差异显著(p < 0.05)。
Fig. 4 Effects of precipitation on monthly soil respiration (mean ± SE). W0, nature precipitation (control); W15, precipitation +15%; W30, precipitation +30%. Different lowercases mean significant differences of soil respiration among different precipitation treatments within the same month (p < 0.05).
图5 降水对土壤呼吸日变化的影响(平均值±标准误差)。W0, 自然降水; W15, 降水增幅15%; W30, 降水增幅30%。不同小写字母表示同一时间段不同降水增幅处理下土壤呼吸差异显著(p < 0.05)。
Fig. 5 Effects of precipitation on daily soil respiration (mean ± SE). W0, nature precipitation (control); W15, precipitation +15%; W30, precipitation +30%. Different lowercases mean significant differences of soil respiration among different precipitation treatments within the same time (p < 0.05).
时间 Time | 增温 × 降水 Warming × precipitation | ||
---|---|---|---|
F | p | ||
7月 July | 0.018 | 0.982 | |
8月 August | 1.203 | 0.334 | |
7月7日 7 July | 6:00?12:00 | 0.321 | 0.732 |
12:00?20:00 | 0.068 | 0.935 | |
20:00?6:00 | 0.447 | 0.649 | |
8月10日 10 August | 6:00?12:00 | 1.430 | 0.277 |
12:00?20:00 | 2.214 | 0.152 | |
20:00?6:00 | 1.450 | 0.273 |
表4 不同时间尺度增温和降水交互作用对土壤呼吸的影响(p < 0.05)
Table 4 Effects of warming and precipitation interactive treatments on soil respiration in different time scales (p < 0.05)
时间 Time | 增温 × 降水 Warming × precipitation | ||
---|---|---|---|
F | p | ||
7月 July | 0.018 | 0.982 | |
8月 August | 1.203 | 0.334 | |
7月7日 7 July | 6:00?12:00 | 0.321 | 0.732 |
12:00?20:00 | 0.068 | 0.935 | |
20:00?6:00 | 0.447 | 0.649 | |
8月10日 10 August | 6:00?12:00 | 1.430 | 0.277 |
12:00?20:00 | 2.214 | 0.152 | |
20:00?6:00 | 1.450 | 0.273 |
图6 增温和降水对植被盖度的影响(平均值±标准误差)。W0, 自然降水; W15, 降水增幅15%; W30, 降水增幅30%。不同小写字母表示同一温度不同降水处理下植被盖度差异显著(p < 0.05)。*, 同一降水处理下对照和增温处理间植被盖度差异显著(p < 0.05)。
Fig. 6 Effects of warming and precipitation on vegetation coverage (mean ± SE). W0, nature precipitation (control); W15, precipitation +15%; W30, precipitation +30%. Different lowercases mean significant differences of vegetation coverage among different precipitation treatments within the same temperature treatment (p < 0.05). *, significant difference of vegetation coverage between warming and control temperature treatments within the same precipitation treatments (p < 0.05).
图7 土壤呼吸与生物量的关系。A, 0-10 cm土层根系生物量。B, 10-20 cm土层根系生物量。C, 0-20 cm土层根系生物量。D, 地上生物量。
Fig. 7 Relationships between soil respiration and biomass. A, Belowground biomass in 0-10 cm soil layer. B, Belowground biomass in 10-20 cm soil layer. C, Belowground biomass in 0-20 cm soil layer. D, Aboveground biomass.
图8 降水对根系生物量的影响(平均值±标准误差)。W0, 自然降水; W15, 降水增幅15%; W30, 降水增幅30%。不同小写字母表示相同土壤深度的根系生物量在不同降水处理下差异显著(p < 0.05)。
Fig. 8 Effects of precipitation on belowground biomass (mean ± SE). W0, nature precipitation (control); W15, precipitation +15%; W30, precipitation +30%. Different lowercases mean significant differences of belowground biomass among different precipitation treatments within the same soil depth (p < 0.05).
1 | Bao F ( 鲍芳), Zhou GS ( 周广胜 ) ( 2010). Review of research advances in soil respiration of grassland in China. Chinese Journal of Plant Ecology (植物生态学报), 34, 713-726. (in Chinese with English abstract) |
2 | Bao F, Zhou GS, Wang FY, Sui XH ( 2010). Partitioning soil respiration in a temperate desert steppe in Inner Mongolia using exponential regression method. Soil Biology & Biochemistry, 42, 2339-2341. |
3 | Billings WD ( 1987). Carbon balance of Alaskan tundra and taiga ecosystems: past, present and future. Quaternary Science Reviews, 6, 165-177. |
4 | Bontti EE, Decant JP, Munson SM, Gathany MA, Przeszlo- wska A, Haddix ML, Owens S, Burke IC, Parton WJ, Harmon ME ( 2009). Litter decomposition in grasslands of central North America (US Great Plains). Global Change Biology, 15, 1356-1363. |
5 | Buchmann N ( 2000). Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology & Biochemistry, 32, 1625-l635. |
6 | Cavelier J, Penuela MC ( 1990). Soil respiration in the clud forest and dry deciduous forest of Serrania de Macuira, Colombia. Biotropica, 22, 346-352. |
7 | Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, de Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R ( 2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529-533. |
8 | Craine JM, Wedin DA, Chapin FS III ( 1999). Predominance of ecophysiological controls on soil CO2 flux in a Minnesota grassland. Plant Soil, 207, 77-86. |
9 | Davidson EA, Belk E, Boone RD ( 1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227. |
10 | Davidson EA, Verchot LV Cattanio JH ( 2000). Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48, 53-69. |
11 | Domec JC, Gartner BL ( 2003). Relationship between growth rates and xylem hydraulic characteristics in young, mature and old-growth ponderosa pine trees. Plant, Cell & Environment, 26, 471-483. |
12 | Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P ( 2000). Observed variability and trends in extreme climate events: a brief review. Bulletin of the American Meteorological Society, 81, 417-425. |
13 | Edwards NT ( 1975). Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor. Soil Science Society of America Journal, 39, 361-365. |
14 | Fernandez DP, Neff JC, Belnap J, Reynolds RL ( 2006). Soil respiration in the cold desert environment of the Colorado Plateau (USA): abiotic regulators and thresholds. Biogeochemistry, 78, 247-265. |
15 | Gong DY, Shi PJ, Wang JA ( 2004). Daily precipitation changes in the semi-arid region over northern China. Journal of Arid Environments, 59, 771-784. |
16 | Gupta SR, Singh JS ( 1981). Soil respiration in a tropical grassland. Soil Biology & Biochemistry, 13, 261-268. |
17 | Han GD ( 韩国栋 ) ( 2002). Influence of precipitation and air temperature on primary productivity of Stipa klemenzii plant community, Nei Mongol. Acta Scientiarum Naturalium Universitatis NeiMongol (内蒙古大学学报), 33, 83-88. (in Chinese with English abstract) |
18 | Harte J, Torn MS, Chang FR, Feifarek B, Kinzig AP, Shaw R, Shen K ( 1995). Global warming and soil microclimate: results from a meadow-warming experiment. Ecological Applications, 5, 132-150. |
19 | IPCC(Intergovernmental Panel on Climate Change) ( 2007). Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL eds. Climatic Change in 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
20 | Jenkinson DS, Adams DE, Wild A ( 1991). Model estimates of CO2 emissions from soil in response to global warming. Nature, 351, 304-306. |
21 | Jia BR, Zhou GS, Wang FY, Wang YH, Yuan WP, Zhou L ( 2006). Partitioning root and microbial contributions to soil respiration in Leymus chinensis populations. Soil Biology & Biochemistry, 38, 653-660. |
22 | Karl TR, Knight RW ( 1998). Secular trends of precipitation amount, frequency, and intensity in the United States. Bulletin of the American Meteorological Society, 79, 231-241. |
23 | Kimball BA ( 2005). Theory and performance of an infrared heater for ecosystem warming. Global Change Biology, 11, 2041-2056. |
24 | Kuzyakov Y, Cheng W ( 2001). Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biology & Biochemistry, 33, 1915-1925. |
25 | Lellei-Kovács E, Kovács-Láng E, Kalapos T, Botta-Dukát Z, Barabás S, Beier C ( 2008). Experimental warming does not enhance soil respiration in a semiarid temperate forest-steppe ecosystem. Community Ecology, 9, 29-37. |
26 | Li LH, Han XG, Wang QB, Chen QS, Zhang Y, Yang J, Yan ZD, Li X, Bai WM, Song SH ( 2002). Correlations between plant biomass and soil respiration in a Leymus chinensis community in the Xilin River basin of Inner Mongolia. Acta Botanica Sinica (植物学报), 44, 593-597. |
27 | Li MF ( 李明峰), Dong YS ( 董云社), Qi YC ( 齐玉春), Geng YB ( 耿元波), Lü Y ( 吕晔 ) ( 2003). The analysis of diurnal variation of CO2 flux in Leymus chinensis grassland of Xilin River Basin. Grassland of China (中国草地), 25, 9-14. (in Chinese with English abstract) |
28 | Li ZX ( 李智雄 ) ( 2008). Pulse Effects of Precipitation on Soil Respiration and Its Components in Temperate Steppe of China (降水对我国温带草原土壤呼吸及其组分的脉冲效应). Master degree dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. 1-26. (in Chinese with English abstract) |
29 | Liu WX, Zhang Z, Wan SQ ( 2009). Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology, 15, 184-195. |
30 | Luo YQ, Wan SQ, Hui DF, Wallace LL ( 2001). Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413, 622-625. |
31 | Ma ZH ( 马治华), Liu GX ( 刘桂香), Li JP ( 李景平), Li J ( 李洁 ) ( 2007). The evaluation of desert-steppe eco-environ- ment quality in Inner Mongolia. Chinese Journal of Grassland (中国草地学报), 29(6), 17-21. (in Chinese with English abstract) |
32 | Maier CA, Kress LW ( 2000). Soil CO2 evolution and root respiration in 11 year-old loblolly pine ( Pinus taeda) plantations as affected by moisture and nutrient availability. Canadian Journal of Forest Research, 30, 347-359. |
33 | Marland G, Boden TA, Andres RJ (2006). Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN. Available via Dialog,http://cdias.esd.ornl.gov/trends/emis/tre_glob.html . Cited 9 April 2009. |
34 | Norby RJ, Jackson RB ( 2000). Root dynamics and global change: seeking an ecosystem perspective. New Phytologist, 147, 3-12. |
35 | Noy-Meir I ( 1979). Structure and function of desert ecosystems. Israel Journal of Botany, 28, 1-19. |
36 | Pangle RE, Seiler J ( 2002). Influence of seedling roots, environmental factors and soil characteristics on soil CO2 efflux rates in a 2-year-old loblolly pine (Pinus taeda L.) plantation in the Virginia Piedmont. Environmental Pollution, 116, S85-S96. |
37 | Reth S, Graf W, Reichstein M, Munch JC ( 2009). Sustained stimulation of soil respiration after 10 years of experimental warming. Environmental Research Letters, 4, 024005. |
38 | Rochette P, Desjardins RL, Pattey E ( 1991). Spatial and temporal variability of soil respiration in agricultural fields. Canadian Journal of Soil Science, 71, 189-196. |
39 | Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J ( 2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562. |
40 | Savin MC, Görres JH, Neher DA, Amador JA ( 2001). Biogeophysical factors influencing soil respiration and mineral nitrogen content in an old field soil. Soil Biology & Biochemistry, 33, 429-438. |
41 | Selsted MB, van der Linden L, Ibrom A, Michelsen A, Larsen KS, Pedersen JK, Mikkelsen TN, Pilegaard K, Beier C, Ambus P ( 2012). Soil respiration is stimulated by elevated CO2 and reduced by summer drought: three years of measurements in a multifactor ecosystem manipulation experiment in a temperate heathland (CLIMAITE). Global Change Biology, 18, 1216-1230. |
42 |
Semenov MA, Shewry PR ( 2011). Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Scientific Reports, 1, 66.
DOI URL |
43 | Shi GX ( 师广旭 ) ( 2008). Study on Soil Respiration in Stipa krylovii Steppe, Inner Mongolia (内蒙古克式针茅草原土壤呼吸作用研究). Master degree dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. 2-35. (in Chinese with English abstract) |
44 |
Wan SQ, Hui DF, Wallace L, Luo YQ ( 2005). Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles, 19, GB2014.
DOI URL PMID |
45 |
Wan SQ, Luo YQ, Wallace LL ( 2002). Changes in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change Biology, 8, 754-768.
DOI URL |
46 |
Wan SQ, Norby RJ, Ledford J, Weltzin JF ( 2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology, 13, 2411-2424.
DOI URL |
47 | Wang B (2005). Theory. In: Lau WKM, Waliser DE eds. Intraseasonal Variability in the Atmosphere-Ocean Climate System. Praxis Publishing, Chichester. 307-360. |
48 | Wanga W, Ohse K, Liu JJ, Mo WH, Oikawab T ( 2005). Contribution of root respiration to soil respiration in a C3/C4 mixed grassland. Journal of Biosciences, 30, 507-514. |
49 | West NE, Stark JM, Johnson DW, Abrams MM, Wight JR, Heggem D, Peck S ( 1994). Effects of climatic change on the edaphic features of arid and semiarid lands of western North America. Arid Land Research and Management, 8, 307-351. |
50 | Wiseman PE, Seiler JR ( 2004). Soil CO2 efflux across four age classes of plantation loblolly pine ( Pinus taeda L.) on the Virginia Piedmont. Forest Ecology Management, 192, 297-311. |
51 | Xia J, Han Y, Zhang Z, Zhang Z, Wan S ( 2009). Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe. Biogeosciences, 6, 1361-1370. |
52 | Yang HJ, Wu MY, Liu WX, Zhang Z, Zhang NL, Wan SQ ( 2011). Community structure and composition in response to climate change in a temperate steppe. Global Change Biology, 17, 452-465. |
53 | Zhang LH ( 张丽华), Chen YN ( 陈亚宁), Zhao RF ( 赵锐锋), Li WH ( 李卫红 ) ( 2009). Impact of temperature and soil water content on soil respiration in temperate deserts, China. Chinese Journal of Plant Ecology (植物生态学报), 33, 936-949. (in Chinese with English abstract) |
54 | Zhou GS, Jia BR, Han GX, Zhou L ( 2008). Toward a general evaluation model for soil respiration (GEMSR). Science in China Series C: Life Sciences, 51, 254-262. |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[3] | 索南吉, 李博文, 吕汪汪, 王文颖, 拉本, 陆徐伟, 宋扎磋, 陈程浩, 苗琪, 孙芳慧, 汪诗平. 增温增水情景下钉柱委陵菜物候序列的变化及其抗冻性[J]. 植物生态学报, 2024, 48(2): 158-170. |
[4] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[5] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[6] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[7] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[8] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[9] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[10] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[11] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[12] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[13] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[14] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[15] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19