植物生态学报 ›› 2009, Vol. 33 ›› Issue (6): 1125-1131.DOI: 10.3773/j.issn.1005-264x.2009.06.012
郝兴明1,2, 陈亚宁1,2,*(), 李卫红1,2, 郭斌1,2, 赵锐锋1,2
收稿日期:
2008-11-21
接受日期:
2009-04-09
出版日期:
2009-11-21
发布日期:
2021-04-29
通讯作者:
陈亚宁
作者简介:
*(chenyn@ms.xjb.ac.cn)基金资助:
HAO Xing-Ming1,2, CHEN Ya-Ning1,2,*(), LI Wei-Hong1,2, Guo Bin1,2, ZHAO Rui-Feng1,2
Received:
2008-11-21
Accepted:
2009-04-09
Online:
2009-11-21
Published:
2021-04-29
Contact:
CHEN Ya-Ning
摘要:
生长在塔里木河流域的荒漠河岸林植被虽长期忍受着高温和干旱的威胁, 然而它们却能够一直延续并保存至今。除了植物深根系吸水作用外, 另一个更主要的原因可能就是荒漠河岸林植被存在水力提升的效应。该文采用HRM热比率法茎流仪对3株胡杨(Populus euphratica)主根和侧根的液流速率分别进行了为期4 d的连续监测; 利用自动气象站对微气象因子:风速、空气相对湿度、叶面温度和地表温度进行连续监测; 同时采用了烘干法对不同深度土层在不同时刻的土壤含水率进行了取样分析。试验结果表明:胡杨主根液流在白天和夜间均表现为正值, 相反的, 胡杨侧根液流速率则出现了明显的夜间负向流动。胡杨根系0~120 cm土层土壤水分含量具有下湿上干的变化趋势; 胡杨侧根在夜间发生负向流动后, 土壤含水率显著升高, 尤其在60~120 cm土层中, 4:00土壤含水率上升幅度达到4:00时刻土壤含水率的22%~26%。影响胡杨侧根液流速率的主要气象因子主要是叶面水汽压亏缺。
郝兴明, 陈亚宁, 李卫红, 郭斌, 赵锐锋. 胡杨根系水力提升作用的证据及其生态学意义. 植物生态学报, 2009, 33(6): 1125-1131. DOI: 10.3773/j.issn.1005-264x.2009.06.012
HAO Xing-Ming, CHEN Ya-Ning, LI Wei-Hong, Guo Bin, ZHAO Rui-Feng. EVIDENCE AND ECOLOGICAL EFFECTS OF HYDRAULIC LIFT IN POPULUS EUPHRATICA. Chinese Journal of Plant Ecology, 2009, 33(6): 1125-1131. DOI: 10.3773/j.issn.1005-264x.2009.06.012
图1 胡杨主根液流速率(Vh) a、b和c分别代表3棵胡杨各自在4 d时间内的液流速率日变化
Fig. 1 Sap flow velocity (Vh) in the tap root of Populus euphraticaduring 10 Sept. to 22 Sept. a, b and c respresent the diurnal and nocturnal variation of three trees in four days, respectively
图2 胡杨侧根液流速率(Vh) a、b和c分别代表3株胡杨各自在4 d时间内的液流速率日变化; 数据系列O, S, a, y则分别表示安装在胡杨侧根的4套传感器
Fig. 2 Sap flow velocity (Vh) in the lateral root of Populus euphraticaduring 10 Sept. to 22 Sept. a, b and c respresent the diurnal and nocturnal variation of three trees in four days, respectively. Data O, S, a, y is the address of sensors that were installed in the lateral roots of the tree
图3 不同深度土层中土壤含水率均值变化(n=48) 数据来自3个土壤剖面各自4 d的动态监测
Fig. 3 Average soil water content in six soil depth of three soil profile (n=48) The soil water content was monitored during four days in every soil profile
图4 不同时间不同土层中土壤含水率均值变化(n=12) 数据来自3个土壤剖面各自4 d的动态监测
Fig. 4 The average soil water content at different time and soil depth of three soil profile (n=12) The soil water content was monitored during four days in every soil profile
风速 Wind speed (m·s-1) | 相对湿度 Air relative Humidity (%) | 叶面温度 Leaf temperature (℃) | 地表温度 Surface temperature (℃) | 水汽压亏缺Vapor pressure deficit (kPa) | ||
---|---|---|---|---|---|---|
主根 Tap root | 相关系数 | 0.462** | -0.614** | 0.624** | 0.655** | 0.610** |
Pearson correlation | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
n | 288 | 288 | 288 | 288 | 288 | |
侧根 Lateral root(O) | 相关系数 | 0.112 | -0.648** | 0.653** | 0.646** | 0.692** |
Pearson correlation | 0.057 | 0.000 | 0.000 | 0.000 | 0.000 | |
n | 288 | 288 | 288 | 288 | 288 | |
侧根 Lateral root (S) | 相关系数 | 0.559** | -0.643** | 0.635** | 0.606** | 0.679** |
Pearson correlation | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
n | 288 | 288 | 288 | 288 | 288 | |
侧根 Lateral root (a) | 相关系数 | 0.028 | -0.553** | 0.619** | 0.637** | 0.680** |
Pearson correlation | 0.636 | 0.000 | 0.000 | 0.000 | 0.000 | |
n | 287 | 287 | 287 | 287 | 288 | |
侧根 Lateral root (y) | 相关系数 | 0.234** | -0.477** | 0.456** | 0.442** | 0.481** |
Pearson correlation | 0 | 0 | 0 | 0 | 0.000 | |
n | 288 | 288 | 288 | 288 | 288 |
表1 胡杨根系液流速率(Vh)与主要气象因子的相关分析
Table 1 Correlation analysis between root sap velocity of Populus euphraticaand meteorological factors
风速 Wind speed (m·s-1) | 相对湿度 Air relative Humidity (%) | 叶面温度 Leaf temperature (℃) | 地表温度 Surface temperature (℃) | 水汽压亏缺Vapor pressure deficit (kPa) | ||
---|---|---|---|---|---|---|
主根 Tap root | 相关系数 | 0.462** | -0.614** | 0.624** | 0.655** | 0.610** |
Pearson correlation | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
n | 288 | 288 | 288 | 288 | 288 | |
侧根 Lateral root(O) | 相关系数 | 0.112 | -0.648** | 0.653** | 0.646** | 0.692** |
Pearson correlation | 0.057 | 0.000 | 0.000 | 0.000 | 0.000 | |
n | 288 | 288 | 288 | 288 | 288 | |
侧根 Lateral root (S) | 相关系数 | 0.559** | -0.643** | 0.635** | 0.606** | 0.679** |
Pearson correlation | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
n | 288 | 288 | 288 | 288 | 288 | |
侧根 Lateral root (a) | 相关系数 | 0.028 | -0.553** | 0.619** | 0.637** | 0.680** |
Pearson correlation | 0.636 | 0.000 | 0.000 | 0.000 | 0.000 | |
n | 287 | 287 | 287 | 287 | 288 | |
侧根 Lateral root (y) | 相关系数 | 0.234** | -0.477** | 0.456** | 0.442** | 0.481** |
Pearson correlation | 0 | 0 | 0 | 0 | 0.000 | |
n | 288 | 288 | 288 | 288 | 288 |
[1] | Baker JM, van Bavel CHM(1988). Water transfer through cotton plants connecting soil regions of differing water potential. Agronomy Journal, 80,993-997. |
[2] | Brooks JR, Meinzer FC, Brooks JR, Meinzer FC, Coulombe R, Gregg J (2002). Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiology, 22(15-16),1107-1117. |
[3] |
Brooks JR, Meinzer FC, Warren JM, Domec JC, Coulombe R (2006). Hydraulic redistribution in a douglas-fir forest: lessons from system manipulations. Plant, Cell and Environment, 29,138-150.
URL PMID |
[4] |
Burgess SSO, Adams MA, Turner NC, White DA, Ong CK (2001). Tree roots: conduits for deep recharge of soil water. Oecologia, 126,158-165.
DOI URL PMID |
[5] | Burgess SSO, Pate JS, Adams MA, Dawson TE (2000). Seasonal water acquisition and redistribution in the Australian woody phreatophyte, Banksia prionotes. Annals of Botany, 85,215-224. |
[6] |
Burgess SSO, Adams MA, Turner NC, Ong CK (1998). The re-distribution of soil water by tree root systems. Oecologia, 115,306-3l1.
URL PMID |
[7] | Chen YN, Li WH, Chen YP, Zhang HF, Zhuang L (2004). Physiological response of natural plants to the change of groundwater level in the lower reaches of Tarim River, Xinjiang. Progress in Natural Science, 14,975-982. |
[8] | Chen YN, Zilliacus H, Li WH, Zhang HF, Chen YP (2006). Groundwater level affects plant species diversity along the lower reaches of the Tarim River, Western China. Journal of Arid Environments, 66,231-246. |
[9] | Cunningham SC (2004). Stomatal sensitivity to vapour pressure deficit of temperate and tropical evergreen rainforest trees of Australia. Tress-Structure and Function, 18,399-407. |
[10] |
Dawson TE (1993). Hydraulic lift and water use in plants: implications for performance, water balance and plant-plant interactions. Oecologia, 95,565-574.
DOI URL PMID |
[11] |
Dawson TE (1996). Determining water use by trees and forests from isotopic, energy balance, and transpiration analyses: the role of tree size and hydraulic lift. Tree Physiology, 16,263-272.
DOI URL PMID |
[12] |
Hao XM, Chen YN, Li WH (2008). Indicating appropriate groundwater tables for desert river-bank forest at the Tarim River, Xinjiang, China. Environmental Monitoring and Assessment, doi: DOI: 10.1007/s10661-008- 0305-7.
DOI URL PMID |
[13] |
Horton JL, Hart SC (1998). Hydraulic lift: a potentially important ecosystem process. Trends in Ecology and Evolution, 13,232-235.
DOI URL PMID |
[14] | Hultine KR, Scott RL, Cable WL, Goodrich DC, Williams DG (2004). Hydraulic redistribution by a dominant, warm-desert phreatophyte: seasonal patterns and response to precipitation pulses. Functional Ecology, 18,530-538. |
[15] |
Lee JE, Oliveira RS, Dawson TE, Fung I (2005). Root functioning modifies seasonal climate. Proceedings of the National Academy of Sciences of the United States of America, 102,17576-17581.
DOI URL PMID |
[16] | Leffler AJ, Peek MS, Ryel RJ, Ivans CY, Caldwell MM (2005). Hydraulic redistribution through the root systems of senesced plants. Ecology, 86,633-642. |
[17] | Liu MZ (刘美珍), Sun JX (孙建新), Jiang GM (蒋高明), Dong M (董鸣) (2006). Hydraulic redistribution in plant-soil systems. Acta Ecologica Sinca(生态学报), 26,1150-1157. (in Chinese with English abstract) |
[18] | Ludwig F, Dawson TE, Prins HHT, Berendse F, de Kroon H(2004a). Below-ground competition between trees and grasses may overwhelm the facilitative effects of hydraulic lift. Ecology Letters, 7,623-631. |
[19] | Ludwig F, de Kroon H, Berendse F, Prins HHT (2004b). The influence of savanna trees on nutrient, water and light availability and the understory vegetation. Plant Ecology, 170,93-105. |
[20] | Nepstad DC, Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, Silva ED, Stone TA, Trumbore SE, Vieira S (1994). The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature, 372,666-669. |
[21] |
Oliveira RS, Dawson TE, Burgess SSO, Nepstad DC (2005). Hydraulic redistribution in three Amazonian trees. Oecologia, 145,354-363.
DOI URL PMID |
[22] |
Ruan X, Wang Q, Chen YN, Li WH (2007). Physiological response of riparian plants to watering in hyper-arid areas of Tarim River, China. Frontiers of Biology in China, doi: DOI: 10.1007/s 11515-007-0010-x.
DOI URL PMID |
[23] |
Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC (2002). Hydraulic redistribution of soil water by neotropical savanna trees. Tree Physiology, 22,603-612.
DOI URL PMID |
[24] | Warren JM, Meinzer FC, Brooks JR, Domec JC (2005). Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests. Agricultural and Forest Meteorology, 130(1-2),39-58. |
[25] | Xu X, Bland WL (1993). Reverse water-flow in sorghum roots. Agronomy Journal, 85,384-388. |
[26] | Yiotis C, Manetas Y, Psaras GK (2006). Leaf and green stem anatomy of the drought deciduous Mediterranean shrub Calicotome villosa (Poiret) Link. (Leguminosae). Flora, 201,102-107. |
[27] | Zhao P (赵平), Rao XQ (饶兴权), Ma L (马玲), Cai XA (蔡锡安), Zeng XP (曾小平) (2006). Sap flow-scaled stand transpiration and canopy stomatal conductance in an acacia mangium forest. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30,655-665. (in Chinese with English abstract) |
[28] |
Zou CB, Barnes PW, Archer S, McMurtry CR (2005). Soil moisture redistribution as a mechanism of facilitation in Savanna tree shrub clusters. Oecologia, 145,32-40.
DOI URL PMID |
[1] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[2] | 刘洋, 马煦, 邸楠, 曾子航, 付海曼, 李新, 席本野. 毛白杨根系液流与水力再分配特征[J]. 植物生态学报, 2023, 47(1): 123-133. |
[3] | 朱林, 王甜甜, 赵学琳, 祁亚淑, 许兴. 紫花苜蓿和斜茎黄耆水力提升作用及其对伴生植物的效应[J]. 植物生态学报, 2020, 44(7): 752-762. |
[4] | 蔚亮, 李均力, 包安明, 白洁, 黄粤, 刘铁, 沈占锋. 塔里木河下游湿地面积时序变化及对生态输水的响应[J]. 植物生态学报, 2020, 44(6): 616-627. |
[5] | 席本野, 邸楠, 曹治国, 刘金强, 李豆豆, 王烨, 李广德, 段劼, 贾黎明, 张瑞娜. 树木吸收利用深层土壤水的特征与机制: 对人工林培育的启示[J]. 植物生态学报, 2018, 42(9): 885-905. |
[6] | 朱绪超, 袁国富, 邵明安, 易小波, 杜涛. 塔里木河下游河岸带植被的空间结构特征[J]. 植物生态学报, 2015, 39(11): 1053-1061. |
[7] | 袁国富, 张佩, 薛沙沙, 庄伟. 沙丘多枝柽柳灌丛根层土壤含水量变化特征与根系水力提升证据[J]. 植物生态学报, 2012, 36(10): 1033-1042. |
[8] | 马建新, 陈亚宁, 李卫红, 黄湘, 朱成刚, 马晓东. 胡杨液流对地下水埋深变化的响应[J]. 植物生态学报, 2010, 34(8): 915-923. |
[9] | 陈艳瑞, 尹林克. 人工防风固沙林演替中群落组成和优势种群生态位变化特征[J]. 植物生态学报, 2008, 32(5): 1126-1133. |
[10] | 郝兴明, 李卫红, 陈亚宁. 新疆塔里木河下游荒漠河岸(林)植被合理生态水位[J]. 植物生态学报, 2008, 32(4): 838-847. |
[11] | 徐海量, 宋郁东, 王强, 艾合买提. 塔里木河中下游地区不同地下水位对植被的影响[J]. 植物生态学报, 2004, 28(3): 400-405. |
[12] | 季方, 马英杰, 樊自立. 塔里木河冲积平原胡杨林的土壤水分状况研究[J]. 植物生态学报, 2001, 25(1): 17-21. |
[13] | 康绍忠, 张建华, 梁建生. 土壤水分与温度共同作用对植物根系水分传导的效应[J]. 植物生态学报, 1999, 23(3): 211-219. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19