植物生态学报 ›› 2015, Vol. 39 ›› Issue (11): 1053-1061.DOI: 10.17521/cjpe.2015.0102
所属专题: 生态遥感及应用
朱绪超1,2, 袁国富1,*(), 邵明安1,4, 易小波3, 杜涛1,2
出版日期:
2015-11-01
发布日期:
2015-12-02
通讯作者:
袁国富
作者简介:
# 共同第一作者
基金资助:
ZHU Xu-Chao1,2, YUAN Guo-Fu1,*(), SHAO Ming-An1,4, YI Xiao-Bo3, DU Tao1,2
Online:
2015-11-01
Published:
2015-12-02
Contact:
Guo-Fu YUAN
About author:
# Co-first authors
摘要:
揭示我国内陆河流域下游河岸带植被的空间结构特征, 对于了解我国西北干旱区荒漠河岸带植被的空间分布规律、指导荒漠化治理和内陆河水资源管理具有重要意义。该研究基于野外大范围植被调查数据支持下的遥感监督分类方法, 利用Landsat-8 OLI遥感数字图像, 辨识了塔里木河下游柽柳(Tamarix spp.)灌丛、胡杨(Populus euphratica)疏林和芦苇(Phragmites australis)草地3类主要的河岸带植被, 并利用建立的叶面积指数(LAI)遥感反演经验模型反演了研究区柽柳灌丛和胡杨疏林的叶面积指数, 旨在从区域尺度和总体趋势上分析荒漠河岸带植被的空间结构和分布特征。结果表明: 在有详细地物资料的基础上, 遥感监督分类可以作为一种干旱区荒漠河岸带植被分类的有效方法; 遥感分类结果显示塔里木河下游胡杨疏林分布面积约336.4 km2, 柽柳灌丛约为405.3 km2, 胡杨疏林总体更靠近河道, 柽柳灌丛分布范围更广; 河岸带植被LAI整体很低, 柽柳灌丛和胡杨疏林平均LAI值分别为0.253和0.252, LAI小于0.5的植被对应面积分别占柽柳灌丛和胡杨疏林总面积的92.4%和90.1%, 表明了塔里木河下游荒漠河岸植被空间上稀疏分布的特征; 统计结果显示, 河岸带植被结构存在巨大的空间变异性, 其中胡杨疏林比柽柳灌丛的空间变异性更大; 河岸带植被LAI随距河道距离呈现显著负指数分布规律, 在离河道1 km范围内LAI随离河道距离快速下降, 而1 km外区域叶面积指数普遍低于0.1, 表明植被主要分布在河道两侧1 km范围内。整体稀疏的空间分布、显著的空间变异性, 以及由LAI体现的植被盖度随距河道距离的负指数下降规律是荒漠河岸带植被空间结构的3个基本特征。
朱绪超, 袁国富, 邵明安, 易小波, 杜涛. 塔里木河下游河岸带植被的空间结构特征. 植物生态学报, 2015, 39(11): 1053-1061. DOI: 10.17521/cjpe.2015.0102
ZHU Xu-Chao, YUAN Guo-Fu, SHAO Ming-An, YI Xiao-Bo, DU Tao. Spatial pattern of riparian vegetation in desert of the lower Tarim River basin. Chinese Journal of Plant Ecology, 2015, 39(11): 1053-1061. DOI: 10.17521/cjpe.2015.0102
图1 塔里木河下游位置图。虚线框显示本研究采用的三景遥感影像的范围。
Fig. 1 Location of the lower Tarim River basin. The three dashed line boxes shows the scope of the selected three remote sensing images.
类别 Classification | 柽柳灌丛 Tamarix thickets | 胡杨疏林 Populus euphratica woodlands | 沙地 Sand lands | 农田 Farmlands | 水体 Water bodies | 芦苇草地 Phragmites australis grasslands | 总和 Total | 制图精度(%) Mapping accuracy |
---|---|---|---|---|---|---|---|---|
柽柳灌丛 Tamarix thickets | 9 982 | 3 121 | 1 375 | 102 | 48 | 160 | 14 788 | 67.5 |
胡杨疏林 Populus euphratica woodlands | 6 403 | 23 758 | 413 | 30 | 91 | 523 | 31 218 | 76.1 |
沙地 Sand lands | 1 424 | 228 | 38 380 | 0 | 21 | 1 | 40 054 | 95.8 |
农田 Farmlands | 8 | 13 | 0 | 9 881 | 1 | 33 | 9 936 | 99.4 |
水体 Water bodies | 0 | 0 | 0 | 0 | 58 371 | 14 | 58 385 | 99.9 |
芦苇草地 Phragmites australis grasslands | 569 | 1 658 | 23 | 858 | 2 110 | 15 964 | 21 182 | 75.4 |
综合 Total | 18 386 | 28 778 | 40 191 | 10 871 | 60 642 | 16 695 | 175 563 | — |
用户精度 User accuracy (%) | 54.3 | 82.6 | 95.5 | 90.9 | 96.3 | 95.6 | — | — |
总精度 Total accuracy = 89.0%; Kappa系数 Kappa coefficient = 0.86 |
表1 分类类别错分漏分矩阵表
Table 1 Error matrix of wrongly and omissively classified pixels of classification types
类别 Classification | 柽柳灌丛 Tamarix thickets | 胡杨疏林 Populus euphratica woodlands | 沙地 Sand lands | 农田 Farmlands | 水体 Water bodies | 芦苇草地 Phragmites australis grasslands | 总和 Total | 制图精度(%) Mapping accuracy |
---|---|---|---|---|---|---|---|---|
柽柳灌丛 Tamarix thickets | 9 982 | 3 121 | 1 375 | 102 | 48 | 160 | 14 788 | 67.5 |
胡杨疏林 Populus euphratica woodlands | 6 403 | 23 758 | 413 | 30 | 91 | 523 | 31 218 | 76.1 |
沙地 Sand lands | 1 424 | 228 | 38 380 | 0 | 21 | 1 | 40 054 | 95.8 |
农田 Farmlands | 8 | 13 | 0 | 9 881 | 1 | 33 | 9 936 | 99.4 |
水体 Water bodies | 0 | 0 | 0 | 0 | 58 371 | 14 | 58 385 | 99.9 |
芦苇草地 Phragmites australis grasslands | 569 | 1 658 | 23 | 858 | 2 110 | 15 964 | 21 182 | 75.4 |
综合 Total | 18 386 | 28 778 | 40 191 | 10 871 | 60 642 | 16 695 | 175 563 | — |
用户精度 User accuracy (%) | 54.3 | 82.6 | 95.5 | 90.9 | 96.3 | 95.6 | — | — |
总精度 Total accuracy = 89.0%; Kappa系数 Kappa coefficient = 0.86 |
类别 Classification | 像元数 Number of pixels | 面积 Area (km2) |
---|---|---|
柽柳灌丛 Tamarix thickets | 450 293 | 405.3 |
胡杨疏林 Populus euphratica woodlands | 373 813 | 336.4 |
芦苇草地 Phragmites australis grasslands | 316 968 | 285.3 |
水体 Water bodies | 159 345 | 143.4 |
表2 研究区遥感解译柽柳灌丛、胡杨疏林、芦苇草地和水体的面积
Table 2 Areas of Tamarix thickets, Populus euphratica woodlands, Phragmites australis grasslands and water bodies in the study area derived by remote sensing interpretation
类别 Classification | 像元数 Number of pixels | 面积 Area (km2) |
---|---|---|
柽柳灌丛 Tamarix thickets | 450 293 | 405.3 |
胡杨疏林 Populus euphratica woodlands | 373 813 | 336.4 |
芦苇草地 Phragmites australis grasslands | 316 968 | 285.3 |
水体 Water bodies | 159 345 | 143.4 |
图3 塔里木河下游河岸带胡杨疏林和柽柳灌丛叶面积指数空间分布图。
Fig. 3 Spatial distribution of leaf area indices of the Populus euphratica woodlands and the Tamarix thickets in the lower Tarim River basin.
像元数 Number of pixels | 最小值 Minimum | 最大值 Maximum | 众数 Mode | 平均值 Average | 标准偏差 Standard deviation | 变异系数 Coefficient of variation (%) | |
---|---|---|---|---|---|---|---|
柽柳灌丛 Tamarix thickets | 450 293 | 0.005 | 1.653 | 0.182 | 0.253 | 0.158 | 62.3 |
胡杨疏林 Populus euphratica woodlands | 373 813 | 0.007 | 1.849 | 0.102 | 0.252 | 0.178 | 70.5 |
表3 研究区柽柳灌丛和胡杨疏林叶面积指数统计特征值
Table 3 Statistical characteristics of leaf area indices of Tamarix thickets and Populus euphratica woodlands
像元数 Number of pixels | 最小值 Minimum | 最大值 Maximum | 众数 Mode | 平均值 Average | 标准偏差 Standard deviation | 变异系数 Coefficient of variation (%) | |
---|---|---|---|---|---|---|---|
柽柳灌丛 Tamarix thickets | 450 293 | 0.005 | 1.653 | 0.182 | 0.253 | 0.158 | 62.3 |
胡杨疏林 Populus euphratica woodlands | 373 813 | 0.007 | 1.849 | 0.102 | 0.252 | 0.178 | 70.5 |
1 | Bai Y, Xu HL, Tu WX, Ling HB, Fu JY, Wang XY (2013). Population structure and spatial distribution of the Populus euphratica in the mainstream of the Tarim River.Acta Botanica Boreali-Occidentalia Sinica, 33, 1216-1223. |
(in Chinese with English abstract) [白元, 徐海量, 涂文霞, 凌红波, 傅荩仪, 王希义 (2013). 塔里木河干流胡杨种群结构与分布格局研究. 西北植物学报, 33, 1216-1223.] | |
2 | Deng CZ, Zhang XM, Li L, Wu JX, Zhu JT, Liu GJ, Lü CY (2010). Community characteristics and population structure of Populus euphratica Oliv in lower reaches of Tarim River.Journal of Desert Research, 30, 589-595. |
(in Chinese with English abstract) [邓潮洲, 张希明, 李利, 吴俊侠, 朱军涛, 刘国军, 吕朝燕 (2010). 塔里木河下游胡杨群落特征及种群结构分析. 中国沙漠, 30, 589-595.] | |
3 | Guli J, Chen X, Ma ZG, Chang C (2009). Classification of sparse desert riparian forest in extreme arid region.Journal of Desert Research, 29, 1153-1161. |
(in Chinese with English abstract) [古丽·加帕尔, 陈曦, 马忠国, 常存 (2009). 极端干旱区荒漠稀疏河岸林遥感分类研究. 中国沙漠, 29, 1153-1161.] | |
4 | Huang Y, Bao AM, Wang SF, Wang YQ, Duan YB (2013). Eco-environmental change in the lower Tarim River under the influence of intermittent water transport.Acta Geographica Sinica, 68, 1251-1262. |
(in Chinese with English abstract) [黄粤, 包安明, 王士飞, 王永琴, 段远彬 (2013). 间歇性输水影响下的2001-2011年塔里木河下游生态环境变化. 地理学报, 68, 1251-1262.] | |
5 | Liu HJ, Cheng WM, Long E (2007). Landscape changes in a degraded sandy land ecosystem—A case study in the Otindag Sandy Land, Inner Mongolia, China. Journal of Plant Ecology (Chinese Version), 31, 1063-1072. |
(in Chinese with English abstract) [刘海江, 程维明, 龙恩 (2007). 受损沙地生态系统景观变化分析——以内蒙古浑善达克沙地为例. 植物生态学报, 31, 1063-1072.] | |
6 | Liu XH, Xu HL, Ling HB, Bai Y, Fu JY, Zhao XF (2013). Ecological water requirements in the lower reaches of the Tarim River.Journal of Desert Research, 33, 1198-1205. |
(in Chinese with English abstract) [刘新华, 徐海量, 凌红波, 白元, 傅荩仪, 赵新风 (2013). 塔里木河下游生态需水估算. 中国沙漠, 33, 1198-1205.] | |
7 | Okin GS, de Las Heras MM, Saco PM, Throop HL, Vivoni ER, Parsons AJ, Wainwright J, Peters DPC (2015). Connectivity in dryland landscapes: Shifting concepts of spatial interactions.Frontiers in Ecology and the Environment, 13, 20-27. |
8 | Tao H, Gemmer M, Song YD, Jiang T (2008). Ecohydrological responses on water diversion in the lower reaches of the Tarim River, China.Water Resources Research, 44, W08422, doi: 10.1029/2007WR006186. |
9 | Xu H, Li Y, Xu GQ, Zou T (2007). Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation.Plant, Cell & Environment, 30, 399-409. |
10 | Xu HQ, Tang F (2013). Analysis of new characteristics of the first Landsat 8 image and their eco-environmental significance.Acta Ecologica Sinica, 33, 3249-3257. |
(in Chinese with English abstract) [徐涵秋, 唐菲 (2013). 新一代Landsat系列卫星: Landsat 8遥感影像新增特征及其生态环境意义. 生态学报, 33, 3249-3257.] | |
11 | Yuan GF, Luo Y, Shao MA, Zhang P, Zhu XC (2015). |
12 | Evapotranspiration and its main controlling mechanism over the desert riparian forests in the lower Tarim River Basin.Science China Earth Sciences, 58, 1032-1042. |
13 | Yuan GF, Zhang P, Shao MA, Luo Y, Zhu XC (2014). Energy and water exchanges over a riparian Tamarix spp. stand in the lower Tarim River basin under a hyper-arid climate.Agricultural and Forest Meteorology, 194, 144-154. |
14 | Zhang HF (2007). The Research on Plant Community Structure and Dominant Species Pattern in the Lower Reaches of Tarim River. Master degree dissertation, Xinjiang Agricultural University, Ürümqi. 52-60. |
(in Chinese with English abstract). [张绘芳 (2007). 塔里木河下游植物群落结构特征及优势种群格局研究. 硕士学位论文, 新疆农业大学, 乌鲁木齐. 52-60.] | |
15 | Zhang HF, Li X, Gao YQ (2012). Population’s pattern analysis based on high-resolution remote sensing images of Quick Bird.Xinjiang Agricultural Sciences, 49, 2029-2034. |
(in Chinese with English abstract) [张绘芳, 李霞, 高亚琪 (2012). 基于Quick Bird数据的胡杨、柽柳种群格局分析. 新疆农业科学,49, 2029-2034.] | |
16 | Zhang HF, Li X, Wang JG, Yang YJ (2007). The structure characteristic of the plant community in the lower reaches of Tarim River.Ecology and Environment, 16, 1219-1224. |
(in Chinese with English abstract) [张绘芳, 李霞, 王建刚, 杨艳静 (2007). 塔里木河下游植物群落结构特征分析. 生态环境,16, 1219-1224.] | |
17 | Zhang X, Liu XC, Xiao JD, Yang ZH (2005). Study on the EOS/MODIS image processing and its application in monitoring the vegetation change in the lower reaches of the Tarim River.Arid Zone Research, 22, 532-536. |
(in Chinese with English abstract) [张旭, 刘新春, 肖继东, 杨志华 (2005). EOS/MODIS影像处理在塔里木河下游植被监测中的应用. 干旱区研究, 22, 532-536.] | |
18 | Zhang YM, Chen YN, Pan BR (2005). Distribution and floristics of desert plant communities in the lower reaches of Tarim River, southern Xinjiang, People’s Republic of China.Journal of Arid Environments, 63, 772-784. |
19 | Zhao YS (2003). Principle and Method of Analysis of Remote Sensing Application. Science Press, Beijing. 204-208. |
(in Chinese) [赵英时 (2003). 遥感应用分析原理与方法. 科学出版社, 北京. 204-208.] | |
20 | Zhu JT, Yu JJ, Wang P, Wang ZY (2011). Quantitative classification and analysis of relationships between plant communities and their groundwater environment in the Ejin Desert Oasis of China.Chinese Journal of Plant Ecology, 35, 480-489. |
(in Chinese with English abstract) [朱军涛, 于静洁, 王平, 王志勇 (2011). 额济纳荒漠绿洲植物群落的数量分类及其与地下水环境的关系分析. 植物生态学报, 35, 480-489.] | |
21 | Zhu JT, Yu JJ, Wang P, Yu Q, Eamus D (2013). Distribution patterns of groundwater-dependent vegetation species diversity and their relationship to groundwater attributes in northwestern China.Ecohydrology, 6, 191-200. |
22 | Zhu XC, Yuan GF, Yi XB, Du T (2014). Leaf area index inversion of riparian forest in the lower basin of Tarim River based on Landsat 8 OLI images.Arid Land Geography, 37, 1248-1256. |
(in Chinese with English abstract) [朱绪超, 袁国富, 易小波, 杜涛 (2014). 基于Landsat 8 OLI影像的塔里木河下游河岸林叶面积指数反演. 干旱区地理, 37, 1248-1256.] |
[1] | 王丽萍, 乌俊杰, 柴勇, 李家华, 杨昌级, 赵士杰. 高黎贡山中山湿性常绿阔叶林优势种空间分布格局及其关联性[J]. 植物生态学报, 2024, 48(2): 180-191. |
[2] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[3] | 李晓田, 王铁娟, 韩文娟, 张丽, 张慧, 刘晓婷, 刘雅洁. 东阿拉善珍稀濒危植物绵刺种群结构与点格局分析[J]. 植物生态学报, 2023, 47(4): 506-514. |
[4] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[5] | 刘兵兵, 魏建新, 胡天宇, 杨秋丽, 刘小强, 吴发云, 苏艳军, 郭庆华. 卫星遥感监测产品在中国森林生态系统的验证和不确定性分析——基于海量无人机激光雷达数据[J]. 植物生态学报, 2022, 46(10): 1305-1316. |
[6] | 刘超, 李平, 武运涛, 潘胜难, 贾舟, 刘玲莉. 一种基于数码相机图像和群落冠层结构调查的草地地上生物量估算方法[J]. 植物生态学报, 2022, 46(10): 1280-1288. |
[7] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[8] | 黄松宇, 贾昕, 郑甲佳, 杨睿智, 牟钰, 袁和第. 中国典型陆地生态系统波文比特征及影响因素[J]. 植物生态学报, 2021, 45(2): 119-130. |
[9] | 蔚亮, 李均力, 包安明, 白洁, 黄粤, 刘铁, 沈占锋. 塔里木河下游湿地面积时序变化及对生态输水的响应[J]. 植物生态学报, 2020, 44(6): 616-627. |
[10] | 冯思远, 魏亚楠, 王振娟, 于新洋. 基于百度街景图像的行人视角城市街道植被绿化格局分析[J]. 植物生态学报, 2020, 44(3): 205-213. |
[11] | 拓锋, 刘贤德, 刘润红, 赵维俊, 敬文茂, 马剑, 武秀荣, 赵晶忠, 马雪娥. 祁连山大野口流域青海云杉种群空间格局及其关联性[J]. 植物生态学报, 2020, 44(11): 1172-1183. |
[12] | 杨焕莹, 宋建达, 周焘, 金光泽, 姜峰, 刘志理. 林分、土壤及空间因子对谷地云冷杉林叶面积指数空间异质性的影响[J]. 植物生态学报, 2019, 43(4): 342-351. |
[13] | 唐立涛, 刘丹, 罗雪萍, 胡雷, 王长庭. 青海省森林土壤磷储量及其分布格局[J]. 植物生态学报, 2019, 43(12): 1091-1103. |
[14] | 陈怡超, 赵莹, 宋希强, 任明迅. 海南杜鹃在河岸带弯道两侧的空间分布格局和年龄结构差异[J]. 植物生态学报, 2018, 42(8): 841-849. |
[15] | 刘海跃, 李欣玫, 张琳琳, 王姣姣, 贺学礼. 西北荒漠带花棒根际丛枝菌根真菌生态地理分布[J]. 植物生态学报, 2018, 42(2): 252-260. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19