植物生态学报 ›› 2012, Vol. 36 ›› Issue (9): 956-964.DOI: 10.3724/SP.J.1258.2012.00956
董满宇1,2,3, 江源1,2,*(), 杨浩春2, 王明昌2, 张文涛2, 郭媛媛2
收稿日期:
2012-04-23
接受日期:
2012-06-19
出版日期:
2012-04-23
发布日期:
2012-09-06
通讯作者:
江源
作者简介:
(E-mail: jiangy@bnu.edu.cn)
DONG Man-Yu1,2,3, JIANG Yuan1,2,*(), YANG Hao-Chun2, WANG Ming-Chang2, ZHANG Wen-Tao2, GUO Yuan-Yuan2
Received:
2012-04-23
Accepted:
2012-06-19
Online:
2012-04-23
Published:
2012-09-06
Contact:
JIANG Yuan
摘要:
高山林线作为树木分布的高度上限, 是全球范围最重要的植被过渡带之一, 其树木生长显著受到外界极端环境条件的影响。利用点状树木径向变化记录仪于2009年5-9月, 对山西省芦芽山林线组成树种白杄(Picea meyeri)生长季内树木径向生长进行了持续的动态监测。结果表明: 白杄茎干日变化主要受到树木蒸腾作用日变化的影响, 茎干呈现出白天脱水收缩与夜间吸水膨胀的循环变化; 生长季白杄径向生长可划分为3个不同的生长时段: 1)茎干水分恢复时段, 2)茎干快速生长时段, 3)茎干脱水收缩时段。在茎干水分恢复时段, 白杄茎干径向累积变化主要受到土壤含水量变化的影响。土壤温度是茎干快速生长时段影响茎干径向生长的主导环境因子, 同时它也影响着白杄茎干径向生长的开始。在茎干脱水收缩时段, 土壤温度、土壤含水量是影响茎干径向累积变化的主要环境因子。白杄径向生长最大速度出现在6月末, 其主要受到光周期(即白昼长短)影响, 是对林线处极端环境的一种适应。
董满宇, 江源, 杨浩春, 王明昌, 张文涛, 郭媛媛. 芦芽山林线白杄生长季径向生长动态. 植物生态学报, 2012, 36(9): 956-964. DOI: 10.3724/SP.J.1258.2012.00956
DONG Man-Yu, JIANG Yuan, YANG Hao-Chun, WANG Ming-Chang, ZHANG Wen-Tao, GUO Yuan-Yuan. Dynamics of stem radial growth of Picea meyeri during the growing season at the treeline of Luya Mountain, China. Chinese Journal of Plant Ecology, 2012, 36(9): 956-964. DOI: 10.3724/SP.J.1258.2012.00956
样树编号 Sample tree number | 树高 Tree height (m) | 胸径 Diameter at breast height (cm) | 冠幅 Crown dia- meter (m) |
---|---|---|---|
1# | 6.0 | 30 | 3.7 |
2# | 4.5 | 14 | 1.5 |
3# | 4.0 | 18 | 1.6 |
4# | 6.0 | 25 | 3.7 |
表1 4株白杄样树的基本特征
Table 1 Essential characteristics of four Picea meyeri sample trees
样树编号 Sample tree number | 树高 Tree height (m) | 胸径 Diameter at breast height (cm) | 冠幅 Crown dia- meter (m) |
---|---|---|---|
1# | 6.0 | 30 | 3.7 |
2# | 4.5 | 14 | 1.5 |
3# | 4.0 | 18 | 1.6 |
4# | 6.0 | 25 | 3.7 |
图3 生长季白杄茎干径向累积变化。 A, 茎干水分恢复时段; B, 茎干快速生长时段; C, 茎干脱水收缩时段。
Fig. 3 Cumulative radial variation of Picea meyeri during the growing season. A, B, and C indicate the periods of stem rehydration, stem rapid growth, and stem dehydration contraction, respectively.
图4 生长季白杄茎干径向累积变化(A)及生长速度(B)拟合。
Fig. 4 Curve fittings for cumulative radial variation (A) and radial growth rate (B) of Picea meyeri during the growing season.
生长时段 Growth period | 空气相对湿度 Air relative humidity | 气温 Air temperature | 降水量 Precipitation | 土壤温度 Soil temperature | 土壤含水量 Soil water content | 水汽压差 Vapour pressure deficit | |
---|---|---|---|---|---|---|---|
茎干水分恢复 Stem rehydration | Pearson相关系数 Pearson correlation coefficient | 0.800** | 0.576 | 0.167 | 0.884*** | 0.949*** | -0.630* |
通径系数 Path coefficient | 0.045 | 0.412 | 0.046 | -0.045 | 0.663* | -0.201 | |
茎干快速生长 Stem rapid growth | Pearson相关系数 Pearson correlation coefficient | 0.498*** | 0.401*** | 0.336*** | 0.918*** | 0.312*** | -0.376*** |
通径系数 Path coefficient | -0.016 | -0.014 | 0.071** | 0.891*** | 0.254*** | -0.018 | |
茎干脱水收缩 Stem dehydration contraction | Pearson相关系数 Pearson correlation coefficient | 0.106 | 0.033 | 0.456** | 0.739*** | 0.707*** | -0.144 |
通径系数 Path coefficient | -0.775 | -0.050 | -0.008 | 0.818*** | 0.368** | -0.801 |
表2 生长季不同时段白杄茎干径向累积变化与环境因子的Pearson相关系数和通径系数
Table 2 Pearson correlation coefficients and path coefficients between cumulative radial variation of Picea meyeri and environmental factors in different periods during the growing season
生长时段 Growth period | 空气相对湿度 Air relative humidity | 气温 Air temperature | 降水量 Precipitation | 土壤温度 Soil temperature | 土壤含水量 Soil water content | 水汽压差 Vapour pressure deficit | |
---|---|---|---|---|---|---|---|
茎干水分恢复 Stem rehydration | Pearson相关系数 Pearson correlation coefficient | 0.800** | 0.576 | 0.167 | 0.884*** | 0.949*** | -0.630* |
通径系数 Path coefficient | 0.045 | 0.412 | 0.046 | -0.045 | 0.663* | -0.201 | |
茎干快速生长 Stem rapid growth | Pearson相关系数 Pearson correlation coefficient | 0.498*** | 0.401*** | 0.336*** | 0.918*** | 0.312*** | -0.376*** |
通径系数 Path coefficient | -0.016 | -0.014 | 0.071** | 0.891*** | 0.254*** | -0.018 | |
茎干脱水收缩 Stem dehydration contraction | Pearson相关系数 Pearson correlation coefficient | 0.106 | 0.033 | 0.456** | 0.739*** | 0.707*** | -0.144 |
通径系数 Path coefficient | -0.775 | -0.050 | -0.008 | 0.818*** | 0.368** | -0.801 |
1 | Anfodillo T, Rento S, Carraro V, Furlanetto L, Urbinati C, Carrer M ( 1998). Tree water relations and climatic variations at the alpine timberline: seasonal changes of sap flux and xylem water potential in Larix decidua Miller, Picea abies( L.) Karst. and Pinus cembra L. Annals of Forest Science, 55, 159-172. |
2 | Baig MN, Tranquillini W ( 1980). The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in dessication damage at the alpine treeline. Oecologia, 47, 252-256. |
3 | Biondi F, Hartsough P ( 2010). Using automated point dendrometers to analyze tropical treeline stem growth at Nevado de Colima, Mexico. Sensors, 10, 5827-5844. |
4 | Bouriaud O, Leban JM, Bert D, Deleuze C ( 2005). Intra- annual variations in climate influence growth and wood density of Norway spruce. Tree Physiology, 25, 651-660. |
5 | Cai QF, Liu Y ( 2007). January to August temperature variability since 1776 inferred from tree-ring width of Pinus tabulaeformis in Helan Mountain. Journal of Geographical Sciences, 17, 293-303. |
6 | Chang JF ( 常锦峰), Wang XP ( 王襄平), Zhang XP ( 张新平), Lin X ( 林鑫 ) ( 2009). Alpine timberline dynamics in relation to climatic variability in the northern Daxing’an mountains. Journal of Mountain Science (山地学报), 27, 703-711. (in Chinese with English abstract) |
7 | Dai JH ( 戴君虎), Shao XM ( 邵雪梅), Cui HT ( 崔海亭), Ge QS ( 葛全胜), Liu HY ( 刘鸿雁), Tang ZY ( 唐志尧 ) ( 2003). Reconstruction of past eco-climate by tree-ring width index of Larix chinensis on Mt. Taibai. Quaternary Sciences (第四纪研究), 23, 428-435. (in Chinese with English abstract) |
8 | Dang HS, Jiang MX, Zhang QF, Zhang YJ ( 2007). Growth responses of subalpine fir ( Abies fargesii) to climate variability in the Qinling Mountain, China. Forest Ecology and Management, 240, 143-150. |
9 | Deslauriers A, Morin H ( 2005). Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees, 19, 402-408. |
10 | Deslauriers A, Morin H, Urbinati C, Carrer M ( 2003). Daily weather response of balsam fir (Abies balsamea(L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees, 17, 477-484. |
11 | Deslauriers A, Rossi S, Anfodillo T ( 2007). Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia, 25, 113-124. |
12 | Downes G, Beadle C, Worledge D ( 1999). Daily stem growth patterns in irrigated Eucalyptus globulus and E. Nitens in relation to climate. Trees, 14, 102-111. |
13 | Drew DM, Downes GM ( 2009). The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia, 27, 159-172. |
14 | Duan AG ( 段爱国), Zhang JG ( 张建国), Tong SZ ( 童书振 ) ( 2003). Application of six growth equations on stands diameter structure of Chinese fir plantations. Forest Research (林业科学研究), 16, 423-429. (in Chinese with English abstract) |
15 | Fan ZX, Bräuning A, Cao KF, Zhu SD ( 2009). Growth- climate responses of high-elevation conifers in the central Hengduan Mountains, southwestern China. Forest Ecology and Management, 258, 306-313. |
16 | Grace J, James J (1993). Physiology of trees at treeline. In: Alden J, Mastrantonio JL, Odum S eds. Forest Development in Cold Climates. Plenum Press, New York. |
17 | Gruber A, Zimmermann J, Wieser G, Oberhuber W ( 2009). Effects of climate variables on intra-annual stem radial increment in Pinus cembra( L.) along the alpine treeline ecotone. Annals of Forest Science, 66, 503-513. |
18 | Havranek WM ( 1972). Über die bedeutung der bodentemperatur fürdie photosynthese und die transpiration junger forstpflanzen und für die stoffproduktion an der waldgrenze. Angewandte Botanik, 46, 101-116. |
19 | Ježík M, Blaženec M, Střelcová K, Ditmarová L ( 2011). The impact of the 2003-2008 weather variability on intra-annual stem diameter changes of beech trees at a submontane site in central Slovakia. Dendrochronologia, 29, 227-235. |
20 |
Jiang Y ( 江源), Yang YG ( 杨艳刚), Dong MY ( 董满宇), Zhang WT ( 张文涛), Ren FP ( 任斐鹏 ) ( 2009). Stem radius growth of Picea meyeri and Larix principis- rupprechtii nearby the tree-line of Luya Mountain. Chinese Journal of Applied Ecology (应用生态学报), 20, 1271-1277. (in Chinese with English abstract)
URL PMID |
21 | Kang YX ( 康永祥), Liu JH ( 刘婧辉), Sun FF ( 孙菲菲), Dai SF ( 代栓发), He XJ ( 何小军 ) ( 2010). Responses of tree ring width of Larix chinensis in the regions of alpine timberline in Taibai Mountain to climate change. Journal of Northeast Forestry University (东北林业大学学报), 38, 11-13. (in Chinese with English abstract) |
22 | Kellomäki S, Wang KY ( 2001). Growth and resource use of birch seedlings under elevated carbon dioxide and temperature. Annals of Botany, 87, 669-682. |
23 | Körner C ( 1998). A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459. |
24 | Körner C ( 1999). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer, Berlin. |
25 | Körner C, Paulsen J ( 2004). A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31, 713-732. |
26 | Li CY, Junttila O, Ernsten A, Heino P, Palva ET ( 2003). Photoperiodic control of growth, cold acclimation and dormancy development in silver birch ( Betula pendula) ecotypes. Physiologia Plantarum, 117, 206-212. |
27 | Li MC ( 李明财), Luo TX ( 罗天祥), Zhu JJ ( 朱教君), Kong GQ ( 孔高强 ) ( 2008). Advances in formation mechanism of alpine timberline and associated physio- ecological characteristics of plants. Acta Ecologica Sinica (生态学报), 28, 5583-5591. (in Chinese with English abstract) |
28 | Ljung K, Bhalerao RP, Sandberg G ( 2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. The Plant Journal, 28, 465-474. |
29 | Ma JM ( 马姜明), Liu SR ( 刘世荣), Shi ZM ( 史作民), Zhang YD ( 张远东), Miao N ( 缪宁 ) ( 2009). Natural regeneration of Abies faxoniana along restoration gradients of subalpine dark coniferous forest in western Sichuan, China. Chinese Journal of Plant Ecology (植物生态学报), 33, 646-657. (in Chinese with English abstract) |
30 | Mäkinen H, Seo JW, Nöjd P, Schmitt U, Jalkanen R ( 2008). Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. European Journal of Forest Research, 127, 235-245. |
31 | Partanen J, Beuker E ( 1999). Effects of photoperiod and thermal time on the growth rhythm of Pinus sylvestris seedlings. Scadiavian Journal of Forest Research, 14, 487-497. |
32 | Peng JF ( 彭剑峰), Gou XH ( 勾晓华), Chen FH ( 陈发虎), Liu PX ( 刘普幸), Zhang Y ( 张永), Fang KY ( 方克艳 ) ( 2006). Climatic response of tree-ring width from alpine treeline in the middle of Anyemaqen Mountains, northeastern Tibetan Plateau, China. Journal of Beijing Forestry University (北京林业大学学报), 28(Suppl. 2), 57-63. (in Chinese with English abstract) |
33 | Pérez CA, Carmona MR, Aravena JC, Fariña JM, Armesto JJ ( 2009). Environmental controls and patterns of cumulative radial increment of evergreen tree species in montane, temperate rainforests of Chiloé Island, southern Chile. Austral Ecology, 34, 259-271. |
34 | Rossi S, Deslauriers A, Anfodillo T, Carraro V ( 2007). Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia, 152, 1-12. |
35 | Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M ( 2006). Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytologist, 170, 301-310. |
36 | Rossi S, Dealauriers A, Morin H ( 2003). Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia, 21, 33-39. |
37 | Sevanto S, Suni T, Pumpanen J, Grönholm T, Kolari P, Nikinmaa E, Hari P, Vesala T ( 2006). Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiology, 26, 749-757. |
38 | Strand M, Lundmark T, Söderbergh I, Mellander PE ( 2002). Impacts of seasonal air and soil temperatures on photosynthesis in Scots pine trees. Tree Physiology, 22, 839-847. |
39 | Tardif J, Flannigan M, Bergeron Y ( 2001). An analysis of the daily radial activity of 7 boreal tree species, Northwestern Quebec. Environmental Monitoring and Assessment, 67, 141-160. |
40 | Turcotte A, Morin H, Krause C, Deslauriers A, Thibeault- Martel M ( 2009). The timing of spring rehydration and its relation with the onset of wood formation in black spruce. Agricultural and Forest Meteorology, 149, 1403-1409. |
41 | Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP ( 1999). Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature, 400, 149-151. |
42 | van Gardingen PR, Grace J, Jeffree CE ( 1991). Abrasive damage by wind to the needle surfaces of Picea sitchensis( Bong.) and Carr. and Pinus sylvestris L. Plant, Cell & Environment, 14, 185-193. |
43 | Wang T, Zhang QB, Ma KP ( 2006). Treeline dynamics in relation to climatic variability in the central Tianshan Mountains, northwestern China. Global Ecology and Biogeography, 15, 406-415. |
44 | Wu F ( 吴芳), Chen YM ( 陈云明), Yu ZH ( 于占辉 ) ( 2010). Growing season sap-flow dynamics of Robinia pseudoacacia plantation in the semi-arid region of Loess Plateau, China. Chinese Journal of Plant Ecology (植物生态学报), 34, 469-476. (in Chinese with English abstract) |
45 | Yang YG ( 杨艳刚), Zhang WT ( 张文涛), Ren FP ( 任斐鹏), Wang GR ( 王耿锐), Dong MY ( 董满宇 ) ( 2009). Stem radius growth features of Picea meyeri and its relationship with environmental factors at the treeline of Luya Mountain. Acta Ecologica Sinica (生态学报), 29, 6793-6804. (in Chinese with English abstract) |
46 | Yu DP, Gu HY, Wang JD, Wang QL, Dai LM ( 2005). Relationships of climate change and tree ring of Betula ermanii treeline forest in Changbai Mountain. Journal of Forestry Research, 16, 187-192. |
47 | Zahner R ( 1963). Internal moisture stress and wood formation in conifers. Forest Products Journal, 13, 240-247. |
48 | Zhang LJ ( 张立杰), Liu H ( 刘鹄 ) ( 2012). Response of Picea crassifolia population to climate change at the treeline ecotones in Qilian Mountains. Scientia Silvae Sinicae (林业科学), 48, 18-21. (in Chinese with English abstract) |
49 | Zhang WT, Jiang Y, Dong MY, Kang MY, Yang HC ( 2012). Relationship between the radial growth of Picea meyeri and climate along elevation of the Luyashan Mountain in North-Central China. Forest Ecology and Management, 265, 142-149. |
50 | Zweifel R, Häsler R ( 2001). Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiology, 21, 561-569. |
51 | Zweifel R, Zimmermann L, Zeugin F, Newbery DM ( 2006). Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of Experimental Botany, 57, 1445-1459. |
[1] | 许泽海 赵燕东. 生长季五角枫茎干水分含量序列特征及其影响因素解译[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[3] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[4] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[5] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[6] | 季倩雯, 郑成洋, 张磊, 曾发旭. 河北塞罕坝樟子松径向生长动态变化及其与气象因子的关系[J]. 植物生态学报, 2020, 44(3): 257-265. |
[7] | 康剑, 梁寒雪, 蒋少伟, 朱火星, 周鹏, 黄建国. 竞争和气候对新疆阿尔泰山西伯利亚五针松树木径向生长的影响[J]. 植物生态学报, 2020, 44(12): 1195-1202. |
[8] | 宋文琦, 朱良军, 张旭, 王晓春, 张远东. 青藏高原东北部不同降水梯度下高山林线祁连圆柏径向生长与气候关系的比较[J]. 植物生态学报, 2018, 42(1): 66-77. |
[9] | 郭霞丽, 余碧云, 梁寒雪, 黄建国. 结合微树芯方法的树木生长生理生态学研究进展[J]. 植物生态学报, 2017, 41(7): 795-804. |
[10] | 常永兴, 陈振举, 张先亮, 白学平, 赵学鹏, 李俊霞, 陆旭. 气候变暖下大兴安岭落叶松径向生长对温度的响应[J]. 植物生态学报, 2017, 41(3): 279-289. |
[11] | 孙宝玉, 韩广轩, 陈亮, 初小静, 邢庆会, 吴立新, 朱书玉. 模拟增温对黄河三角洲滨海湿地非生长季土壤呼吸的影响[J]. 植物生态学报, 2016, 40(11): 1111-1123. |
[12] | 于健, 徐倩倩, 刘文慧, 罗春旺, 杨君珑, 李俊清, 刘琪璟. 长白山东坡不同海拔长白落叶松径向生长对气候变化的响应[J]. 植物生态学报, 2016, 40(1): 24-35. |
[13] | 米兆荣, 陈立同, 张振华, 贺金生. 基于年降水、生长季降水和生长季蒸散的高寒草地水分利用效率[J]. 植物生态学报, 2015, 39(7): 649-660. |
[14] | 王彪, 江源, 王明昌, 董满宇, 章异平. 芦芽山不同海拔白杄非结构性碳水化合物含量动态[J]. 植物生态学报, 2015, 39(7): 746-752. |
[15] | 刘娟, 邓徐, 吕利新. 西藏八宿川西云杉树线过渡区树木生长与气候关系的一致性[J]. 植物生态学报, 2015, 39(5): 442-452. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19