植物生态学报 ›› 2015, Vol. 39 ›› Issue (5): 442-452.DOI: 10.17521/cjpe.2015.0043
收稿日期:
2015-01-05
接受日期:
2015-03-31
出版日期:
2015-05-01
发布日期:
2015-05-26
作者简介:
*作者简介:E-mail:
基金资助:
LIU Juan1,2, DENG Xu1,2, LÜ Li-Xin1,*()
Received:
2015-01-05
Accepted:
2015-03-31
Online:
2015-05-01
Published:
2015-05-26
Contact:
Li-Xin LÜ
About author:
# Co-first authors
摘要:
与传统方法相比, 利用树木年轮学方法研究树线过渡区树木生长温度敏感性高低的问题更注重比较树木个体间的生长情况, 从各个树轮序列间的生长一致性程度和树轮序列对气候因素(气温、降水)的响应一致性程度可探讨树线过渡区树木生长的温度敏感性。为了认识高山树线过渡区内树木生长的温度敏感性问题, 选择西藏昌都地区八宿县的一条川西云杉树线过渡区为研究对象, 比较了过渡区内树木个体间的生长一致性, 分析了树木生长与气候因素的相关性及其在个体间的异同。结果显示: 树线过渡区内树轮生长在个体间的一致性较低, 树轮生长与气温的关系在树木个体间的一致性也较低, 而树轮生长与当年4-9月降水的关系相对较强。西藏八宿树线过渡区属于干旱区, 相对于气温而言, 降水对树木生长的影响更大。此外, 小生境的异质性及干扰事件的发生也有可能降低树木对温度的敏感性。在全球变暖及极端气候事件增加的背景下, 树木生长的温度敏感性被高估可能会导致对树线过渡区位置及树线过渡区内群落生产力等的预测产生偏差, 这一问题应该在区域生态模拟研究和相关林业经营与管理上得到重视。
刘娟, 邓徐, 吕利新. 西藏八宿川西云杉树线过渡区树木生长与气候关系的一致性. 植物生态学报, 2015, 39(5): 442-452. DOI: 10.17521/cjpe.2015.0043
LIU Juan,DENG Xu,LÜ Li-Xin. Relationship of tree growth and climatic factors at treeline of Picea likiangensis var. balfouriana forest in Basu County, Xizang. Chinese Journal of Plant Ecology, 2015, 39(5): 442-452. DOI: 10.17521/cjpe.2015.0043
图1 西藏昌都地区八宿县邦达镇克色村川西云杉树线过渡区树木分布图。圆圈的大小代表胸径的相对大小, 数字为树木编号。
Fig. 1 Diagram of Picea likiangensis var. balfouriana diameter distribution at treeline ecotone in Kese Village, Bangda Town, Basu County, Xizang. The size of each circle is proportional to diameter at breast height (DBH) of the corresponding tree. The number represents the corresponding tree.
图2 西藏八宿县邦达镇克色村川西云杉树线过渡区树木年龄结构图。
Fig. 2 Age classes of Picea likiangensis var. balfouriana forest at treeline ecotone in Kese Village, Bangda Town, Basu County, Xizang.
图4 西藏八宿县邦达镇克色村川西云杉树线过渡区树木树轮序列间的相关性。数字代表树木编号。●表示正值; ○表示负值。有阴影的方格表示Pearson显著相关(p < 0.05)。
Fig. 4 Correlation coefficients among tree-ring sequences of Picea likiangensis var. balfouriana at treeline ecotone in Kese Village, Bangda Town, Basu County, Xizang. The number represents the corresponding tree. ●, positive value; ○, negative value. The shaded background denotes significance at p < 0.05 level of Pearson correlation.
图5 西藏八宿县邦达镇克色村川西云杉树线过渡区树轮与气候因素的相关性。数字代表树木编号。●, 正值; ○, 负值。底色有阴影的方格表示Pearson显著相关(p < 0.05)。月份前的p表示树轮生长的前一年的月份。
Fig. 5 Correlation between climatic factors (temperature and precipitation) and tree-ring sequences of Picea likiangensis var. balfouriana at treeline ecotone in Kese Village, Bangda Town, Basu County, Xizang. Each number represents the corresponding tree.●, positive value; ○, negative value. The shaded background denotes significance at p < 0.05 level of Pearson correlation. The prefix ‘p’ indicates months in the preceding year of tree ring formation.
图6 西藏八宿县邦达镇克色村川西云杉树线过渡区树木生长-气候(气温和降水量)关系的聚类分析。
Fig. 6 Cluster dendrogram of tree growth-climate (air temperature and precipitation) relationships of Picea likiangensis var. balfouriana at treeline ecotone in Kese Village, Bangda Town, Basu County, Xizang.
图7 西藏昌都地区八宿县邦达镇克色村川西云杉树线过渡区不同气候响应类型树木的海拔位置、胸径、树龄、树轮宽度的比较。
Fig. 7 Comparisons of altitude gradient, diameter at breast height, tree age, tree-ring widths among cluster groups of of Picea likiangensis var. balfouriana at treeline ecotone in Kese Village, Bangda Town, Basu County, Xizang.
1 | Barbeito I, Dawes MA, Rixen C, Senn J, Bebi P (2012). Factors driving mortality and growth at treeline: A 30-year experiment of 92000 conifers.Ecology, 93, 389-401. |
2 | Bräuning A (1994). Dendrochronology for the last 1400 years in eastern Tibet.GeoJournal, 34, 75-95. |
3 | Bräuning A (2001). Climate history of the Tibetan Plateau during the last 1000 years derived from a network of Juniper chronologies.Dendrochronologia, 19, 127-137. |
4 | Bräuning A, Mantwill B (2004). Summer temperature and summer monsoon history on the Tibetan Plateau during the last 400 years recorded by tree rings.Geophysical Research Letters, 31, L24205. |
5 | Briffa KR, Melvin TM (2011). A closer look at regional curve standardization of tree-ring records: Justification of the need, a warning of some pitfalls, and suggested improvements in its application. In: Hughes MK, Diaz HF, Swetnam TW eds. Dendroclimatology: Progress and Prospects. Springer, Dordrecht, the Netherlands. 113-145. |
6 | Carrer M (2011). Individualistic and time-varying tree-ring growth to climate sensitivity.PLoS ONE, 6, e22813. |
7 | Cook ER, Briffa KR, Jones PD (1994). Spatial regression methods in dendroclimatology: A review and comparison of two techniques.International Journal of Climatology, 14, 379-402. |
8 | Cook ER, Kairiukstis LA (1990). Methods of Dendrochronology. Springer, New York. |
9 | Cullen LE, Stewart GH, Duncan RP, Palmer JG (2001). Disturbance and climate warming influences on New Zealand Nothofagus tree-line population dynamics.Journal of Ecology, 89, 1061-1071. |
10 | Fan ZX, Bräuning A, Cao KF, Zhu SD (2009). Growth-climate responses of high-elevation conifers in the central Hengduan Mountains, southwestern China.Forest Ecology and Management, 258, 306-313. |
11 | Fang KY, Gou XH, Chen FH, Peng JF, D’Arrigo R, Wright W, Li MH (2009). Response of regional tree-line forests to climate change: Evidence from the northeastern Tibetan Plateau.Trees-Structure and Function, 23, 1321-1329. |
12 | Firm D, Nagel TA, Diaci J (2009). Disturbance history and dynamics of an old-growth mixed species mountain forest in the Slovenian Alps.Forest Ecology and Management, 257, 1893-1901. |
13 | Fritts HC (1976). Tree Rings and Climate. Academic Press, London. |
14 | Gou XH, Chen FH, Jacoby G, Cook E, Yang MX, Peng JF, Zhang Y (2007). Rapid tree growth with respect to the last 400 years in response to climate warming, northeastern Tibetan Plateau.International Journal of Climatology, 27, 1497-1503. |
15 | Gou XH, Chen FH, Yang MX, Gordon J, Fang KY, Tian QH, Zhang Y (2008). Asymmetric variability between maximum and minimum temperatures in Northeastern Tibetan Plateau: Evidence from tree rings. Science in China Series D (Earth Sciences), 51, 41-55. |
16 | Hadley JL, Amundson RG, Laurence JA, Kohut RJ (2011). Red spruce bud mortality at Whiteface Mountain, New York.Canadian Journal of Botany, 71, 827-833. |
17 | Holmes RL (1983). Computer-assisted quality control in tree-ring dating and measurement.Tree-Ring Bulletin, 44, 69-75. |
18 | Holtmeier FK (1994). Ecological aspects of climatically-caused timberline fluctuation. In: Beniston M ed. Mountain Environment in Changing Climates. Rautledge Press, London. 220-233. |
19 | Holtmeier FK (2009). Mountain Timberlines: Ecology, Patchiness, and Dynamics. Springer, New York. |
20 | Holtmeier FK, Broll G (2012). Landform influences on treeline patchiness and dynamics in a changing climate.Physical Geography, 33, 403-437. |
21 | Krajina VJ (1969). Ecology of forest trees in British Columbia. In: Krajina VJ ed. Ecology of Western North America. Vol. 2. Department of Biology, University of British Columbia, Vancouver. 1-146. |
22 | Kullman L (2002). Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes.Journal of Ecology, 90, 68-77. |
23 | Körner C (1999). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer, New York. |
24 | Körner C (2007). The use of ‘altitude’ in ecological research.Trends in Ecology & Evolution, 22, 569-574. |
25 | Körner C, Paulsen J (2004). A world-wide study of high altitude treeline temperatures.Journal of Biogeography, 31, 713-732. |
26 | Körner C (2012). Alpine Treelines―Functional Ecology of the Global High Elevation Tree Limits. Springer, Basel. |
27 | Lazarus BE, Schaberg PG, DeHayes DH, Hawley GJ (2004). Severe red spruce winter injury in 2003 creates unusual ecological event in the northeastern United States.Canadian Journal of Forest Research, 34, 1784-1788. |
28 | Liang EY, Eckstein D (2009). Dendrochronological potential of the alpine shrub Rhododendron nivale on the south-eastern Tibetan Plateau.Annals of Botany, 104, 665-670. |
29 | Liang EY, Shao XM, Eckstein D, Huang L, Liu XH (2006). Topography- and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau.Forest Ecology and Management, 236, 268-277. |
30 | Liang EY, Shao XM, Xu Y (2009). Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau.Theoretical and Applied Climatology, 98, 9-18. |
31 | Liang EY, Wang YF, Xu Y, Liu B, Shao XM (2010). Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau.Trees, 24, 363-373. |
32 | Liang EY, Wang YF, Eckstein D, Luo TX (2011). Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming.New Phytologist, 190, 760-769. |
33 | Liu B, Liang EY, Zhu LP (2011). Microclimatic conditions for Juniperus saltuaria treeline in the Sygera Mountains, Southeastern Tibetan Plateau.Mountain Research and Development, 31, 45-53. |
34 | Liu LS, Shao XM, Liang EY (2006). Climate signals from tree ring chronologies of the upper and lower treelines in the Dulan Region of the Northeastern Qinghai-Tibetan Plateau.Journal of Integrative Plant Biology, 48, 278-285. |
35 | Lü LX (2011). Alpine Timberline Dynamics and Its Relationships to Climate Change on the Qinghai-Xizang Plateau. PhD dissertation, Graduate University of Chinese Academy of Sciences, Beijing. 55-56.(in Chinese with English abstract) |
[吕利新 (2011). 青藏高原高山林线动态及其与气候变化的关系. 博士学位论文, 中国科学院研究生院, 北京. 55-56.] | |
36 | Lv LX, Zhang QB (2012). Asynchronous recruitment history of Abies spectabilis along an altitudinal gradient in the Mt. Everest region.Journal of Plant Ecology, 5, 147-156. |
37 | Ménot G, Burns SJ (2001). Carbon isotopes in ombrogenic peat bog plants as climatic indicators: Calibration from an altitudinal transect in Switzerland.Organic Geochemistry, 32, 233-245. |
38 | Miehe G, Miehe S, Vogel J, Co S, La D (2007). Highest treeline in the northern hemisphere found in Southern Tibet.Mountain Research and Development, 27, 169-173. |
39 | Misson L, Rathgeber C, Guiot J (2004). Dendroecological analysis of climatic effects on Quercus petraea and Pinus halepensis radial growth using the process-based MAIDEN model.Canadian Journal of Forest Research, 34, 888-898. |
40 | Morales MS, Villalba R, Grau HR, Paolini L (2004). Rainfall- controlled tree growth in high-elevation subtropical treelines.Ecology, 85, 3080-3089. |
41 | Oberhuber W (2004). Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone.Tree Physiology, 24, 291-301. |
42 | Peart DR, Poage NJ, Jones MB (1992). Winter injury to subalpine red spruce: Influence of prior vigor and effects on subsequent growth.Canadian Journal of Forest Research, 22, 888-892. |
43 | Peters DPC (2002). Plant species dominance at a grassland-shrubland ecotone: An individual-based gap dynamics model of herbaceous and woody species.Ecological Modelling, 152, 5-32. |
44 | Peterson DW, Peterson DL, Ettl GJ (2002). Growth responses of subalpine fir to climatic variability in the Pacific Northwest.Canadian Journal of Forest Research, 32, 1503-1517. |
45 | Qinghai-Xizang Plateau Comprehensive Scientific Expedition of Chinese Academy of Sciences (1985). Xizang Forests. Science Press, Beijing. 34-71.(in Chinese) |
[中国科学院青藏高原综合科学考察队 (1985). 西藏森林. 科学出版社, 北京. 34-71.] | |
46 | Rochefort RM, Peterson DL (1996). Temporal and spatial distribution of trees in subalpine meadows of Mount Rainier National Park, Washington, U.S.A.Arctic and Alpine Research, 28, 52-59. |
47 | Scherrer D, Körner C (2010). Infra-red thermometry of alpine landscapes challenges climatic warming projections.Global Change Biology, 16, 2602-2613. |
48 | Scherrer D, Körner C (2011). Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming.Journal of Biogeography, 38, 406-416. |
49 | Scuderi LA (1987). Late-Holocene upper timberline variation in the southern Sierra Nevada.Nature, 325, 242-244. |
50 | Seki T, Kajimoto T, Sugita H, Daimaru H, Ikeda S, Okamoto T (2005). Mechanical damage on Abies mariesii trees buried below the snowpack.Arctic Antarctic and Alpine Research, 37, 34-40. |
51 | Smith WK, Germino MJ, Johnson DM, Reinhardt K (2009). The altitude of alpine treeline: A bellwether of climate change effects.The Botanical Review, 75, 163-190. |
52 | Stokes MA, Smiley TL (1969). An Introduction to Tree Ring-Dating. University of Chicago Press, Chicago. |
53 | The “Flora of China” Editorial Board of Chinese Academy of Sciences (2004). Flora of China. Science Press, Beijing. 7-53.(in Chinese) |
[中国科学院《中国植物志》编辑委员会 (2004). 中国植物志. 科学出版社, 北京. 7-53.] | |
54 | Wang JT (1988). A preliminary study on alpine vegetation of the Qinghai-Xizang (Tibet) Plateau.Acta Phytoecologica et Geobotanica Sinica, 12(2), 81-90.(in Chinese with English abstract) |
[王金亭 (1988). 青藏高原高山植被的初步研究 . 植物生态学与地植物学学报,12(2), 81-90.] | |
55 | Wilmking M, Juday G (2005). Longitudinal variation of radial growth at Alaska’s northern treeline—Recent changes and possible scenarios for the 21st century.Global and Planetary Change, 47, 282-300. |
56 | Wilmking M, Singh J (2008). Eliminating the “divergence effect” at Alaska’s northern treeline.Climate of the Past, 4, 741-759. |
57 | Wilson RJ, Gutiérrez D, Gutiérrez J, Martínez D, Agudo R, Monserrat VJ (2005). Changes to the elevational limits and extent of species ranges associated with climate change.Ecology Letters, 8, 1138-1146. |
58 | Yang B, He MH, Melvin TM, Zhao Y, Briffa KR (2013). Climate control on tree growth at the upper and lower treelines: A case study in the Qilian Mountains, Tibetan Plateau.PLoS ONE, 8(7), e69065. |
59 | Zhang YX, Shao XM, Wilmking M (2011). Dynamic relationships between Picea crassifolia growth and climate at upper treeline in the Qilian Mts., Northeast Tibetan Plateau, China.Dendrochronologia, 29, 185-199. |
60 | Zhang YX, Wilmking M (2010). Divergent growth responses and increasing temperature limitation of Qinghai spruce growth along an elevation gradient at the northeast Tibet Plateau.Forest Ecology and Management, 260, 1076-1082. |
61 | Zhu FM, An SQ, Guan BH, Liu YH, Zhou CF, Wang ZS (2007). A review of ecotone: Concepts, attributes, theories and research advances.Acta Ecologica Sinica, 27, 3032-3042.(in Chinese with English abstract) |
[朱芬萌, 安树青, 关保华, 刘玉虹, 周长芳, 王中生 (2007). 生态交错带及其研究进展. 生态学报, 27, 3032-3042.] |
[1] | 周楷玲, 赵玉金, 白永飞. 基于Sentinel-2A数据的东北森林植物多样性监测方法研究[J]. 植物生态学报, 2022, 46(10): 1251-1267. |
[2] | 宋文琦, 朱良军, 张旭, 王晓春, 张远东. 青藏高原东北部不同降水梯度下高山林线祁连圆柏径向生长与气候关系的比较[J]. 植物生态学报, 2018, 42(1): 66-77. |
[3] | 于健, 徐倩倩, 刘文慧, 罗春旺, 杨君珑, 李俊清, 刘琪璟. 长白山东坡不同海拔长白落叶松径向生长对气候变化的响应[J]. 植物生态学报, 2016, 40(1): 24-35. |
[4] | 米兆荣, 陈立同, 张振华, 贺金生. 基于年降水、生长季降水和生长季蒸散的高寒草地水分利用效率[J]. 植物生态学报, 2015, 39(7): 649-660. |
[5] | 王彪, 江源, 王明昌, 董满宇, 章异平. 芦芽山不同海拔白杄非结构性碳水化合物含量动态[J]. 植物生态学报, 2015, 39(7): 746-752. |
[6] | 陈亚梅, 和润莲, 邓长春, 刘洋, 杨万勤, 张健. 川西高山林线交错带凋落物纤维素分解酶活性研究[J]. 植物生态学报, 2014, 38(4): 334-342. |
[7] | 慈敦伟,戴良香,宋文武,张智猛. 花生萌发至苗期耐盐胁迫的基因型差异[J]. 植物生态学报, 2013, 37(11): 1018-1027. |
[8] | 董满宇, 江源, 杨浩春, 王明昌, 张文涛, 郭媛媛. 芦芽山林线白杄生长季径向生长动态[J]. 植物生态学报, 2012, 36(9): 956-964. |
[9] | 徐振锋, 胡庭兴, 张力, 张远彬, 鲜骏仁, 王开运. 青藏高原东缘林线交错带糙皮桦幼苗光合特性对模拟增温的短期响应[J]. 植物生态学报, 2010, 34(3): 263-270. |
[10] | 杨浩, 白永飞, 李永宏, 韩兴国. 内蒙古典型草原物种组成和群落结构对长期放牧的响应[J]. 植物生态学报, 2009, 33(3): 499-507. |
[11] | 周永斌, 吴栋栋, 于大炮, 隋琛莹. 长白山不同海拔岳桦非结构碳水化合物含量的变化[J]. 植物生态学报, 2009, 33(1): 118-124. |
[12] | 徐振锋, 胡庭兴, 张远彬, 鲜骏仁, 王开运. 川西亚高山林线交错带糙皮桦和岷江冷杉幼苗物候与生长对模拟增温的响应[J]. 植物生态学报, 2008, 32(5): 1061-1071. |
[13] | 张桥英, 张运春, 罗鹏, 王乾, 吴宁. 白马雪山阳坡林线方枝柏种群的生态特征[J]. 植物生态学报, 2007, 31(5): 857-864. |
[14] | 朱玉洁, 高琼, 刘峻杉, 徐霞, 周婵. 基于气孔导度和光合模型的植物功能类群合并问题[J]. 植物生态学报, 2007, 31(5): 873-882. |
[15] | 林金成, 强胜. 空心莲子草对南京春季杂草群落组成和物种多样性的影响[J]. 植物生态学报, 2006, 30(4): 585-592. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19