植物生态学报 ›› 2014, Vol. 38 ›› Issue (4): 334-342.DOI: 10.3724/SP.J.1258.2014.00030
所属专题: 生态化学计量
收稿日期:
2013-11-18
接受日期:
2014-02-07
出版日期:
2014-11-18
发布日期:
2014-04-08
通讯作者:
刘洋
作者简介:
*(E-mail:sicauliuyang@163.com)基金资助:
CHEN Ya-Mei, HE Run-Lian, DENG Chang-Chun, LIU Yang*(), YANG Wan-Qin, ZHANG Jian
Received:
2013-11-18
Accepted:
2014-02-07
Online:
2014-11-18
Published:
2014-04-08
Contact:
LIU Yang
摘要:
以川西高山林线交错带3种典型植被类型(针叶林、高山灌丛、高山草甸)下两个层次(LF层: 新鲜凋落物层和发酵层; H层: 腐殖质层)的凋落物为研究对象, 分别模拟凋落物分解的前期和后期阶段, 对凋落物分解过程中的纤维素酶活性及凋落物质量进行了研究。结果表明, 凋落物分解前期的纤维素酶活性和纤维素含量均显著高于分解后期, 但植被类型对LF和H层的纤维素含量的影响都不显著。双因素方差分析结果表明, 凋落物分解阶段对纤维素酶活性和纤维素含量的影响比植被类型对纤维素酶活性和纤维素含量的影响更大。不同种类的纤维素酶活性在分解前期和分解后期受到不同因子的限制。凋落物分解前期, 微晶纤维素酶和β-葡萄糖苷酶活性可能受N、P含量的限制, 而羧甲基纤维素酶主要受底物纤维素含量控制; 凋落物分解后期, 羧甲基纤维素酶和β-葡萄糖苷酶可能受C、N含量的限制。生态化学计量学的理论预测, 底物质量比C:N > 27或C:P > 186时会限制微生物生长, 因此判断高山林线交错带凋落物微生物生物量和纤维素酶活性同时受到底物N、P的限制, 尤其是高山草甸上微生物生物量在凋落物分解前期受到底物N、P的限制比分解后期更显著, 这充分说明了底物质量调控着凋落物分解过程中的纤维素酶活性和微生物生物量。
陈亚梅, 和润莲, 邓长春, 刘洋, 杨万勤, 张健. 川西高山林线交错带凋落物纤维素分解酶活性研究. 植物生态学报, 2014, 38(4): 334-342. DOI: 10.3724/SP.J.1258.2014.00030
CHEN Ya-Mei, HE Run-Lian, DENG Chang-Chun, LIU Yang, YANG Wan-Qin, ZHANG Jian. Litter cellulolytic enzyme activities in alpine timberline ecotone of western Sichuan. Chinese Journal of Plant Ecology, 2014, 38(4): 334-342. DOI: 10.3724/SP.J.1258.2014.00030
植被类型 Vegetation type | 凋落物含水量 Litter water content (%) | 凋落物表层温度 Surface litter temperature (℃) | 雪被厚度 Snow cover thickness (cm) |
---|---|---|---|
高山草甸 Alpine meadow | 41 ± 5a | 1.8 ± 2.5a | 0.0 ± 0.0a |
高山灌丛 Alpine shrub | 62 ± 7b | 3.9 ± 6.4b | 4.1 ± 2.2b |
针叶林 Coniferous forest | 55 ± 1b | -0.3 ± 0.3a | 1.3 ± 1.0a |
表1 高山林线交错带凋落物含水量、表层温度和雪被厚度(平均值±标准偏差)
Table 1 Litter water content, surface litter temperature, and snow cover thickness in the alpine timberline ecotone (mean ± SD)
植被类型 Vegetation type | 凋落物含水量 Litter water content (%) | 凋落物表层温度 Surface litter temperature (℃) | 雪被厚度 Snow cover thickness (cm) |
---|---|---|---|
高山草甸 Alpine meadow | 41 ± 5a | 1.8 ± 2.5a | 0.0 ± 0.0a |
高山灌丛 Alpine shrub | 62 ± 7b | 3.9 ± 6.4b | 4.1 ± 2.2b |
针叶林 Coniferous forest | 55 ± 1b | -0.3 ± 0.3a | 1.3 ± 1.0a |
变量 Variable | 凋落物层次 Litter layer | 植被类型 Vegetation type | 凋落物层次×植被类型 Litter layer × Vegetation type | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
羧甲基纤维素酶 β-1,4-endoglucanase | 1 | 58.669 | < 0.001 | 2 | 8.762 | < 0.010 | 2 | 0.222 | 0.803 | ||
微晶纤维素酶 β-1,4-exoglucanase | 1 | 0.069 | 0.795 | 2 | 0.207 | 0.815 | 2 | 1.724 | 0.200 | ||
β-葡萄糖苷酶 β-1,4-glucosidase | 1 | 55.989 | < 0.001 | 2 | 2.241 | 0.128 | 2 | 2.085 | 0.146 | ||
纤维素含量 Cellulose content | 1 | 84.515 | < 0.001 | 2 | 1.272 | 0.299 | 2 | 10.024 | 0.001 | ||
C含量 C content | 1 | 92.313 | < 0.001 | 2 | 32.110 | < 0.010 | 2 | 11.135 | < 0.010 | ||
N含量 N content | 1 | 5.290 | 0.030 | 2 | 16.722 | < 0.010 | 2 | 12.378 | < 0.010 | ||
P含量 P content | 1 | 1.425 | 0.244 | 2 | 8.302 | 0.002 | 2 | 9.394 | 0.001 | ||
C:N | 1 | 47.476 | < 0.001 | 2 | 12.932 | < 0.010 | 2 | 8.864 | 0.001 | ||
C:P | 1 | 31.050 | < 0.001 | 2 | 13.771 | < 0.001 | 2 | 13.308 | < 0.001 | ||
N:P | 1 | 3.149 | 0.089 | 2 | 14.313 | < 0.001 | 2 | 31.118 | < 0.001 |
表2 植被类型(针叶林、高山灌丛和高山草甸)和凋落物层次(腐殖质层、新鲜凋落物层和发酵层)及其交互作用对酶活性和凋落物质量的双因素方差分析结果
Table 2 Results of two-way ANOVA for testing the main effects of vegetation types (coniferous forest, alpine shrub and alpine meadow), litter layers (humus layer, fresh litter layer and fermentation layer) and their interactions on cellulolytic enzyme activities and litter qualities
变量 Variable | 凋落物层次 Litter layer | 植被类型 Vegetation type | 凋落物层次×植被类型 Litter layer × Vegetation type | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
羧甲基纤维素酶 β-1,4-endoglucanase | 1 | 58.669 | < 0.001 | 2 | 8.762 | < 0.010 | 2 | 0.222 | 0.803 | ||
微晶纤维素酶 β-1,4-exoglucanase | 1 | 0.069 | 0.795 | 2 | 0.207 | 0.815 | 2 | 1.724 | 0.200 | ||
β-葡萄糖苷酶 β-1,4-glucosidase | 1 | 55.989 | < 0.001 | 2 | 2.241 | 0.128 | 2 | 2.085 | 0.146 | ||
纤维素含量 Cellulose content | 1 | 84.515 | < 0.001 | 2 | 1.272 | 0.299 | 2 | 10.024 | 0.001 | ||
C含量 C content | 1 | 92.313 | < 0.001 | 2 | 32.110 | < 0.010 | 2 | 11.135 | < 0.010 | ||
N含量 N content | 1 | 5.290 | 0.030 | 2 | 16.722 | < 0.010 | 2 | 12.378 | < 0.010 | ||
P含量 P content | 1 | 1.425 | 0.244 | 2 | 8.302 | 0.002 | 2 | 9.394 | 0.001 | ||
C:N | 1 | 47.476 | < 0.001 | 2 | 12.932 | < 0.010 | 2 | 8.864 | 0.001 | ||
C:P | 1 | 31.050 | < 0.001 | 2 | 13.771 | < 0.001 | 2 | 13.308 | < 0.001 | ||
N:P | 1 | 3.149 | 0.089 | 2 | 14.313 | < 0.001 | 2 | 31.118 | < 0.001 |
图1 高山林线交错带凋落物不同层次纤维素酶活性(平均值±标准偏差)。 H, 腐殖质层; LF, 新鲜凋落物层和发酵层。F, 针叶林; M, 高山草甸; S, 高山灌丛。不同小写字母表示同一植被类型凋落物H层与LF层差异显著(t检验, p < 0.05); 不同大写字母表示同一凋落物层次不同植被类型差异显著(p < 0.05)。
Fig. 1 Cellulolytic enzyme activities in different litter layers in the alpine timberline ecotone (mean ± SD). H, humus layer; LF, fresh litter layer and fermentation layer. F, coniferous forest; M, alpine meadow; S, alpine shrub. Different lower-case letters indicate significant differences between the H layer and the LF layer of litter within the same vegetation type (t-test, p < 0.05). Different capital letters indicate significant differences among vegetation types within the same litter layer ( p < 0.05).
凋落物层次 Litter layer | 植被类型 Vegetation type | C (mg·g-1) | N (mg·g-1) | P (mg·g-1) | C:N | C:P | N:P | 纤维素 Cellulose (mg·g-1) |
---|---|---|---|---|---|---|---|---|
LF | M | 381.5 ± 23.5aA | 8.7 ± 1.5aA | 1.0 ± 0.2aA | 45.3 ± 9.1aA | 413.0 ± 113.4aA | 9.0 ± 0.9aA | 253.4 ± 64.1aA |
S | 387.3 ± 78.6aA | 13.5 ± 2.4aB | 1.6 ± 0.3aB | 29.2 ± 6.3aB | 238.4 ± 33.8aB | 8.3 ± 0.9aA | 167.3 ± 34.5aB | |
F | 448.8 ± 37.5aA | 9.0 ± 1.1aA | 1.1 ± 0.2aA | 50.7 ± 9.7aA | 410.1 ± 88.2aA | 8.1 ± 0.3aA | 151.6 ± 49.1aBC | |
H | M | 118.3 ± 28.9bA | 6.4 ± 1.5aA | 1.2 ± 0.1aA | 18.6 ± 2.0bA | 97.2 ± 12.6bA | 5.3 ± 0.8bA | 25.1 ± 7.7bA |
S | 244.5 ± 47.6bB | 9.3 ± 1.7bB | 1.2 ± 0.2bA | 26.2 ± 1.4aB | 211.8 ± 39.2aB | 8.1 ± 1.2aB | 67.9 ± 29.0bB | |
F | 375.5 ± 34.6aC | 11.5 ± 0.5bC | 1.1 ± 0.1aA | 32.7 ± 4.2aC | 339.9 ± 62.8aC | 10.4 ± 1.0bC | 72.4 ± 34.2bBC |
表3 高山林线交错带凋落物不同层次的质量特征(平均值±标准偏差)
Table 3 Quality characteristics of different litter layers in the alpine timberline ecotone (mean ± SD)
凋落物层次 Litter layer | 植被类型 Vegetation type | C (mg·g-1) | N (mg·g-1) | P (mg·g-1) | C:N | C:P | N:P | 纤维素 Cellulose (mg·g-1) |
---|---|---|---|---|---|---|---|---|
LF | M | 381.5 ± 23.5aA | 8.7 ± 1.5aA | 1.0 ± 0.2aA | 45.3 ± 9.1aA | 413.0 ± 113.4aA | 9.0 ± 0.9aA | 253.4 ± 64.1aA |
S | 387.3 ± 78.6aA | 13.5 ± 2.4aB | 1.6 ± 0.3aB | 29.2 ± 6.3aB | 238.4 ± 33.8aB | 8.3 ± 0.9aA | 167.3 ± 34.5aB | |
F | 448.8 ± 37.5aA | 9.0 ± 1.1aA | 1.1 ± 0.2aA | 50.7 ± 9.7aA | 410.1 ± 88.2aA | 8.1 ± 0.3aA | 151.6 ± 49.1aBC | |
H | M | 118.3 ± 28.9bA | 6.4 ± 1.5aA | 1.2 ± 0.1aA | 18.6 ± 2.0bA | 97.2 ± 12.6bA | 5.3 ± 0.8bA | 25.1 ± 7.7bA |
S | 244.5 ± 47.6bB | 9.3 ± 1.7bB | 1.2 ± 0.2bA | 26.2 ± 1.4aB | 211.8 ± 39.2aB | 8.1 ± 1.2aB | 67.9 ± 29.0bB | |
F | 375.5 ± 34.6aC | 11.5 ± 0.5bC | 1.1 ± 0.1aA | 32.7 ± 4.2aC | 339.9 ± 62.8aC | 10.4 ± 1.0bC | 72.4 ± 34.2bBC |
纤维素酶种类 Cellulose sort | 凋落物层次 Litter layer | C | N | P | C:N | C:P | N:P | 纤维素Cellulose |
---|---|---|---|---|---|---|---|---|
羧甲基纤维素酶 β-1,4-endoglucanase | LF | 0.206 | 0.082 | 0.072 | 0.116 | 0.001 | -0.176 | -0.586* |
微晶纤维素酶 β-1,4-exoglucanase | LF | -0.131 | 0.605* | 0.573* | -0.545* | -0.491 | 0.009 | -0.079 |
β-葡萄糖苷酶 β-1,4-glucosidase | LF | -0.381 | 0.696** | 0.557* | -0.647** | -0.601* | 0.121 | -0.356 |
羧甲基纤维素酶 β-1,4-endoglucanase | H | 0.801** | 0.752** | 0.100 | -0.002 | -0.132 | -0.403 | 0.535* |
微晶纤维素酶 β-1,4-exoglucanase | H | 0.449 | 0.370 | 0.382 | -0.120 | -0.113 | 0.047 | 0.531* |
β-葡萄糖苷酶 β-1,4-glucosidase | H | 0.626* | 0.610* | 0.289 | -0.141 | -0.220 | -0.279 | 0.405 |
表4 纤维素酶活性与凋落物质量的相关关系
Table 4 Correlations between cellulolytic enzyme activities and litter quality
纤维素酶种类 Cellulose sort | 凋落物层次 Litter layer | C | N | P | C:N | C:P | N:P | 纤维素Cellulose |
---|---|---|---|---|---|---|---|---|
羧甲基纤维素酶 β-1,4-endoglucanase | LF | 0.206 | 0.082 | 0.072 | 0.116 | 0.001 | -0.176 | -0.586* |
微晶纤维素酶 β-1,4-exoglucanase | LF | -0.131 | 0.605* | 0.573* | -0.545* | -0.491 | 0.009 | -0.079 |
β-葡萄糖苷酶 β-1,4-glucosidase | LF | -0.381 | 0.696** | 0.557* | -0.647** | -0.601* | 0.121 | -0.356 |
羧甲基纤维素酶 β-1,4-endoglucanase | H | 0.801** | 0.752** | 0.100 | -0.002 | -0.132 | -0.403 | 0.535* |
微晶纤维素酶 β-1,4-exoglucanase | H | 0.449 | 0.370 | 0.382 | -0.120 | -0.113 | 0.047 | 0.531* |
β-葡萄糖苷酶 β-1,4-glucosidase | H | 0.626* | 0.610* | 0.289 | -0.141 | -0.220 | -0.279 | 0.405 |
[1] | Aber JD, Melillo J (1991). Terrestrial Ecosystems. Saunders College Publishing, Toronto. |
[2] | Aber JD, Melillo J, McClaugherty C (1990). Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Canadian Journal of Botany, 68, 2201-2208. |
[3] |
Allen AP, Gillooly JF (2009). Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecology Letters, 12, 369-384.
URL PMID |
[4] | Allison SD, Vitousek PM (2004). Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica, 36, 285-296. |
[5] | Andersson M, Kjøller A, Struwe S (2004). Microbial enzyme activities in leaf litter, humus and mineral soil layers of European forests. Soil Biology & Biochemistry, 36, 1527-1537. |
[6] | Baker WL, Hongaker JJ, Weisberg PJ (1995). Using aerial photography and GIS to map the forest-tundra ecotone in Rocky Mountain National Park, Colorado, for global change research. Photogrammetric Engineering & Remote Sensing, 61, 313-320. |
[7] | Berg B, Matzner E (1997). Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Reviews, 5, 1-25. |
[8] | Boddy L, Frankland J, van West P(2007). Ecology of Saprotrophic Basidiomycetes. Academic Press, San Diego, USA. |
[9] |
Criquet S (2002). Measurement and characterization of cellulase activity in sclerophyllous forest litter. Journal of Microbiological Methods, 50, 165-173.
URL PMID |
[10] | Criquet S, Tagger S, Vogt G, Iacazio G, LePetit J (1999). Laccase activity of forest litter. Soil Biology & Biochemistry, 31, 1239-1244. |
[11] | Deng SP, Tabatabai MA (1994). Cellulase activity of soils. Soil Biology & Biochemistry, 26, 1347-1354. |
[12] | Dilly O, Munch JC (1996). Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a black alder (Alnus glutinosa(L.) Gaertn.) forest. Soil Biology & Biochemistry, 28, 1073-1081. |
[13] | Doyle J, Pavel R, Barness G, Steinberger Y (2006). Cellulase dynamics in a desert soil. Soil Biology & Biochemistry, 38, 371-376. |
[14] |
Elisashvili V, Kachlishvili E, Penninckx M (2008). Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. Journal of Industrial Microbiology & Biotechnology, 35, 1531-1538.
URL PMID |
[15] | Fioretto A, Papa S, Curcio E, Sorrentino G, Fuggi A (2000). Enzyme dynamics on decomposing leaf litter of Cistus incanus and Myrtus communis in a Mediterranean ecosystem. Soil Biology & Biochemistry, 32, 1847-1855. |
[16] | Fioretto A, Papa S, Pellegrino A, Fuggi A (2007). Decomposition dynamics of Myrtus communis and Quercus ilex leaf litter: mass loss, microbial activity and quality change. Applied Soil Ecology, 36, 32-40. |
[17] | Fujii K, Uemura M, Hayakawa C, Funakawa S, Kosaki T (2013). Environmental control of lignin peroxidase, manganese peroxidase, and laccase activities in forest floor layers in humid Asia. Soil Biology & Biochemistry, 57, 109-115. |
[18] | Güsewell S, Gessner MO (2009). N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology, 23, 211-219. |
[19] | IPCC(Intergovernmental Panel on Climate Change) (2007). Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA eds. Climate Change in 2007: Mitigation. Cambridge University Press, Cambridge, UK. |
[20] | Joshi SR, Sharma GD, Mishra RR (1993). Microbial enzyme activities related to litter decomposition near a highway in a sub-tropical forest of northeast India. Soil Biology & Biochemistry, 25, 1763-1770. |
[21] | Kähkönen MA, Hakulinen R (2011). Hydrolytic enzyme activities, carbon dioxide production and the growth of litter degrading fungi in different soil layers in a coniferous forest in Northern Finland. European Journal of Soil Biology, 47, 108-113. |
[22] | Kanazawa S, Miyashita K (1987). Cellulase activity in forest soils. Soil Science and Plant Nutrition, 33, 399-406. |
[23] | Kappelle M, van Vuuren MMI, Baas P (1999). Effects of climate change on biodiversity: a review and identification of key research issues. Biodiversity & Conservation, 8, 1383-1397. |
[24] | Koide K, Osono T, Takeda H (2005). Fungal succession and decomposition of Camellia japonica leaf litter. Ecological Research, 20, 559-609. |
[25] | Kshattriya S, Sharma GD, Mishra RR (1992). Enzyme activities related to litter decomposition in forests of different age and altitude in northeast India. Soil Biology & Biochemistry, 24, 265-270. |
[26] | Linkins AE, Sinsabaugh RL, McClaugherty CA, Melills JM (1990). Cellulase activity on decomposing leaf litter in microcosms. Plant and Soil, 123, 17-25. |
[27] | Liu Y, Zhang J, Yang WQ, Wu FZ, Huang X, Yan BG, Wen WQ, Hu KB (2011). Ground coverage and soil hydrological action of alpine treeline ecotone in Western Sichuan. Scientia Silvae Sinicae, 47(3), 1-6. (in Chinese with English abstract) |
[ 刘洋, 张健, 杨万勤, 吴福忠, 黄旭, 闫帮国, 文维全, 胡开波 (2011). 川西高山树线群落交错带地被物及土壤的水文效应. 林业科学, 47(3), 1-6.] | |
[28] |
Lynd L, Cushman JH, Nichols RJ, Wyman CE (1991). Fuel ethanol from cellulosic biomass. Science, 251, 1318-1323.
URL PMID |
[29] | Moorhead DL, Sinsabaugh RL (2000). Simulated patterns of litter decay predict patterns of extracellular enzyme activities. Applied Soil Ecology, 14, 71-79. |
[30] |
Oreskes N (2004). The scientific consensus on climate change. Science, 306, 1686.
URL PMID |
[31] | Osono T, Hirose D, Fujimaki R (2006). Fungal colonization as affected by litter depth and decomposition stage of needle litter. Soil Biology & Biochemistry, 38, 2743-2752. |
[32] | Prescott CE (2005). Do rates of litter decomposition tell us anything we really need to know? Forest Ecology and Management, 220, 66-74. |
[33] |
Rabinovich ML, Melnick MS, Bolobova AV (2002). The structure and mechanism of action of cellulolytic enzymes. Biochemistry (Moscow), 67, 850-871.
URL PMID |
[34] | Rowland AP, Roberts JD (1994). Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods. Communications in Soil Science & Plant Analysis, 25, 269-277. |
[35] |
Sánchez C (2009). Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances, 27, 185-194.
URL PMID |
[36] | Schmidt SK, Lipson DA (2004). Microbial growth under the snow: implications for nutrient and allelochemical availability in temperate soils. Plant and Soil, 259, 1-7. |
[37] |
Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795-799.
URL PMID |
[38] | Sinsabaugh RL, Moorhead DL (1994). Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biology & Biochemistry, 26, 1305-1311. |
[39] | Sinsabaugh RL, Antibus RK, Linkins AE (1991). An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agriculture, Ecosystems & Environment, 34, 43-54. |
[40] |
Sinsabaugh RL, Antibus RK, Linkins AE, McClaugherty CA, Rayburn L, Repert D, Weiland T (1992). Wood decomposition over a first-order watershed: mass loss as a function of lignocellulase activity. Soil Biology & Biochemistry, 24, 743-749.
DOI URL |
[41] |
Sinsabaugh RL, Carreiro MM, Repert DA (2002). Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry, 60, 1-24.
DOI URL |
[42] | Šnajdr J, Valášková V, Merhautová V, Cajthaml T, Baldrian P (2008a). Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes. Enzyme and Microbial Technology, 43, 186-192. |
[43] | Šnajdr J, Valášková V, Merhautová Vr, Herinková J, Cajthaml T, Baldrian P (2008b). Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biology & Biochemistry, 40, 2068-2075. |
[44] | Steffen KT, Cajthaml T, Šnajdr J, Baldrian P (2007). Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes. Research in Microbio- logy, 158, 447-455. |
[45] | Sterner RW, Hessen DO (1994). Algal nutrient limitation and the nutrition of aquatic herbivores. Annual Review of Ecology and Systematics, 25, 1-29. |
[46] | Waldrop MP, Balser TC, Fireston MK (2000). Linking microbial community composition to function in a tropical soil. Soil Biology & Biochemistry, 32, 1837-1846. |
[47] | Walther GR, Beissner S, Burga CA (2005). Trends in the upward shift of alpine plants. Journal of Vegetation Science, 16, 541-548. |
[48] | Waring BG (2013). Exploring relationships between enzyme activities and leaf litter decomposition in a wet tropical forest. Soil Biology & Biochemistry, 64, 89-95. |
[49] | Wittmann C, Kähkönen MA, Ilvesniemi H, Kurola J, Salkinoja- Salonen MS (2004). Areal activities and stratification of hydrolytic enzymes involved in the biochemical cycles of carbon, nitrogen, sulphur and phosphorus in podsolized boreal forest soils. Soil Biology & Biochemistry, 36, 425-433. |
[50] | Zhang RQ, Sun ZJ, Wang C, Yuan TY (2008). Ecological process of leaf litter decomposition tropical rainforest in Xishuangbanna, SW China. III. Enzyme dynamics. Journal of Plant Ecology (Chinese Version), 32, 622-631. (in Chinese with English abstract) |
[ 张瑞清, 孙振钧, 王冲, 袁堂玉 (2008). 西双版纳热带雨林凋落叶分解的生态过程. III. 酶活性动态. 植物生态学报, 32, 622-631.] |
[1] | 邓文婕, 吴华征, 李添翔, 周丽娜, 胡仁勇, 金鑫杰, 张永普, 张永华, 刘金亮. 洞头国家级海洋公园主要植被类型及其特征[J]. 植物生态学报, 2024, 48(2): 254-268. |
[2] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[3] | 王国宏, 郭柯, 谢宗强, 唐志尧, 蒋延玲, 方精云. 《中国植被志》研编规范的若干说明、补充与修订[J]. 植物生态学报, 2022, 46(3): 368-372. |
[4] | 李东, 田秋香, 赵小祥, 林巧玲, 岳朋芸, 姜庆虎, 刘峰. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232-242. |
[5] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[6] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
[7] | 张欢, 张云玲, 张彦才, 阎平. 新疆奇台荒漠类草地自然保护区主要植物群落及其特征[J]. 植物生态学报, 2021, 45(8): 918-924. |
[8] | 牟利, 吴林, 刘雪飞, 李小玲, 王涵, 吴浩, 余玉蓉, 杜胜蓝. 鄂西南亚高山不同覆被类型泥炭藓沼泽湿地甲烷排放特征及其环境影响因子[J]. 植物生态学报, 2021, 45(2): 131-143. |
[9] | 贺露炎, 侯满福, 唐伟, 刘雨婷, 赵俊. 滇东菌子山喀斯特森林的植被类型及其特征[J]. 植物生态学报, 2021, 45(12): 1380-1390. |
[10] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[11] | 方精云, 郭柯, 王国宏, 唐志尧, 谢宗强, 沈泽昊, 王仁卿, 强胜, 梁存柱, 达良俊, 于丹. 《中国植被志》的植被分类系统、植被类型划分及编排体系[J]. 植物生态学报, 2020, 44(2): 96-110. |
[12] | 徐文轩, 杨维康, 张弛, 汪沐阳. 准噶尔盆地东部卡拉麦里山有蹄类自然保护区主要植物群落及其特征[J]. 植物生态学报, 2016, 40(5): 502-507. |
[13] | 常晨晖, 吴福忠, 杨万勤, 谭波, 肖洒, 李俊, 苟小林. 高寒森林倒木在不同分解阶段的质量变化[J]. 植物生态学报, 2015, 39(1): 14-22. |
[14] | 汪岱华, 王幼芳, 左勤, 李敏, 吴文英, 黄建花, 赵明水. 浙江西天目山主要森林类型的苔藓多样性比较[J]. 植物生态学报, 2012, 36(6): 550-559. |
[15] | 余振, 孙鹏森, 刘世荣. 中国东部南北样带主要植被类型物候期的变化[J]. 植物生态学报, 2010, 34(3): 316-329. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19