植物生态学报 ›› 2010, Vol. 34 ›› Issue (3): 316-329.DOI: 10.3773/j.issn.1005-264x.2010.03.009
收稿日期:
2009-07-14
接受日期:
2009-09-12
出版日期:
2010-07-14
发布日期:
2010-03-01
通讯作者:
孙鹏森
作者简介:
* E-mail: sunpsen@forestry.ac.cnYU Zhen1, SUN Peng-Sen1,*(), LIU Shi-Rong2
Received:
2009-07-14
Accepted:
2009-09-12
Online:
2010-07-14
Published:
2010-03-01
Contact:
SUN Peng-Sen
摘要:
植被物候期的变化是全球变化研究的热点问题, 因为物候过程是反映植被对气候变化响应的最直接和最敏感的生态学过程之一, 大尺度植被物候学过程主要以植被的季节动态体现其对气候变化的长期适应过程。基于NOAA/AVHRR从1982年至2006年的双周归一化植被指数NDVI (Normalized Difference Vegetation Index)数据, 依托中国东部南北样带, 对主要植被类型的物候过程进行模拟, 并计算了主要物候现象(包括返青起始期、休眠起始期和生长季长度)的发生时间和演变趋势。结果表明: 返青起始期显著提前的植被有温带针叶林(TCF, 0.56 d·a-1)、温带草丛(TG, 0.66 d·a-1)、亚热带热带针叶林(STCF, 0.46 d·a-1)、亚热带落叶阔叶林(SDBF, 0.58 d·a-1)和亚热带热带草丛(STG, 0.89 d·a-1); 休眠起始期显著推迟的植被有寒温带温带针叶林(TCTCF, 0.32 d·a-1)、SDBF (0.80 d·a-1)和温带落叶阔叶林(TDBF, 0.18 d·a-1); 此外, 大部分植被类型的生长季长度都有所延长, 但延长的方式不同: TCF (0.77 d·a-1)是由于返青起始期显著提前造成的; TCTCF (0.38 d·a-1)和TDBF (0.36 d·a-1)是由于休眠起始期显著推迟造成的; TG (0.76 d·a-1)、STCF (0.83 d·a-1)、SDBF (1.40 d·a-1)和STG (1.30 d·a-1)等是由于返青起始期提前和休眠起始期推迟共同造成的。对温度和降水的变化进行分析发现, 温度对南北样带上植被物候的影响较大, 而降水对物候的影响相对较小, 不同植被类型对温度的响应各异。在南北样带上存在的热量梯度, 使得整条样带上植被的物候现象也表现出时间梯度, 从返青起始期发生的时间上比较, 从北向南逐渐推迟, 即寒温带植被>温带植被>亚热带植被; 休眠起始期和生长季长度则正好相反, 亚热带植被>温带植被>寒温带植被。
余振, 孙鹏森, 刘世荣. 中国东部南北样带主要植被类型物候期的变化. 植物生态学报, 2010, 34(3): 316-329. DOI: 10.3773/j.issn.1005-264x.2010.03.009
YU Zhen, SUN Peng-Sen, LIU Shi-Rong. Phenological change of main vegetation types along a North-South Transect of Eastern China. Chinese Journal of Plant Ecology, 2010, 34(3): 316-329. DOI: 10.3773/j.issn.1005-264x.2010.03.009
图1 中国东部南北样带植被类型及分布图。 TCTCF, 寒温带温带针叶林; TCF, 温带针叶林; TMF, 温带针阔叶混交林; TDBF, 温带落叶阔叶林; TDS, 温带落叶灌丛; TMS, 温带草甸草原; TG, 温带草丛; TGS, 温带禾草草原; STCF, 亚热带热带针叶林; SDBF, 亚热带落叶阔叶林; SEBF, 亚热带常绿阔叶林; STG, 亚热带热带草丛。
Fig. 1 Vegetation types and distribution in North-South Transect of Eastern China (NSTEC). TCTCF, temperate and cold temperate coniferous forest; TCF, temperate coniferous forest; TMF, temperate mixed forest; TDBF, temperate deciduous-broadleaved forest; TDS, temperate deciduous shrubland; TMS, temperate meadow steppe; TG, temperate grassland; TGS, temperate grass steppe; STCF, subtropical and tropical coniferous forest; SDBF, subtropical deciduous-broadleaved forest; SEBF, subtropical evergreen-broadleaved forest; STG, subtropical and tropical grassland.
月 Month | 植被类型 Vegetation type | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TCTCF | TCF | TMF | TDBF | TDS | TMS | TGS | TG | STCF | STG | SDBF | SEBF | |
1 | 0.3 | 1.0 | 1.4 | 1.3 | 1.1 | 0.7 | 0.8 | 1.9 | 1.4 | 1.3 | 0.3 | 1.3 |
2 | 1.5 | 3.5** | 2.2* | 2.0* | 2.8** | 1.8 | 2.7** | 3.6** | 3.0** | 2.1* | 2.9** | 2.0* |
3 | 1.1 | 3.7** | 1.3 | 1.0 | 2.0* | 0.8 | 1.7 | 3.3** | 3.4** | 2.8** | 3.4** | 2.0* |
4 | 0.4 | 2.2* | 1.3 | 0.9 | 1.5 | 1.5 | 1.8 | 2.2* | 1.9 | 2.6** | 2.2* | 2.7** |
5 | 0.5 | 1.6 | 1.3 | 1.3 | 2.0* | 1.4 | 2.0* | 2.0* | 0.8 | 0.9 | 1.0 | 1.5 |
6 | 0.4 | 3.1** | 3.0** | 1.7 | 2.4* | 1.5 | 2.5** | 3.1** | 3.3** | 2.0* | 3.3** | 0.8 |
7 | 2.5** | 3.1** | 3.1** | 2.1* | 2.8** | 2.9 | 3.6** | 3.0** | 3.5** | 1.7 | 2.4* | 0.1 |
8 | 1.3 | 1.7 | -0.3 | -0.7 | 0.7 | 1.8 | 2.2* | 1.5** | 0.4 | 0.6 | -0.2 | 0.1 |
9 | 1.4 | 1.7 | 3.2** | 3.1** | 3.1** | 3.3 | 3.5** | 2.6** | 1.7 | 1.8 | 1.5 | 0.8 |
10 | 1.1 | 0.4 | 1.5 | 1.0 | 1.1 | 1.5 | 0.9 | 1.2 | 0.4 | 0.5 | 0.7 | 0.6 |
11 | -0.6 | 1.8 | 1.1 | 0.7 | 0.8 | -0.3 | 0.5 | 1.9 | 1.4 | 1.6 | 0.7 | 2.0* |
12 | -0.6 | 1.3 | -0.3 | -0.4 | -0.2 | -1.5 | -0.2 | 1.5 | 0.9 | 0.9 | 0.6 | 0.8 |
年 Annual | 1.1 | 4.0** | 2.7** | 4.2** | 4.1** | 3.7** | 2.6** | 3.5** | 3.5** | 3.7** | 4.1** | 3.7** |
表1 1982-2006年不同植被类型温度Mann-Kendall检验值
Table 1 Mann-Kendall Tests of data series of temperature in different types of vegetation from 1982 to 2006
月 Month | 植被类型 Vegetation type | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TCTCF | TCF | TMF | TDBF | TDS | TMS | TGS | TG | STCF | STG | SDBF | SEBF | |
1 | 0.3 | 1.0 | 1.4 | 1.3 | 1.1 | 0.7 | 0.8 | 1.9 | 1.4 | 1.3 | 0.3 | 1.3 |
2 | 1.5 | 3.5** | 2.2* | 2.0* | 2.8** | 1.8 | 2.7** | 3.6** | 3.0** | 2.1* | 2.9** | 2.0* |
3 | 1.1 | 3.7** | 1.3 | 1.0 | 2.0* | 0.8 | 1.7 | 3.3** | 3.4** | 2.8** | 3.4** | 2.0* |
4 | 0.4 | 2.2* | 1.3 | 0.9 | 1.5 | 1.5 | 1.8 | 2.2* | 1.9 | 2.6** | 2.2* | 2.7** |
5 | 0.5 | 1.6 | 1.3 | 1.3 | 2.0* | 1.4 | 2.0* | 2.0* | 0.8 | 0.9 | 1.0 | 1.5 |
6 | 0.4 | 3.1** | 3.0** | 1.7 | 2.4* | 1.5 | 2.5** | 3.1** | 3.3** | 2.0* | 3.3** | 0.8 |
7 | 2.5** | 3.1** | 3.1** | 2.1* | 2.8** | 2.9 | 3.6** | 3.0** | 3.5** | 1.7 | 2.4* | 0.1 |
8 | 1.3 | 1.7 | -0.3 | -0.7 | 0.7 | 1.8 | 2.2* | 1.5** | 0.4 | 0.6 | -0.2 | 0.1 |
9 | 1.4 | 1.7 | 3.2** | 3.1** | 3.1** | 3.3 | 3.5** | 2.6** | 1.7 | 1.8 | 1.5 | 0.8 |
10 | 1.1 | 0.4 | 1.5 | 1.0 | 1.1 | 1.5 | 0.9 | 1.2 | 0.4 | 0.5 | 0.7 | 0.6 |
11 | -0.6 | 1.8 | 1.1 | 0.7 | 0.8 | -0.3 | 0.5 | 1.9 | 1.4 | 1.6 | 0.7 | 2.0* |
12 | -0.6 | 1.3 | -0.3 | -0.4 | -0.2 | -1.5 | -0.2 | 1.5 | 0.9 | 0.9 | 0.6 | 0.8 |
年 Annual | 1.1 | 4.0** | 2.7** | 4.2** | 4.1** | 3.7** | 2.6** | 3.5** | 3.5** | 3.7** | 4.1** | 3.7** |
月 Month | 植被类型 Vegetation type | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TCTCF | TCF | TMF | TDBF | TDS | TMS | TGS | TG | STCF | STG | SDBF | SEBF | |
1 | -0.3 | 0.8 | 0.0 | 0.4 | 0.0 | 1.0 | 0.9 | 0.7 | 0.0 | 1.0 | 0.5 | 0.4 |
2 | 0.1 | 0.8 | -0.8 | -1.3 | -0.3 | -0.5 | -0.1 | 0.1 | 0.8 | -1.9 | 0.7 | -1.3 |
3 | 0.2 | -2.5** | 0.0 | 1.1 | -1.5 | 0.8 | -0.9 | -2.2* | -2.2* | 0.3 | -1.2 | -1.3 |
4 | -0.2 | 0.1 | -0.8 | -0.7 | -0.4 | 0.4 | 0.2 | 0.1 | -0.7 | -0.5 | 0.6 | 0.0 |
5 | 0.5 | -1.7 | 0.0 | -0.5 | -1.4 | -0.6 | -0.4 | -1.1 | -0.6 | 1.4 | -0.9 | 0.4 |
6 | -0.5 | 0.5 | -0.7 | -0.3 | 0.6 | -0.9 | -0.7 | 0.7 | -0.6 | 1.4 | 0.5 | 1.8 |
7 | -1.0 | -0.3 | -0.7 | -0.2 | -0.5 | -1.0 | -1.4 | -0.7 | -1.0 | 0.7 | 0.7 | 2.1* |
8 | -2.7** | -0.4 | -1.4 | -0.9 | -1.6 | -1.8 | -1.9 | -0.7 | -0.8 | 0.5 | -0.2 | 1.1 |
9 | -1.5 | 0.1 | -2.4* | -2.6** | -2.8** | -2.6** | -1.7 | -0.8 | -1.0 | -2.0* | -0.4 | -2.3* |
10 | 0.3 | -0.6 | 0.9 | 1.3 | 0.6 | 0.5 | -0.1 | -0.2 | 0.1 | -0.4 | -0.6 | -1.3 |
11 | 0.4 | -0.6 | -0.7 | -0.3 | -0.4 | 0.0 | 0.1 | -0.2 | -1.4 | -1.3 | -0.3 | 0.5 |
12 | 0.5 | 0.5 | -0.2 | 0.3 | 0.6 | 0.8 | 1.1 | 0.3 | 0.1 | 1.1 | 0.6 | -0.3 |
年 Annual | -2.2* | -1.7 | -2.1* | -1.3 | -2.2* | -2.2* | -1.1 | -2.4* | 0.9 | 0.2 | -2.1* | -0.8 |
表2 1982-2006年不同植被类型降水Mann-Kendall检验
Table 2 Mann-Kendall Tests of data series of precipitation in different types of vegetation from 1982 to 2006
月 Month | 植被类型 Vegetation type | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TCTCF | TCF | TMF | TDBF | TDS | TMS | TGS | TG | STCF | STG | SDBF | SEBF | |
1 | -0.3 | 0.8 | 0.0 | 0.4 | 0.0 | 1.0 | 0.9 | 0.7 | 0.0 | 1.0 | 0.5 | 0.4 |
2 | 0.1 | 0.8 | -0.8 | -1.3 | -0.3 | -0.5 | -0.1 | 0.1 | 0.8 | -1.9 | 0.7 | -1.3 |
3 | 0.2 | -2.5** | 0.0 | 1.1 | -1.5 | 0.8 | -0.9 | -2.2* | -2.2* | 0.3 | -1.2 | -1.3 |
4 | -0.2 | 0.1 | -0.8 | -0.7 | -0.4 | 0.4 | 0.2 | 0.1 | -0.7 | -0.5 | 0.6 | 0.0 |
5 | 0.5 | -1.7 | 0.0 | -0.5 | -1.4 | -0.6 | -0.4 | -1.1 | -0.6 | 1.4 | -0.9 | 0.4 |
6 | -0.5 | 0.5 | -0.7 | -0.3 | 0.6 | -0.9 | -0.7 | 0.7 | -0.6 | 1.4 | 0.5 | 1.8 |
7 | -1.0 | -0.3 | -0.7 | -0.2 | -0.5 | -1.0 | -1.4 | -0.7 | -1.0 | 0.7 | 0.7 | 2.1* |
8 | -2.7** | -0.4 | -1.4 | -0.9 | -1.6 | -1.8 | -1.9 | -0.7 | -0.8 | 0.5 | -0.2 | 1.1 |
9 | -1.5 | 0.1 | -2.4* | -2.6** | -2.8** | -2.6** | -1.7 | -0.8 | -1.0 | -2.0* | -0.4 | -2.3* |
10 | 0.3 | -0.6 | 0.9 | 1.3 | 0.6 | 0.5 | -0.1 | -0.2 | 0.1 | -0.4 | -0.6 | -1.3 |
11 | 0.4 | -0.6 | -0.7 | -0.3 | -0.4 | 0.0 | 0.1 | -0.2 | -1.4 | -1.3 | -0.3 | 0.5 |
12 | 0.5 | 0.5 | -0.2 | 0.3 | 0.6 | 0.8 | 1.1 | 0.3 | 0.1 | 1.1 | 0.6 | -0.3 |
年 Annual | -2.2* | -1.7 | -2.1* | -1.3 | -2.2* | -2.2* | -1.1 | -2.4* | 0.9 | 0.2 | -2.1* | -0.8 |
植被类型 Vegetation type | 返青起始期 Green-up | 休眠起始期 Dormancy | 生长季长度 Length of growing season | |||
---|---|---|---|---|---|---|
温度 Temperature | 降水 Precipitation | 温度 Temperature | 降水 Precipitation | 温度 Temperature | 降水 Precipitation | |
TCTCF | -0.64** | 0.08 | 0.08 | -0.14 | 0.47* | 0.02 |
TCF | -0.52** | -0.11 | 0.49* | 0.17 | 0.64* | -0.11 |
TMF | -0.48* | 0.22 | 0.19 | 0.19 | 0.14 | 0.23 |
TDBF | -0.71* | -0.02 | 0.38 | -0.01 | 0.43* | 0.20 |
TDS | -0.50* | -0.41* | 0.19 | 0.03 | 0.39 | 0.29 |
TMS | -0.08 | -0.28 | -0.07 | 0.14 | 0.10 | 0.38 |
TG | -0.40* | -0.16 | -0.12 | -0.04 | -0.10 | -0.02 |
TGS | 0.16 | -0.28 | -0.09 | 0.12 | 0.50 | -0.01 |
STCF | -0.47* | 0.31 | 0.13 | 0.18 | 0.53** | -0.06 |
SDBF | -0.52** | 0.01 | 0.30 | -0.29 | 0.52** | -0.01 |
SEBF | -0.36 | 0.28 | 0.11 | -0.20 | 0.34 | -0.01 |
STG | -0.38 | -0.06 | 0.03 | -0.06 | 0.38 | 0.06 |
表3 各种植被类型的物候变化与温度及降水的相关系数
Table 3 Correlation coefficients among phenological events, temperature and precipitation
植被类型 Vegetation type | 返青起始期 Green-up | 休眠起始期 Dormancy | 生长季长度 Length of growing season | |||
---|---|---|---|---|---|---|
温度 Temperature | 降水 Precipitation | 温度 Temperature | 降水 Precipitation | 温度 Temperature | 降水 Precipitation | |
TCTCF | -0.64** | 0.08 | 0.08 | -0.14 | 0.47* | 0.02 |
TCF | -0.52** | -0.11 | 0.49* | 0.17 | 0.64* | -0.11 |
TMF | -0.48* | 0.22 | 0.19 | 0.19 | 0.14 | 0.23 |
TDBF | -0.71* | -0.02 | 0.38 | -0.01 | 0.43* | 0.20 |
TDS | -0.50* | -0.41* | 0.19 | 0.03 | 0.39 | 0.29 |
TMS | -0.08 | -0.28 | -0.07 | 0.14 | 0.10 | 0.38 |
TG | -0.40* | -0.16 | -0.12 | -0.04 | -0.10 | -0.02 |
TGS | 0.16 | -0.28 | -0.09 | 0.12 | 0.50 | -0.01 |
STCF | -0.47* | 0.31 | 0.13 | 0.18 | 0.53** | -0.06 |
SDBF | -0.52** | 0.01 | 0.30 | -0.29 | 0.52** | -0.01 |
SEBF | -0.36 | 0.28 | 0.11 | -0.20 | 0.34 | -0.01 |
STG | -0.38 | -0.06 | 0.03 | -0.06 | 0.38 | 0.06 |
图7 物候期与温度的相关关系。散点颜色表示不同植被类型。 A, 春季温度与返青起始期。B, 秋季温度与休眠起始期。C, 生长季温度与生长季长度。红色椭圆内为寒温带植被; 绿色椭圆内为温带植被; 蓝色椭圆内为亚热带热带植被。
Fig. 7 Correlation between phonological events and temperature. Colors of scatter dots indicate different types of vegetation. A, Temperature and onset date of green-up. B, Temperature and onset date of dormancy. C, Temperature of growing season and length of growing season. Red ellipse indicates the vegetation of cold temperate zone; Green ellipse indicates the vegetation of temperate zone; Blue ellipse indicates the vegetation of tropical and subtropical zone.
植被类型 Vegetation type | 返青起始期 Green-up | 休眠起始期 Dormancy | 生长季长度 Length of growing season | ||||||
---|---|---|---|---|---|---|---|---|---|
每年变化天数 Day of change per year (d·a-1) | 儒略日 Julian day | 标准误差 Standard error | 每年变化天数 Day of change per year (d·a-1) | 儒略日 Julian day | 标准误差 Standard error | 每年变化天数 Day of change per year (d·a-1) | 儒略日 Julian day | 标准误差 Standard error | |
TCTCF | -0.36* | 123 | 6.2 | 0.15 | 250 | 4.5 | 0.67* | 127 | 7.8 |
TCF | -0.45* | 118 | 7.0 | 0.30* | 268 | 5.6 | 0.93* | 150 | 10.5 |
TMF | -0.34* | 119 | 6.4 | 0.17 | 260 | 4.7 | 0.38 | 142 | 9.5 |
TDBF | -0.36* | 117 | 5.1 | 0.24* | 262 | 3.6 | 0.76* | 145 | 7.3 |
TDS | -0.25* | 127 | 5.0 | 0.03 | 260 | 2.5 | 0.45* | 134 | 6.5 |
TMS | -0.06 | 138 | 6.1 | -0.01 | 254 | 3.4 | 0.08 | 116 | 6.1 |
TGS | 0.10 | 145 | 7.6 | -0.10 | 260 | 3.7 | -0.25 | 115 | 7.6 |
TG | -0.29 | 122 | 9.0 | 0.01 | 265 | 3.6 | 0.72* | 143 | 9.7 |
STCF | -0.55* | 108 | 7.0 | 0.67* | 270 | 11.6 | 1.3* | 162 | 14.2 |
SDBF | -0.53* | 100 | 6.9 | 0.79* | 277 | 12.8 | 1.6* | 177 | 26.2 |
SEBF | -0.86* | 119 | 14.2 | 0.51 | 316 | 22.5 | 1.6 | 197 | 26.7 |
STG | -1.2* | 114 | 14.2 | 0.27 | 297 | 19.7 | 2.5* | 183 | 27.1 |
表4 1982-2006年温度升高1 ℃南北样带上各种植被类型物候事件变化的天数(d·a-1)
Table 4 Changes of phenological events in different vegetation types during 1982 to 2006 along North-South Transect of Eastern China (NSTEC) (d·a-1)
植被类型 Vegetation type | 返青起始期 Green-up | 休眠起始期 Dormancy | 生长季长度 Length of growing season | ||||||
---|---|---|---|---|---|---|---|---|---|
每年变化天数 Day of change per year (d·a-1) | 儒略日 Julian day | 标准误差 Standard error | 每年变化天数 Day of change per year (d·a-1) | 儒略日 Julian day | 标准误差 Standard error | 每年变化天数 Day of change per year (d·a-1) | 儒略日 Julian day | 标准误差 Standard error | |
TCTCF | -0.36* | 123 | 6.2 | 0.15 | 250 | 4.5 | 0.67* | 127 | 7.8 |
TCF | -0.45* | 118 | 7.0 | 0.30* | 268 | 5.6 | 0.93* | 150 | 10.5 |
TMF | -0.34* | 119 | 6.4 | 0.17 | 260 | 4.7 | 0.38 | 142 | 9.5 |
TDBF | -0.36* | 117 | 5.1 | 0.24* | 262 | 3.6 | 0.76* | 145 | 7.3 |
TDS | -0.25* | 127 | 5.0 | 0.03 | 260 | 2.5 | 0.45* | 134 | 6.5 |
TMS | -0.06 | 138 | 6.1 | -0.01 | 254 | 3.4 | 0.08 | 116 | 6.1 |
TGS | 0.10 | 145 | 7.6 | -0.10 | 260 | 3.7 | -0.25 | 115 | 7.6 |
TG | -0.29 | 122 | 9.0 | 0.01 | 265 | 3.6 | 0.72* | 143 | 9.7 |
STCF | -0.55* | 108 | 7.0 | 0.67* | 270 | 11.6 | 1.3* | 162 | 14.2 |
SDBF | -0.53* | 100 | 6.9 | 0.79* | 277 | 12.8 | 1.6* | 177 | 26.2 |
SEBF | -0.86* | 119 | 14.2 | 0.51 | 316 | 22.5 | 1.6 | 197 | 26.7 |
STG | -1.2* | 114 | 14.2 | 0.27 | 297 | 19.7 | 2.5* | 183 | 27.1 |
[1] |
Beaubien EG, Freeland HJ (2000). Spring phenology trends in Alberta, Canada: links to ocean temperature. International Journal of Biometeorology, 44, 53-59.
DOI URL PMID |
[2] |
Beurs KM, Henebry GM (2004). Trend analysis of the pathfinder AVHRR Land (PAL) NDVI data for the deserts of central Asia. IEEE Geoscience and Remote Sensing Letters, 1, 282-286.
DOI URL |
[3] |
Beurs KM, Henebry GM (2005). A statistical framework for the analysis of long image time series. International Journal of Remote Sensing, 26, 1551-1573.
DOI URL |
[4] |
Chmielewski FM, Müller A, Bruns E (2004). Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961-2000. Agricultural and Forest Meteorology, 121, 69-78.
DOI URL |
[5] |
Chmielewski FM, Rötzer T (2001). Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology, 108, 101-112.
DOI URL |
[6] | Compiling Committee of Vegetation Maps of 1:1,000,000 in China (中国科学院中国1:100万植被图编辑委员会) (2001) Atlas of Vegetation Maps of 1:1,000,000 in China (中国植被图集1: 100万). Science Press, Beijing. |
[7] |
Defila C, Clot B (2001). Phytophenological trends in Switzerland. International Journal of Biometeorology, 45, 203-207.
URL PMID |
[8] | Gao Q, Li XB, Yang XS (2003). Responses of vegetation and primary production in North-South Transect of Eastern China to global change under land use constraint. Acta Botanica Sinica, 45, 1274-1284. |
[9] |
Heumann BW, Seaquist JW, Eklundh L, Jönsson P (2007). AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982-2005. Remote Sensing of Environment, 108, 385-392.
DOI URL |
[10] |
Hirsch RM, Slack JR, Smith RA (1982). Techniques of trend analysis for monthly water quality data. Water Resources Research, 18, 107-121.
DOI URL |
[11] |
Karlsen SR, Solheim I, Beck PSA, Høgda1 KA, Wielgolaski FE, Tømmervik H (2007). Variability of the start of the growing season in Fennoscandia, 1982-2002. International Journal of Biometeorology, 51, 513-524.
DOI URL PMID |
[12] | Kendall MG (1975). Rank Correlation Methods. Charles Griffin, London. |
[13] |
Lettenmaier DP (1988). Multivariate nonparametric tests for trend in water quality. Water Resources Bulletin, 24, 505-512.
DOI URL |
[14] |
Libiseller C, Grimvall A (2002). Performance of partial MannKendall test for trend detection in the presence of covariates. Environmetrics, 13, 71-84.
DOI URL |
[15] |
Lucht W, Prentice IC, Myneni RB, Sitch S, Friedlingstein P, Cramer W, Bousquet P, Buermann W, Smith B (2002). Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science, 296, 1687-1689.
DOI URL PMID |
[16] |
Mann HB (1945). Nonparametric tests against trend. Econometrica, 13, 245-259.
DOI URL |
[17] |
McVicar TR, Bierwirth PN (2001). Rapidly assessing the 1997 drought in Papua New Guinea using composite AVHRR imagery. International Journal of Remote Sensing, 22, 2109-2128.
DOI URL |
[18] |
McVicar TR, Van Niel TG, Li LT, Hutchinson MF, Mu XM, Liu ZH (2007). Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. Journal of Hydrology, 338, 196-220.
DOI URL |
[19] |
Menzel A (2000). Trends in phenological phases in Europe between 1951 and 1996. International Journal of Biometeorology, 44, 76-81.
URL PMID |
[20] |
Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698-702.
DOI URL |
[21] |
Parmesan C (2007). Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 13, 1860-1872.
DOI URL |
[22] | Peng SL (彭少麟), Zhao P (赵平), Ren H (任海), Zheng FY (郑凤英) (2002). The possible heat-driven pattern variation of zonal vegetation and agricultural ecosystems along the North-South Transect of China under the global change. Earth Science Frontiers (地学前缘), 9, 217-226. (in Chinese with English abstract) |
[23] |
Piao SL, Fang JY, Zhou LM, Ciais P, Zhu B (2006). Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biology, 12, 672-685.
DOI URL |
[24] |
Reed BC, Brown JF, VanderZee D, Loveland TR, Merchant JW, Ohlen DO (1994). Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 5, 703-714.
DOI URL |
[25] | Schwarz MD, Reiter BE (2000). Changes in north American spring. International Journal of Biometeorology, 20, 929-932. |
[26] |
Stockli R, Vidale PL (2004). European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. International Journal of Remote Sensing, 25, 3303-3330.
DOI URL |
[27] | Sun PS, Liu SR, Jiang H, Liu YL, Liu JT, Lin Y, Liu XL (2008). Hydrologic effects of NDVI time series in a context of climatic variability in an upstream catchment of the Minjiang River. Journal of the American Water Resources Association, 44, 1132-1143. |
[28] | Teng L (滕菱), Ren H (任海), Peng SL (彭少麟) (2000). The natural situation of North South Transect of Eastern China. Ecologic Science (生态科学), 19(4), 1-10. (in Chinese with English abstract) |
[29] |
Tucker CJ, Pinzon JE, Brown ME, Slayback D, Pak E, Mahoney R, Vermote E, Saleous N (2005). An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26, 4485-4498.
DOI URL |
[30] | Wu YF (武永峰), He CY (何春阳), Ma Y (马瑛), Li J (李京), Zhang YL (张业利) (2005). The comparison of the current remote sensing-based vegetation greenup detection methods with the computer simulation. Advances in Earth Research (地球科学进展) 20, 724-731. (in Chinese with English abstract) |
[31] |
Xiao XM, Hagen S, Zhang QY, Keller M, Moore B (2006). Detecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images. Remote Sensing of Environment, 103, 465-473.
DOI URL |
[32] |
Xiao XM, Zhang QY, Saleska S, Hutyra L, de Camargo P, Wofsy S, Frolking S, Boles S, Keller M, Moore B (2005). Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sensing of Environment, 94, 105-122.
DOI URL |
[33] | Yan H (阎洪) (2004). Modeling spatial distribution of climate in China using thin plate smoothing spline interpolation. Scientia Geographica Sinica (地理科学), 24, 163-169. (in Chinese with English abstract) |
[34] |
Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001). Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981-1999. Journal of Geophysics Research, 106, 20069-20083.
DOI URL |
[1] | 邓文婕, 吴华征, 李添翔, 周丽娜, 胡仁勇, 金鑫杰, 张永普, 张永华, 刘金亮. 洞头国家级海洋公园主要植被类型及其特征[J]. 植物生态学报, 2024, 48(2): 254-268. |
[2] | 陈雪萍, 赵学勇, 张晶, 王瑞雄, 卢建男. 基于地理探测器的科尔沁沙地植被NDVI时空变化特征及其驱动因素[J]. 植物生态学报, 2023, 47(8): 1082-1093. |
[3] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[4] | 缪丽娟, 张宇阳, 揣小伟, 包刚, 何昱, 朱敬雯. 亚洲旱区草地NDVI对气候变化的响应及滞后效应[J]. 植物生态学报, 2023, 47(10): 1375-1385. |
[5] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[6] | 王国宏, 郭柯, 谢宗强, 唐志尧, 蒋延玲, 方精云. 《中国植被志》研编规范的若干说明、补充与修订[J]. 植物生态学报, 2022, 46(3): 368-372. |
[7] | 李东, 田秋香, 赵小祥, 林巧玲, 岳朋芸, 姜庆虎, 刘峰. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232-242. |
[8] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[9] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[10] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
[11] | 张欢, 张云玲, 张彦才, 阎平. 新疆奇台荒漠类草地自然保护区主要植物群落及其特征[J]. 植物生态学报, 2021, 45(8): 918-924. |
[12] | 倪铭, 张曦月, 姜超, 王鹤松. 中国西南部地区植被对极端气候事件的响应[J]. 植物生态学报, 2021, 45(6): 626-640. |
[13] | 汲玉河, 周广胜, 王树东, 王丽霞, 周梦子. 2000-2019年秦岭地区植被生态质量演变特征及 驱动力分析[J]. 植物生态学报, 2021, 45(6): 617-625. |
[14] | 陈哲, 汪浩, 王金洲, 石慧瑾, 刘慧颖, 贺金生. 基于物候相机归一化植被指数估算高寒草地植物地上生物量的季节动态[J]. 植物生态学报, 2021, 45(5): 487-495. |
[15] | 周明星, 李登秋, 邹建军. 基于稠密Landsat数据的邛崃山大熊猫栖息地植被变化研究[J]. 植物生态学报, 2021, 45(4): 355-369. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19