植物生态学报 ›› 2009, Vol. 33 ›› Issue (1): 118-124.DOI: 10.3773/j.issn.1005-264x.2009.01.013
收稿日期:
2008-04-28
接受日期:
2008-06-05
出版日期:
2009-04-28
发布日期:
2009-01-30
作者简介:
E-mail: yyzyb@163.com
基金资助:
ZHOU Yong-Bin1(), WU Dong-Dong1, YU Da-Pao2, SUI Chen-Ying1
Received:
2008-04-28
Accepted:
2008-06-05
Online:
2009-04-28
Published:
2009-01-30
摘要:
通常认为, 随着林木不断接近其海拔分布极限, 光合作用产量不断下降, 导致碳水化合物供应不足(碳供应限制), 或者低温限制了碳投资(生长限制)。植物组织内非结构性碳水化合物(Nonstructural carbohydrates, NSC)的含量反映了植物碳供应与碳吸收的平衡。为了检验“碳供应限制”和“生长抑制”假说, 我们对长白山海拔1 700~ 2 050 m的自然生境下生长的岳桦(Betula ermanii)的叶片和枝条组织的NSC含量进行了比较。结果表明: 岳桦叶片的NSC含量随海拔升高变化不显著, 枝条的NSC含量随海拔升高显著增加; 叶片和枝条中淀粉含量与可溶性总糖含量的比值均随海拔的升高而减小; 林线附近的岳桦林木不存在碳水化合物供应不足的问题, 这在一定程度上表明生长限制导致长白山岳桦林线的形成。
周永斌, 吴栋栋, 于大炮, 隋琛莹. 长白山不同海拔岳桦非结构碳水化合物含量的变化. 植物生态学报, 2009, 33(1): 118-124. DOI: 10.3773/j.issn.1005-264x.2009.01.013
ZHOU Yong-Bin, WU Dong-Dong, YU Da-Pao, SUI Chen-Ying. VARIATIONS OF NONSTRUCTURAL CARBOHYDRATE CONTENT IN BETULA ERMANII AT DIFFERENT ELEVATIONS OF CHANGBAI MOUNTAIN, CHINA. Chinese Journal of Plant Ecology, 2009, 33(1): 118-124. DOI: 10.3773/j.issn.1005-264x.2009.01.013
图1 不同海拔岳桦叶片和枝条总糖含量(平均值±标准误差, n=3) 标大写字母者为0.01显著水平
Fig. 1 Total sugar content in leaves and branches of Betula ermanii growing at different altitudes (mean ± SE, n=3) Capital letters indicate significant difference at the 0.01 probability level among altitudes by LSD test
图2 不同海拔岳桦叶片和枝条的蔗糖和果糖含量的变化(平均值±标准误差, n=3) 标大写字母者为0.01显著水平, 小写字母者为0.05显著水平
Fig. 2 Sucrose and fructose content in leaves and branches of Betula ermanii growing at different altitudes (mean ± SE, n=3) Capital letters indicate significant difference at the 0.01 probability level, and small letters indicate significant difference at the 0.05 probability level among altitudes by LSD test
图3 不同海拔岳桦叶片和枝条淀粉含量(平均值±标准误差, n=3) 标小写字母者为0.05显著水平
Fig. 3 Starch content in leaves and branches of Betula ermanii growing at different altitudes (mean ± SE, n=3) Small letters indicate significant difference at the 0.05 probability level among altitudes by LSD test
图4 不同海拔岳桦叶片和枝条中NSC的含量(可溶性总糖含量与淀粉含量之和) 标小写字母者为0.05显著水平
Fig. 4 Concentrations of nonstructural carbohydrates (NSC), as the sum of free sugars and starch, in leaves and branches of Betula ermanii growing at different altitudes Small letters indicate significant difference at the 0.05 probability level among altitudes by LSD test
[1] |
Chapin FS, Schulze ED, Mooney HA (1990). The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21, 423-447.
DOI URL |
[2] | Chen DK (陈大珂), Feng ZW (冯宗炜) (1985). Alpine and subalpine vegetation in Changbai Mountain. Research of Forest Ecosystem (森林生态系统研究), 5, 49-54. (in Chinese) |
[3] |
Fischer C, Höll W (1991). Food reserves of Scots pine ( Pinus sylvestris L.). I. Seasonal changes in the carbohydrate and fat reserves of pine needles. Trees, 5, 187-195.
DOI URL |
[4] | Hacquet B (1780). Mineralogical-botanical pleasure trip from the mountains in Terglou Carniola to the mountains in Tyrol Glockner. Schriften der Berlinischen Gesellschaft Naturforschenden Freunde, 1, 119-201. (in German) |
[5] |
Hoch G, Körner Ch (2003). The carbon charging of pines at the climatic treeline: a global comparison. Oecologia, 135, 10-21.
DOI URL PMID |
[6] |
Hoch G, Popp M, Körner Ch (2002). Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos, 98, 361-374.
DOI URL |
[7] |
Körner Ch (1998). A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459.
DOI URL PMID |
[8] | Körner Ch (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems 2nd edn. Springer, Berlin. |
[9] |
Körner Ch, Paulsen J (2004). A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31, 713-732.
DOI URL |
[10] | Li MH, Hoch G, Körner Ch (2001). Spatial variability of mobile carbohydrates within Pinus cembra trees at the Alpine treeline. Phyton, 41, 203-312. |
[11] |
Li MH, Hoch G, Körner Ch (2002). Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline. Trees, 16, 331-337.
DOI URL |
[12] | Li MH (李迈和), Kräuchi N (2005). The state of knowledge on alpine tree line and suggestions for future research. Journal of Sichuan Forestry Science and Technology (四川林业科技), 26(4), 36-42. (in Chinese with English abstract) |
[13] |
Li MH, Yang J, Kräuchi N (2003). Growth responses of Picea abies and Larix decidua to elevation in subalpine areas of Tyrol, Austria. Canadian Journal of Forest Research, 33, 653-662.
DOI URL |
[14] |
Li MH, Yang J (2004). Effects of microsite on growth of Pinus cembra in the subalpine zone of the Austrian Alps. Annals of Forest Science, 61, 319-325.
DOI URL |
[15] | Pan QM (潘庆民), Han XG (韩兴国), Bai YF (白永飞), Yang JC (杨景成) (2002). Advances in physiology and ecology studies on stored non-structure carbohydrates in plants. Chinese Bulletin of Botany (植物学通报), 19, 30-38. (in Chinese with English abstract) |
[16] |
Piper F, Cavieres L, Reyes-Diaz M, Corcuera L (2006). Carbon sink limitation and frost tolerance control performance of the tree Kageneckia angustifolia D. Don (Rosaceae) at the treeline in central Chile. Plant Ecology, 185, 29-39.
DOI URL |
[17] | Shi PL (石培礼), Li WH (李文华) (2000). Boundary form effects of timberline ecotone on colonization of woody plants and timberline dynamics in Changbai Mountain. Acta Ecologica Sinica (生态学报), 20, 573-580. (in Chinese with English abstract) |
[18] |
Shi P, Körner Ch, Hoch G (2006). End of season carbon supply status of woody species near the treeline in western China. Basic and Applied Ecology, 7, 370-377.
DOI URL |
[19] | Shi P, Körner Ch, Hoch G (2008). A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas. Functional Ecology, 22, 213-220. |
[20] | Smith AM, Stitt M (2007). Coordination of carbon supply and plant growth. Plant, Cell and Environment, 30, 1126-1149. |
[21] | Shanghai Society for Plant Physiology (上海植物生理学会) (1985). The Experimental Guide for Plant Physiology (植物生理学实验手册). Shanghai Science and Technology Press, Shanghai, 134-138. (in Chinese) |
[22] | Stevens GC, Fox JF (1991). The causes of treeline. Annual Review of Ecology and Systematics, 22, 177-191. |
[23] | Tranquillini W (1979). Physiological Ecology of the Alpine Timberline: Tree Existence at High Altitude with Special Reference to the European Alps, Ecological Studies 31. Springer, Berlin, 1-137. |
[24] |
Wang F, Sanz A, Brenner ML, Smith A (1993). Sucrose synthase, starch accumulation, and tomato fruit sink strength. Plant Physiology, 101, 321-327.
DOI URL PMID |
[25] |
Wieser G (1997). Carbon dioxide gas exchange of cembran pine ( Pinus cembra) at the alpine timberline during winter. Tree Physiology, 17, 473-477.
URL PMID |
[26] | Yu DP (于大炮), Zhou L (周莉), Dong BL (董百丽), Dai LM (代力民), Wang QL (王庆礼) (2004). Structure and dynamics of Betula ermanii population on the northern slope of Changbai Mountain. Chinese Journal of Ecology (生态学杂志), 23(5), 30-34. (in Chinese with English abstract) |
[27] | Zhang FS (张凤山), Chi ZW (迟振文), Li XY (李晓晏) (1980). The analysis and primary evaluation on the climate of Changbai Mountain. Research of Forest Ecosystem (森林生态系统研究), 1, 193-214. (in Chinese) |
[28] | Zhou XF (周晓峰), Wang XC (王晓春), Han SJ (韩士杰), Zou CJ (邹春静) (2002). The effect of global climate change on the dynamics of Betula ermanii-tundra ecotone in the Changbai Mountains. Earth Science Frontiers (地学前缘), 9, 227-231. (in Chinese) |
[29] | Zou CJ (邹春静), Han SJ (韩士杰), Zhou YM (周玉梅), Wang XC (王晓春), Cheng YL (陈永亮) (2001). Study on ecological characteristics of Betula ermanii population in ecotone. Chinese Journal of Applied & Environmental Biology (应用与环境生物学报), 7, 1-6. (in Chinese with English abstract) |
[30] | Zou CJ (邹春静), Wang XC (王晓春), Han SJ (韩士杰) (2004). Position of Betula ermanii population ecotone in Changbai Mountain. Chinese Journal of Applied Ecology (应用生态学报), 15, 2217-2220. (in Chinese with English abstract) |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[3] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[4] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[5] | 余海霞, 曲鲁平, 汤行昊, 刘南, 张子雷, 王浩, 王艺璇, 邵长亮, 董刚, 胡亚林. 闽楠和木荷非结构性碳水化合物对不同模式热浪的差异性响应[J]. 植物生态学报, 2023, 47(2): 249-261. |
[6] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[7] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[8] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[9] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
[10] | 伍敏, 田雨, 樊大勇, 张祥雪. 干旱胁迫下毛白杨和元宝槭的水力学调控[J]. 植物生态学报, 2022, 46(9): 1086-1097. |
[11] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[12] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[13] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[14] | 李思源, 张照鑫, 饶良懿. 桑苗非结构性碳水化合物和生长激素对水淹胁迫的响应[J]. 植物生态学报, 2022, 46(3): 311-320. |
[15] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19