植物生态学报 ›› 2012, Vol. 36 ›› Issue (9): 965-972.DOI: 10.3724/SP.J.1258.2012.00965
收稿日期:
2011-11-18
接受日期:
2012-05-16
出版日期:
2012-11-18
发布日期:
2012-09-06
通讯作者:
韩有志
作者简介:
(E-mail: hanyouzhi@sxau.edu.cn)
YANG Xiu-Yun, HAN You-Zhi*(), WU Xiao-Gang
Received:
2011-11-18
Accepted:
2012-05-16
Online:
2012-11-18
Published:
2012-09-06
Contact:
HAN You-Zhi
摘要:
在华北落叶松(Larix principis-rupprechtii)林选取采伐干扰样地和未采伐干扰样地进行对比研究, 分析采伐干扰造成林下土壤水分和氮营养空间异质性的改变对细根生物量空间变异的影响。采用空间格局分析的小支撑、多样点的设计原则, 对每个样点的土壤分3层取样(0-10 cm、10-20 cm、20-30 cm)。进行细根(≤1 mm和1-2 mm)生物量与土壤含水量、全氮、硝态氮、铵态氮和土壤pH的偏相关分析, 以及细根生物量变异函数值和土壤各因子变异函数值的线性回归分析。研究结果表明, 在不同样地, 细根生物量与土壤各因子均表现为正相关关系, 不同土层相关性强弱表现各异, 其中土壤含水量与细根生物量的相关性显著。受采伐干扰后, 细根生物量与土壤含水量、全氮、土壤硝态氮空间变异的关联性更趋于明显。多元线性回归分析结果表明, 采伐干扰样地细根生物量的空间变异更多地受到土壤多因子的综合影响, 而未采伐干扰样地的细根生物量受土壤水分、全氮和硝态氮单独效应的影响更大。
杨秀云, 韩有志, 武小钢. 华北落叶松林细根生物量对土壤水分、氮营养空间异质性改变的响应. 植物生态学报, 2012, 36(9): 965-972. DOI: 10.3724/SP.J.1258.2012.00965
YANG Xiu-Yun, HAN You-Zhi, WU Xiao-Gang. Response of fine root biomass to changes in spatial heterogeneity of soil moisture and nitrogen in Larix principis-rupprechtii forest. Chinese Journal of Plant Ecology, 2012, 36(9): 965-972. DOI: 10.3724/SP.J.1258.2012.00965
样地 Plot | 胸径 DBH (cm) | 树高 Tree height (m) | 林分密度 Density of stand (ind.·hm-2) | 郁闭度 Canopy density | 坡度 Slope gradient (°) | 坡向 Slope aspect | 坡位 Slope position | 海拔 Altitude (m) | 枯枝落叶层厚度 Thickness of litter (cm) |
---|---|---|---|---|---|---|---|---|---|
采伐干扰样地 Cutting disturbance plot | 23.5 | 22 | 507 | 0.6 | 25 | 东北Northeast | 中 Middle slope | 1 822 | 2 |
未采伐干扰样地 Non-cutting disturbance plot | 17.9 | 24 | 751 | 0.8 | 30 | 东北Northeast | 中上 Upper-middle slope | 1 890 | 3 |
表1 研究样地基本状况
Table 1 Basic status of study plots
样地 Plot | 胸径 DBH (cm) | 树高 Tree height (m) | 林分密度 Density of stand (ind.·hm-2) | 郁闭度 Canopy density | 坡度 Slope gradient (°) | 坡向 Slope aspect | 坡位 Slope position | 海拔 Altitude (m) | 枯枝落叶层厚度 Thickness of litter (cm) |
---|---|---|---|---|---|---|---|---|---|
采伐干扰样地 Cutting disturbance plot | 23.5 | 22 | 507 | 0.6 | 25 | 东北Northeast | 中 Middle slope | 1 822 | 2 |
未采伐干扰样地 Non-cutting disturbance plot | 17.9 | 24 | 751 | 0.8 | 30 | 东北Northeast | 中上 Upper-middle slope | 1 890 | 3 |
样地 Plot | 细根径级 Diameter class of fine root | 土层 Soil layer (cm) | 土壤含水量 Soil water content | 土壤全氮 Soil total nitrogen | 土壤硝态氮 Soil nitrate nitrogen | 土壤铵态氮 Soil ammonium nitrogen | 土壤pH Soil pH |
---|---|---|---|---|---|---|---|
采伐干扰样地 Cutting disturbance plot | ≤1 mm | 0-10 | 0.328** | 0.109** | 0.078* | 0.050 | 0.021 |
10-20 | 0.227** | 0.022 | 0.101 | 0.166** | 0.010 | ||
20-30 | 0.128** | 0.114 | 0.134** | 0.036 | 0.059 | ||
1-2 mm | 0-10 | 0.258** | 0.041 | 0.091** | 0.020 | 0.069 | |
10-20 | 0.030 | 0.097** | 0.105 | 0.162** | 0.083 | ||
20-30 | 0.142 | 0.186** | 0.041 | 0.185** | 0.153** | ||
未采伐干扰样地 Non-cutting disturbance plot | ≤1 mm | 0-10 | 0.207** | 0.156** | 0.102 | 0.009 | 0.104* |
10-20 | 0.277** | 0.095** | 0.055 | 0.007 | 0.038 | ||
20-30 | 0.248** | 0.023 | 0.051 | 0.040 | 0.077 | ||
1-2 mm | 0-10 | 0.080** | 0.032 | 0.050 | 0.170** | 0.007 | |
10-20 | 0.254** | 0.119** | 0.164** | 0.091 | 0.016 | ||
20-30 | 0.188** | 0.023 | 0.068 | 0.017 | 0.013 |
表2 华北落叶松林细根生物量与土壤含水量、氮营养和pH值的偏相关系数
Table 2 Partial correlation coefficient between fine root biomass of Larix principis-rupprechtii and soil water content, nitrogen and pH value
样地 Plot | 细根径级 Diameter class of fine root | 土层 Soil layer (cm) | 土壤含水量 Soil water content | 土壤全氮 Soil total nitrogen | 土壤硝态氮 Soil nitrate nitrogen | 土壤铵态氮 Soil ammonium nitrogen | 土壤pH Soil pH |
---|---|---|---|---|---|---|---|
采伐干扰样地 Cutting disturbance plot | ≤1 mm | 0-10 | 0.328** | 0.109** | 0.078* | 0.050 | 0.021 |
10-20 | 0.227** | 0.022 | 0.101 | 0.166** | 0.010 | ||
20-30 | 0.128** | 0.114 | 0.134** | 0.036 | 0.059 | ||
1-2 mm | 0-10 | 0.258** | 0.041 | 0.091** | 0.020 | 0.069 | |
10-20 | 0.030 | 0.097** | 0.105 | 0.162** | 0.083 | ||
20-30 | 0.142 | 0.186** | 0.041 | 0.185** | 0.153** | ||
未采伐干扰样地 Non-cutting disturbance plot | ≤1 mm | 0-10 | 0.207** | 0.156** | 0.102 | 0.009 | 0.104* |
10-20 | 0.277** | 0.095** | 0.055 | 0.007 | 0.038 | ||
20-30 | 0.248** | 0.023 | 0.051 | 0.040 | 0.077 | ||
1-2 mm | 0-10 | 0.080** | 0.032 | 0.050 | 0.170** | 0.007 | |
10-20 | 0.254** | 0.119** | 0.164** | 0.091 | 0.016 | ||
20-30 | 0.188** | 0.023 | 0.068 | 0.017 | 0.013 |
图2 土壤含水量、氮营养和pH值对细根生物量空间变异的解释量。 A, 0-10 cm土层; B, 10-20 cm土层; C, 20-30 cm土层; LFR, 活细根; pH, 土壤pH值; NO3-, 土壤硝态氮; NH4+, 土壤铵态氮; TN, 土壤全氮; WC, 土壤含水量。
Fig. 2 Explained variations in semivariance of fine root biomass by soil water content and nitrogen and pH. A, 0-10 cm soil layer; B, 10-20 cm soil layer; C, 20-30 cm soil layer; LFR, live fine root; pH, soil pH value; NO3-, soil nitrate nitrogen; NH4+, soil ammonium nitrogen; TN, soil total nitrogen; WC, soil water content.
细根径级 Diameter class of fine root | 土层 Soil layer (cm) | 样地 Plot | 土壤含水量 Soil water content | 土壤pH Soil pH | 土壤全氮 Soil total nitrogen | 土壤硝态氮 Soil nitrate nitrogen | 土壤铵态氮 Soil ammonium nitrogen | R2 | F |
---|---|---|---|---|---|---|---|---|---|
≤1 mm | 0-10 | 采伐干扰样地 Cutting disturbance plot | 2.085* | -0.383 | 0.044 | -0.108 | -1.686** | 0.732 | 8.170* |
未采伐干扰样地 Non-cutting disturbance plot | -0.195 | -0.054 | -0.053 | 0.962** | 0.146 | 0.842 | 15.233** | ||
10-20 | 采伐干扰样地 Cutting disturbance plot | -0.063 | 0.766** | -0.860 | 1.172 | 0.082 | 0.195 | 1.388 | |
未采伐干扰样地 Non-cutting disturbance plot | 0.354 | -0.345 | 0.743 | -0.834** | -0.073 | 0.338 | 2.120 | ||
20-30 | 采伐干扰样地 Cutting disturbance plot | 0.812 | 0.040 | 0.245 | -0.217 | 0.004 | 0.642 | 5.618* | |
未采伐干扰样地 Non-cutting disturbance plot | -0.866 | 0.537 | 0.377 | 0.053 | -0.120 | 0.142 | 1.178 | ||
1-2 mm | 0-10 | 采伐干扰样地 Cutting disturbance plot | 1.005 | 0.077 | -0.088 | -0.232 | -1.346* | 0.693 | 6.896* |
未采伐干扰样地 Non-cutting disturbance plot | 0.230 | 0.765* | 0.436 | -0.641 | -0.354 | 0.259 | 1.679 | ||
10-20 | 采伐干扰样地 Cutting disturbance plot | -0.312 | 0.134 | 0.344 | -0.871 | 0.139 | 0.785 | 10.660** | |
未采伐干扰样地 Non-cutting disturbance plot | -0.087 | -0.257 | 0.725* | -0.535 | 0.443 | 0.569 | 4.326* | ||
20-30 | 采伐干扰样地 Cutting disturbance plot | -0.576 | 0.504 | -0.143 | -0.590 | -0.043 | 0.645 | 5.681** | |
未采伐干扰样地 Non-cutting disturbance plot | -0.151 | 0.820** | 0.452** | -0.520** | 0.199 | 0.906 | 27.170** |
表3 土壤含水量、氮营养与细根生物量半方差函数的多元线性回归系数
Table 3 Multiple linear regression coefficients between the semi-variance of soil water content, nitrogen and that of fine root biomass
细根径级 Diameter class of fine root | 土层 Soil layer (cm) | 样地 Plot | 土壤含水量 Soil water content | 土壤pH Soil pH | 土壤全氮 Soil total nitrogen | 土壤硝态氮 Soil nitrate nitrogen | 土壤铵态氮 Soil ammonium nitrogen | R2 | F |
---|---|---|---|---|---|---|---|---|---|
≤1 mm | 0-10 | 采伐干扰样地 Cutting disturbance plot | 2.085* | -0.383 | 0.044 | -0.108 | -1.686** | 0.732 | 8.170* |
未采伐干扰样地 Non-cutting disturbance plot | -0.195 | -0.054 | -0.053 | 0.962** | 0.146 | 0.842 | 15.233** | ||
10-20 | 采伐干扰样地 Cutting disturbance plot | -0.063 | 0.766** | -0.860 | 1.172 | 0.082 | 0.195 | 1.388 | |
未采伐干扰样地 Non-cutting disturbance plot | 0.354 | -0.345 | 0.743 | -0.834** | -0.073 | 0.338 | 2.120 | ||
20-30 | 采伐干扰样地 Cutting disturbance plot | 0.812 | 0.040 | 0.245 | -0.217 | 0.004 | 0.642 | 5.618* | |
未采伐干扰样地 Non-cutting disturbance plot | -0.866 | 0.537 | 0.377 | 0.053 | -0.120 | 0.142 | 1.178 | ||
1-2 mm | 0-10 | 采伐干扰样地 Cutting disturbance plot | 1.005 | 0.077 | -0.088 | -0.232 | -1.346* | 0.693 | 6.896* |
未采伐干扰样地 Non-cutting disturbance plot | 0.230 | 0.765* | 0.436 | -0.641 | -0.354 | 0.259 | 1.679 | ||
10-20 | 采伐干扰样地 Cutting disturbance plot | -0.312 | 0.134 | 0.344 | -0.871 | 0.139 | 0.785 | 10.660** | |
未采伐干扰样地 Non-cutting disturbance plot | -0.087 | -0.257 | 0.725* | -0.535 | 0.443 | 0.569 | 4.326* | ||
20-30 | 采伐干扰样地 Cutting disturbance plot | -0.576 | 0.504 | -0.143 | -0.590 | -0.043 | 0.645 | 5.681** | |
未采伐干扰样地 Non-cutting disturbance plot | -0.151 | 0.820** | 0.452** | -0.520** | 0.199 | 0.906 | 27.170** |
1 | Alder PB, Lauenroth WK ( 2000). Livestock exclusion increases the spatial heterogeneity of vegetation in Colorado shortgrass steppe. Applied Vegetation Science, 3, 213-222. |
2 | Bigwood DW, Inouye DW ( 1998). Spatial pattern analysis of seed banks: an improved method and optimized sampling. Ecology, 69, 497-507. |
3 | Cui XY ( 崔晓阳), Song JF ( 宋金凤 ) ( 2005). Soil NH4 +/NO3 - nitrogen characteristics in primary forests and the adaptability of some coniferous species . Acta Ecologica Sinica (生态学报), 25, 3082-3092. (in Chinese with English abstract) |
4 | Du F ( 杜峰), Liang ZS ( 梁宗锁), Xu XX ( 徐学选), Zhang XC ( 张兴昌), Shan L ( 山仑 ) ( 2008). Spatial heterogeneity of soil nutrients and aboveground biomass in abandoned old-fields of Loess Hilly Region in Northern Shaanxi, China. Acta Ecologica Sinica (生态学报), 28, 13-22. (in Chinese with English abstract) |
5 | Fahey TJ, Hughes JW ( 1994). Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. Journal of Ecology, 82, 533-548. |
6 | Fang YT ( 方运霆), Mo JM ( 莫江明), Zhou GY ( 周国逸), Gundersen P, Li DJ ( 李德军), Jiang YQ ( 江远清 ) ( 2004). The short-term responses of soil available nitrogen of Dinghushan forests to simulated N deposition in subtropical China. Acta Ecologica Sinica (生态学报), 24, 2353-2359. (in Chinese with English abstract) |
7 | Gallardo A ( 2003). Spatial variability of soil properties in a floodplain forest in northwest Spain. Ecosystems, 6, 564-576. |
8 | Gu JC ( 谷加存), Wang ZQ ( 王政权), Han YZ ( 韩有志), Wang XR ( 王向荣), Mei L ( 梅莉 ) ( 2005). Effects of harvesting on spatial heterogeneity of soil moisture in secondary forests of Maoershan region. Acta Ecologica Sinica (生态学报), 25, 2001-2009. (in Chinese with English abstract) |
9 | Guo DL, Mou P, Jones RH, Mitchell RJ ( 2002). Temporal changes in spatial patterns of soil moisture following disturbance: an experimental approach. Journal of Ecology, 90, 338-347. |
10 | Hutchings MJ, John EA, Wijesinghe DK ( 2003). Toward understanding the consequences of soil heterogeneity for plant populations and communities. Ecology, 84, 2322-2334. |
11 | Hutchinson TF, Boemer REJ, Iverson LR, Sutherland S, Sutherland E ( 1999). Landscape patterns of understory composition and richness across a moisture and nitrogen mineralization gradient in Ohio (U.S.A.) Quercus forests. Plant Ecology, 144, 177-189. |
12 | Lechowicz MJ, Bell G ( 1991). The ecology and genetics of fitness in forest plants. II. Microspatial heterogeneity of the edaphic environment. Journal of Ecology, 79, 687-696. |
13 | Lister AJ, Mou PP, Jones RH, Mitchell RJ ( 2000). Spatial patterns of soil and vegetation in a 40-year-old slash pine (Pinus elliottii) forest in the Coastal Plain of South Carolina, USA. Canadian Journal of Forest Research, 30, 145-155. |
14 | Liu GS ( 刘光崧 ) (1996). Soil Physical and Chemical Analysis and Description of Soil Profiles (土壤理化分析与剖面描述). China Standards Press, Beijing. 33-37. (in Chinese) |
15 | Nowtony I, Dähne J, Klingethöfer D, Rothe GM ( 1998). Effect of artificial soil acidification and liming on growth and nutrient status of mycorrhizal roots of Norway spruce (Picea abies(L.) Karst.). Plant and Soil, 199, 29-40. |
16 | Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H ( 1996). Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil, 187, 159-219. |
17 | Wang HT ( 王海涛), He XD ( 何兴东), Gao YB ( 高玉葆), Lu JG ( 卢建国), Xue PP ( 薛苹苹), Ma D ( 马迪 ) ( 2007). Density in Artemisia ordosica successional community in response to spatial heterogeneity of soil moisture and organic matter. Journal of Plant Ecology (Chinese Version)(植物生态学报), 31, 1145-1153. (in Chinese with English abstract) |
18 | Wei LY ( 韦兰英), Shangguan ZP ( 上官周平 ) ( 2006). Relationship between vertical distribution of fine root in different successional stages of herbaceous vegetation and soil environment in Loess Plateau. Acta Ecologica Sinica (生态学报), 26, 3740-3748. (in Chinese with English abstract) |
19 | Wullschleger SD, Jackson RB, Currie WS, Friend AD, Luo YQ, Mouillot F, Pan YD, Shao GF ( 2001). Below-ground processes in gap models for simulating forest response to global change. Climate Change, 51, 449-473. |
20 | Xun JJ ( 荀俊杰), Li JY ( 李俊英), Chen JW ( 陈建文), Shi JW ( 史建伟), Wang MB ( 王孟本 ) ( 2009). Relationships of fine root standing length of Caragana korshinskii seedlings with environmental factors. Chinese Journal of Plant Ecology (植物生态学报), 33, 764-771. (in Chinese with English abstract) |
21 | Yang LW ( 杨丽韫), Luo TX ( 罗天祥), Wu ST ( 吴松涛 ) ( 2007). Fine root biomass and its depth distribution across the primitive Korean pine and broad-leaved forest and its secondary forests in Changbai Mountain, Northeast China. Acta Ecologica Sinica (生态学报), 27, 3609-3617. (in Chinese with English abstract) |
22 | Yang XY ( 杨秀云), Hang YZ ( 韩有志), Ning P ( 宁鹏), Wu XG ( 武小钢 ) ( 2011a). The effect of cutting disturbance on spatial heterogeneity of soil NO3 --N and NH4 +-N in a larch (Larix principis-rupprechtii) forest . Acta Scientiae Circumstantiae (环境科学学报), 31, 430-439. (in Chinese with English abstract) |
23 | Yang XY ( 杨秀云), Hang YZ ( 韩有志), Ning P ( 宁鹏), Wu XG ( 武小钢 ) (2011b). Effects of harvesting on spatial heterogeneity of soil moisture, pH and total N in Larix principis-rupprechtii forests in Guandi Mountain. Acta Pedologica Sinica (土壤学报), 2011,48, 356-365. (in Chinese with English abstract) |
24 | Yang XY ( 杨秀云), Hang YZ ( 韩有志), Zhang YX ( 张芸香), Wu XG ( 武小钢 ) ( 2012). Effects of cutting disturbance on spatial heterogeneity of fine root biomass of Larix principis- rupprechtii. Acta Ecologica Sinica (生态学报), 32, 64-73. (in Chinese with English abstract) |
25 | Zhang XQ ( 张小全 ) ( 2001). Fine-root biomass, production and turnover of trees in relations to environmental conditions. Forest Research (林业科学研究), 14, 566-573. (in Chinese with English abstract) |
26 | Zhao Z ( 赵忠), Li P ( 李鹏), Xue WP ( 薛文鹏), Guo SW ( 郭生武 ) ( 2004). Study on relations of growth and vertical distribution of fine root system of main planting tree species to soil density in the Weibei Loess Plateau. Scientia Silvae Sinicae (林业科学), 40(5), 50-55. (in Chinese with English abstract) |
27 | Zhou ZC ( 周正朝), Shangguan ZP ( 上官周平 ) ( 2005). Dynamic changes of soil ecological factors in Ziwuling secondary forest area under human disturbance. Chinese Journal of Applied Ecology (应用生态学报), 16, 1586-1590. (in Chinese with English abstract) |
[1] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[2] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[3] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[4] | 罗源林, 马文红, 张芯毓, 苏闯, 史亚博, 赵利清. 内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化[J]. 植物生态学报, 2022, 46(11): 1364-1375. |
[5] | 赵阳, 栾军伟, 王一, 杨怀, 刘世荣. 模拟干旱和磷添加对热带低地雨林氮矿化过程的影响[J]. 植物生态学报, 2022, 46(1): 102-113. |
[6] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[7] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[8] | 扈明媛, 袁野, 戴晓琴, 付晓莉, 寇亮, 王辉民. 亚热带人工林乔灌草根际土壤氮矿化特征[J]. 植物生态学报, 2020, 44(12): 1285-1295. |
[9] | 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞. 底座入土深度和面积对典型草原土壤呼吸测定结果的影响[J]. 植物生态学报, 2019, 43(2): 152-164. |
[10] | 牟静, 宾振钧, 李秋霞, 卜海燕, 张仁懿, 徐当会. 氮硅添加对青藏高原高寒草甸土壤氮矿化的影响[J]. 植物生态学报, 2019, 43(1): 77-84. |
[11] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[12] | 张鑫, 邢亚娟, 闫国永, 王庆贵. 细根对降水变化响应的meta分析[J]. 植物生态学报, 2018, 42(2): 164-172. |
[13] | 许浩, 胡朝臣, 许士麒, 孙新超, 刘学炎. 外来植物入侵对土壤氮有效性的影响[J]. 植物生态学报, 2018, 42(11): 1120-1130. |
[14] | 马志良, 赵文强, 赵春章, 刘美, 朱攀, 刘庆. 青藏高原东缘窄叶鲜卑花灌丛生长季土壤无机氮对增温和植物去除的响应[J]. 植物生态学报, 2018, 42(1): 86-94. |
[15] | 柴曦, 李英年, 段呈, 张涛, 宗宁, 石培礼, 何永涛, 张宪洲. 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子[J]. 植物生态学报, 2018, 42(1): 6-19. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19