植物生态学报 ›› 2018, Vol. 42 ›› Issue (1): 86-94.DOI: 10.17521/cjpe.2017.0086
马志良1,2,赵文强1,赵春章1,刘美1,2,朱攀1,刘庆1,*()
出版日期:
2018-01-20
发布日期:
2017-06-22
通讯作者:
刘庆 ORCID:0000-0002-7046-0307
基金资助:
MA Zhi-Liang1,2,ZHAO Wen-Qiang1,ZHAO Chun-Zhang1,LIU Mei1,2,ZHU Pan1,LIU Qing1,*()
Online:
2018-01-20
Published:
2017-06-22
Contact:
LIU Qing ORCID:0000-0002-7046-0307
Supported by:
摘要:
为了揭示气候变暖背景下高寒灌丛土壤氮转化过程, 该文研究了青藏高原东缘窄叶鲜卑花(Sibiraea angustata)灌丛生长季节土壤硝态氮和铵态氮含量对增温和去除植物的响应。结果表明: 窄叶鲜卑花灌丛土壤硝态氮和铵态氮含量具有明显的季节动态。整个生长季节, 土壤硝态氮含量呈先增加后降低的趋势, 而铵态氮含量均表现为一直增加的趋势。在生长季初期和中期, 各处理土壤硝态氮含量均显著高于铵态氮含量, 而在生长季末期土壤硝态氮含量均显著低于铵态氮含量, 说明该区域土壤氮转化过程在生长季初期和中期以硝化作用为主, 而在生长季末期以氨化作用为主。不同时期土壤硝态氮和铵态氮含量对增温和去除植物的响应不同: 增温对硝态氮的影响主要发生在生长季中期和末期, 且因植物处理的不同而有显著差异, 增温仅在生长季中期使不去除植物样方铵态氮含量显著升高。去除植物对土壤硝态氮的影响仅表现在对照样方(不增温), 去除植物显著提高了生长季初期和中期土壤硝态氮含量, 显著降低了生长季末期土壤硝态氮含量; 同时去除植物显著降低了增温样方生长季中期土壤铵态氮含量。灌丛植被在生长季初期和中期可能主要吸收土壤硝态氮, 其吸收过程不受土壤增温的影响。
马志良, 赵文强, 赵春章, 刘美, 朱攀, 刘庆. 青藏高原东缘窄叶鲜卑花灌丛生长季土壤无机氮对增温和植物去除的响应. 植物生态学报, 2018, 42(1): 86-94. DOI: 10.17521/cjpe.2017.0086
MA Zhi-Liang, ZHAO Wen-Qiang, ZHAO Chun-Zhang, LIU Mei, ZHU Pan, LIU Qing. Responses of soil inorganic nitrogen to increased temperature and plant removal during the growing season in a Sibiraea angustata scrub ecosystem of eastern Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2018, 42(1): 86-94. DOI: 10.17521/cjpe.2017.0086
图1 试验期间各处理下5 cm土层土壤日平均温度、70 cm空气日平均温度和5 cm土层土壤含水量(平均值±标准偏差)的季节动态。P0W0、P0W1、P1W0、P1W1分别指不同处理方式: 去除植物+不增温、去除植物+增温、不去除植物+不增温、不去除植物+增温。
Fig. 1 Seasonal transitions of daily mean soil temperature at 5 cm below the soil surface, daily mean air temperature at 70 cm high and soil volumetric moisture at 5 cm below the soil surface under different treatments (mean ± SD) during the experiment period. P0W0, P0W1, P1W0, P1W1 are refer to the different treatments, indicated removal-plant + controlled temperature, removal-plant + increased temperature, unremoval-plant + controlled temperature, unremoval-plant + increased temperature, respectively.
图2 不同处理下土壤硝态氮含量的季节动态(平均值±标准偏差)。P0W0、P0W1、P1W0、P1W1分别指不同处理方式: 去除植物+不增温、去除植物+增温、不去除植物+不增温、不去除植物+增温。不同小写字母表示同一采样时期不同处理之间差异显著(p < 0.05)。
Fig. 2 Seasonal dynamics of the soil nitrate contents under different treatments (mean ± SD). P0W0, P0W1, P1W0, P1W1 are refer to the different treatments, indicated removal-plant + controlled temperature, removal-plant + increased temperature, unremoval-plant + controlled temperature, unremoval-plant + increased temperature, respectively. Differences lowercase letters indicated significant differences between different treatments at the same sampling dates (p < 0.05).
因子 Factor | D | D × P | D × W | D × P × W | P | W | P × W |
---|---|---|---|---|---|---|---|
硝态氮 Nitrate | <0.001 | <0.001 | <0.001 | 0.002 | 0.002 | 0.001 | 0.086 |
铵态氮 Ammonium | <0.001 | 0.949 | 0.232 | 0.368 | 0.051 | 0.496 | 0.516 |
硝态氮/铵态氮 Nitrate/ammonium | <0.001 | <0.001 | 0.015 | 0.025 | <0.001 | 0.001 | 0.046 |
表1 增温(W)、植物处理方式(P)以及取样时间(D)对土壤硝态氮、铵态氮和硝态氮/铵态氮的重复测量方差分析
Table 1 Results of the repeated measures ANOVA showing the p values for the responses of the soil nitrate and ammonium contents and nitrate/ammonium to increased temperature (W), plant treatments (P), and sampling dates (D)
因子 Factor | D | D × P | D × W | D × P × W | P | W | P × W |
---|---|---|---|---|---|---|---|
硝态氮 Nitrate | <0.001 | <0.001 | <0.001 | 0.002 | 0.002 | 0.001 | 0.086 |
铵态氮 Ammonium | <0.001 | 0.949 | 0.232 | 0.368 | 0.051 | 0.496 | 0.516 |
硝态氮/铵态氮 Nitrate/ammonium | <0.001 | <0.001 | 0.015 | 0.025 | <0.001 | 0.001 | 0.046 |
图3 不同处理下土壤铵态氮含量的季节动态(平均值±标准偏差)。P0W0、P0W1、P1W0、P1W1分别指不同处理方式: 去除植物+不增温、去除植物+增温、不去除植物+不增温、不去除植物+增温。不同小写字母表示同一采样时期不同处理之间差异显著(p < 0.05)。
Fig. 3 Seasonal dynamics of the soil ammonium contents under different treatments (mean ± SD). P0W0, P0W1, P1W0, P1W1 are refer to the different treatments, indicated removal- plant + controlled temperature, removal-plant + increased temperature, unremoval-plant + controlled temperature, unremoval- plant + increased temperature, respectively. Differences lowercase letters indicated significant differences between different treatments at the same sampling dates (p < 0.05).
指标 Index | 温度 Temperature | 水分 Moisture | 硝态氮 Nitrate | 铵态氮 Ammonium | 硝态氮/铵态氮 Nitrate/ammonium |
---|---|---|---|---|---|
温度 Temperature | 1 | ||||
水分 Moisture | -0.527** | 1 | |||
硝态氮 Nitrate | 0.457** | -0.159 | 1 | ||
铵态氮 Ammonium | 0.047 | 0.294* | -0.404** | 1 | |
硝态氮/铵态氮Nitrate/ammonium | 0.232 | -0.228 | 0.829** | -0.813** | 1 |
表2 土壤水分、温度与土壤硝态氮和铵态氮含量的相关性
Table 2 Correlation between soil moisture and temperature, nitrate and ammonium
指标 Index | 温度 Temperature | 水分 Moisture | 硝态氮 Nitrate | 铵态氮 Ammonium | 硝态氮/铵态氮 Nitrate/ammonium |
---|---|---|---|---|---|
温度 Temperature | 1 | ||||
水分 Moisture | -0.527** | 1 | |||
硝态氮 Nitrate | 0.457** | -0.159 | 1 | ||
铵态氮 Ammonium | 0.047 | 0.294* | -0.404** | 1 | |
硝态氮/铵态氮Nitrate/ammonium | 0.232 | -0.228 | 0.829** | -0.813** | 1 |
图4 不同处理下土壤硝态氮/铵态氮的季节动态(平均值±标准偏差)。P0W0、P0W1、P1W0、P1W1分别指不同处理方式: 去除植物+不增温、去除植物+增温、不去除植物+不增温、不去除植物+增温。不同小写字母表示同一采样时期不同处理之间差异显著(p < 0.05)。
Fig. 4 Seasonal dynamics of soil nitrate/ammonium under different treatments (mean ± SD). P0W0, P0W1, P1W0, P1W1 are refer to the different treatments, indicated removal-plant + controlled temperature, removal-plant + increased temperature, unremoval-plant + controlled temperature, unremoval-plant + increased temperature, respectively. Differences lowercase letters indicated significant differences between different treatments at the same sampling dates (p < 0.05).
[1] |
Bade C, Jacob M, Jungkunst HF, Leuschner C, Hauck M ( 2015). Nitrogen mineralization peaks under closed canopy during the natural forest development cycle of an old-growth temperate spruce forest. Annals of forest science, 72, 67-76.
DOI URL |
[2] |
Bahri A, Berndtsson R ( 1996). Nitrogen source impact on the spatial variability of organic carbon and nitrogen in soil. Soil Science, 161, 288-297.
DOI URL |
[3] |
Bai E, Li S, Xu W, Li W, Dai W, Jiang P ( 2013). A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199, 441-451.
DOI URL PMID |
[4] |
Belaytedla A, Zhou XH, Su B, Wan SQ, Luo YQ ( 2009). Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil Biology & Biochemistry, 41, 110-116.
DOI URL |
[5] |
Bombonato L, Gerdol R ( 2012). Manipulating snow cover in an alpine bog: Effects on ecosystem respiration and nutrient content in soil and microbes. Climatic Change, 114, 261-272.
DOI URL |
[6] |
Boot CM, Hall EK, Denef K, Baron JS ( 2016). Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpine forest ecosystem. Soil Biology & Biochemistry, 92, 211-220.
DOI URL |
[7] |
Bruijn AMGD, Butterbach-Bahl K ( 2010). Linking carbon and nitrogen mineralization with microbial responses to substrate availability—The DECONIT model. Plant and Soil, 328, 271-290.
DOI URL |
[8] |
Chen T, Chang Q, Liu J, Clevers JGPW ( 2016). Spatio-?temporal variability of farmland soil organic matter and total nitrogen in the southern Loess Plateau, China: A case study in Heyang County. Environmental Earth Sciences, 75, 28.
DOI URL |
[9] |
Deluca T, Nilsson MC, Zackrisson O ( 2002). Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia, 133, 206-214.
DOI URL PMID |
[10] | Han X ( 2015). Effects of Nitrogen to Plant-microbial on Nitrogen Competition in Temperate Forest. Master degree dissertation, Beijing Forestry University, Beijing. |
[ 韩雪 ( 2015). 土壤中的氮对温带森林植物-微生物竞争氮素的影响. 硕士学位论文, 北京林业大学, 北京.] | |
[11] |
He W, Yang XY, Xiao J, Zhang ZL, Jiang Z, Yuan YS, Wang D, Liu Q, Yin HJ ( 2017). Effects of nitrogen enrichment on root exudation carbon inputs in Sibiraea angustata shrub at the eastern fringe of Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 41, 610-621.
DOI URL |
[ 何为, 杨雪英, 肖娟, 张子良, 蒋铮, 袁远爽, 王东, 刘庆, 尹华军 ( 2017). 氮素富集对青藏高原东缘窄叶鲜卑花灌丛根系分泌物碳输入的影响. 植物生态学报, 41, 610-621.]
DOI URL |
|
[12] | Hu X, Yin P, Wang ZY, Zong H, Wu Y ( 2014). Preliminary study on the effect of snow depth and snow duration on soil N dynamics. Ecology and Environmental Sciences, 23, 593-597. |
[ 胡霞, 尹鹏, 王智勇, 宗华, 吴彦 ( 2014). 雪被厚度和积雪周期对土壤氮素动态影响的初步研究. 生态环境学报, 23, 593-597.] | |
[13] |
Hu YW, Zhang L, Deng BL, Liu YQ, Liu Q, Zheng X, Zheng LY, Kong FQ, Guo XM, Siemann E ( 2017). The non-?additive effects of temperature and nitrogen deposition on CO2 emissions, nitrification, and nitrogen mineralization in soils mixed with termite nests. Catena, 154, 12-20.
DOI URL |
[14] | IPCC (Intergovernmental Panel on Climate Change) ( 2013). Climate Change 2013: The Physical Science Basis. Cambridge University Press, New York. |
[15] |
Jackson LE, Burger M, Cavagnaro TR ( 2008). Roots nitrogen transformations, and ecosystem services. Annual Review of Plant Biology, 59, 341-363.
DOI URL |
[16] | K?rner C ( 2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer, Science & Business Media, Berlin. |
[17] | Li J, Yin CY, Zhou XB, Wei YH, Gao Q, Liu Q ( 2014). Effects of nitrogen addition on soil respiration of Sibiraea angustata shrub in the eastern margin of Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 34, 5558-5569. |
[ 李娇, 尹春英, 周晓波, 魏宇航, 高巧, 刘庆 ( 2014). 施氮对青藏高原东缘窄叶鲜卑花灌丛土壤呼吸的影响. 生态学报, 34, 5558-5569.] | |
[18] |
Liu Y, Wang C, He N, Wen XF, Gao Y, Li SG, Niu SL, Butterbach-Bahl K, Luo YQ, Yu GR ( 2016). A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: Latitudinal patterns and mechanisms. Global Change Biology, 23, 155-464.
DOI URL PMID |
[19] | Lu RK ( 2000). Soil Agricultural Chemical Analysis Method. China Agricultural Science and Technology Press, Beijing. |
[ 鲁如坤 ( 2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[20] |
Lu X, Yan Y, Fan J, Wang X ( 2015). Gross nitrification and denitrification in alpine grassland ecosystems on the Tibetan Plateau. Arctic Antarctic & Alpine Research, 44, 188-196.
DOI URL |
[21] | Luo XQ, Wang SJ, Liu XM ( 2007). Nitrogen source and its uptake by plants in terrestrial ecosystems. Chinese of Journal of Ecology, 26, 1094-1100. |
[ 罗绪强, 王世杰, 刘秀明 ( 2007). 陆地生态系统植物的氮源及氮素吸收. 生态学杂志, 26, 1094-1100.] | |
[22] |
M?nsson K, Bengtson P, Falkengrengrerup U, Bengtsson G ( 2009). Plant-microbial competition for nitrogen uncoupled from soil C:N ratios. Oikos, 118, 1908-1916.
DOI URL |
[23] |
Moreau D, Pivato B, Bru D, Busset H, Deau F, Faivre C, Matejicek A, Strbik F, Philippot L. Mougel C ( 2015). Plant traits related to nitrogen uptake influence plant-microbe competition. Ecology, 96, 2300-2310.
DOI URL PMID |
[24] |
Palta MM, Ehrenfeld JG, Giménez D, Groffman PM, Subroy V ( 2016). Soil texture and water retention as spatial predictors of denitrification in urban wetlands. Soil Biology & Biochemistry, 101, 237-250.
DOI URL |
[25] | Powlson DS ( 1993). Understanding the soil nitrogen cycle. Soil Use & Management, 9, 86-94. |
[26] |
Rennenberg H, Dannenmann M, Gessler A, Kreuzwieser I, Simon I, Papen H ( 2009). Nitrogen balance in forest soils: Nutritional limitation of plants under climate change stresses. Plant Biology, 11, 4-23.
DOI URL PMID |
[27] |
Sjogersten S, Wookey PA ( 2015). The role of soil organic matter quality and physical environment for nitrogen mineralization at the forest-tundra ecotone in Fennoscandia. Arctic Antarctic & Alpine Research, 37, 118-126.
DOI URL |
[28] |
Steven B, Léveillé R, Pollard WH, Whyte LG ( 2006). Microbial ecology and biodiversity in permafrost. Extremophiles, 10, 259-267.
DOI URL PMID |
[29] |
Suseela V, Tharayil N, Xing B, Dukes JS ( 2014). Warming alters potential enzyme activity but precipitation regulates chemical transformations in grass litter exposed to simulated climatic changes. Soil Biology & Biochemistry, 75, 102-112.
DOI URL |
[30] |
Wang D, He HL, Gao Q, Zhao CZ, Zhao WQ, Yin CY, Chen LX, Ma ZL, Li DD, Sun DD, Cheng XY, Liu Q ( 2017). Effects of short-term N addition on plant biomass allocation and C and N pools of the Sibiraea angustata scrub ecosystem. European Journal of Soil Science, 68, 212-220.
DOI URL |
[31] |
Wang FL, Bettany JR ( 1995). Carbon and nitrogen losses from undisturbed soil columns under short-term flooding conditions. Canadian Journal of Soil Science, 75, 333-341.
DOI URL |
[32] | Wang GL, Chen DL, Li Y ( 2010). Effect of soil temperature moisture and NH4 +-N concentration on nitrification and nitrification-induced N2O emission . Chinese Journal of Eco-Agriculture, 18, 1-6. |
[ 王改玲, 陈德立, 李勇 ( 2010). 土壤温度, 水分和NH4 +-N浓度对土壤硝化反应速度及N2O排放的影响 . 中国生态农业学报, 18, 1-6.] | |
[33] | Wang JN ( 2013). Adaptable Contribution of Differentiation Patterns of Plant Phenology to Maintaining Nitrogen Utilization of Plants in Alpine Meadows and Its Dynamic Balance. PhD dissertation, University of Chinese Academy of Sciences, Beijing. |
[ 王金牛 ( 2013). 植物物候分化格局对维持高山草地植物氮素利用及其动态平衡的适应性贡献. 博士学位论文, 中国科学院大学, 北京.] | |
[34] |
Wang WY, Ma YG, Xu J, Wang HC, Zhu JF, Zhou HK ( 2012). The uptake diversity of soil nitrogen nutrients by main plant species in Kobresia humilis alpine meadow on the Qinghai-Tibet Plateau. Science China Earth Sciences, 55, 1688-1695.
DOI URL |
[35] |
Wu DD, Jing X, Lin L, Yang XY, Zhang ZH, He JS ( 2016). Responses of soil inorganic nitrogen to warming and alter precipitation in an alpine meadow on the Qinghai-Tibetan Plateau. Acta Scientiarum Naturalium Universities Pekinensis, 52, 959-966.
DOI URL |
[ 武丹丹, 井新, 林笠, 杨新宇, 张振华, 贺金生 ( 2016). 青藏高原高寒草甸土壤无机氮对增温和降水改变的响应. 北京大学学报(自然科学版), 52, 959-966.]
DOI URL |
|
[36] |
Wu N ( 1998). The community type and biomass of Sibiraea angustata scrub and their relationships with environmental factors in northeastern Sichun. Acta Botanica Sinica, 40, 860-870.
DOI URL |
[ 吴宁 ( 1998). 川西北窄叶鲜卑花灌丛的类型和生物量及其与环境因子的关系. 植物学报, 40, 860-870.]
DOI URL |
|
[37] |
Xiong QL, Pan KW, Zhang L, Luo HY ( 2016). Warming and nitrogen deposition are interactive in shaping surface soil microbial communities near the alpine timberline zone on the eastern Qinghai-Tibet Plateau, southwestern China. Applied Soil Ecology, 101, 72-83.
DOI URL |
[38] |
Xu ZF, Hu R, Xiong P, Wan C, Cao G, Liu Q ( 2010). Initial soil responses to experimental warming in two constrasting forest ecosystem, Eastern Tibetan Plateau, China: Nutrient availabilities, microbial properoties and enzyme activities. Applied Soil Ecology, 46, 291-299.
DOI URL |
[39] | Ye MS, Wu B, Guan WB, Ma KM, Liu GH, Zhang YQ ( 2009). Plant community stability in the upper reaches of Minjiang River. Research of Soil and Water Conservation, 16, 259-263. |
[ 冶民生, 吴斌, 关文彬, 马克明, 刘国华, 张宇清 ( 2009). 岷江上游植物群落稳定性研究. 水土保持研究, 16, 259-263.] | |
[40] |
Yin HJ, Li YF, Xiao J, Xu ZF, Cheng XY, Liu Q ( 2013). Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Global Change Biology, 19, 2158-2167.
DOI URL PMID |
[41] |
Yin R, Xu ZF, Wu FZ, Yang WQ, Xiong L, Xiao S, Ma ZL, Li ZP ( 2014). Seasonal dynamics of soil nitrogen transformation along subalpine elevational gradient of western Sichuan. Scientia Silvae Sinicae, 50(7), 1-7.
DOI URL |
[ 殷睿, 徐振锋, 吴福忠, 杨万勤, 熊莉, 肖洒, 马志良, 李志萍 ( 2014). 川西亚高山不同海拔3种森林群落土壤氮转化的季节动态. 林业科学, 50(7), 1-7.]
DOI URL |
[1] | 夏璟钰 张扬建 郑周涛 赵广 赵然 朱艺旋 高洁 沈若楠 李文宇 郑家禾 张雨雪 朱军涛 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 杨元合 张典业 魏斌 刘洋 冯雪徽 毛超 徐玮婕 贺美 王璐 郑志虎 王媛媛 陈蕾伊 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 0-0. |
[3] | 钟楠蝶, 王力, 肖杰, 王琼. 增温条件下花粉来源对红雉凤仙花生殖成功的影响[J]. 植物生态学报, 2022, 46(4): 416-427. |
[4] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[5] | 韩聪 刘鹏 母艳梅 原媛 郝少荣 田赟 查天山 贾昕. 油蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[6] | 李红琴 张亚茹 张法伟 马文婧 罗方林 王春雨 杨永胜 张雷明 李英年. 增强回归树模型在青藏高原高寒灌丛通量数据插补中的应用[J]. 植物生态学报, 2022, 46(12): 1437-1447. |
[7] | 刘秋蓉 李丽 罗垚 陈冬东 黄鑫 胡君 刘庆. 四川巴塘海子山高寒灌丛群落的基本特征[J]. 植物生态学报, 2022, 46(11): 1334-1341. |
[8] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[9] | 蒋芬, 黄娟, 褚国伟, 程严, 刘旭军, 刘菊秀, 列志旸. 增温对南亚热带森林土壤磷形态的影响及其对有效磷的贡献[J]. 植物生态学报, 2021, 45(2): 197-206. |
[10] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[11] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
[12] | 罗林, 黄艳, 梁进, 汪恩涛, 胡君, 贺合亮, 赵春章. 西南亚高山针叶林主要树种互作及增温对根区土壤微生物群落的影响[J]. 植物生态学报, 2020, 44(8): 875-884. |
[13] | 朱彪, 陈迎. 陆地生态系统野外增温控制实验的技术与方法[J]. 植物生态学报, 2020, 44(4): 330-339. |
[14] | 刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262-1272. |
[15] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19