植物生态学报 ›› 2018, Vol. 42 ›› Issue (1): 95-104.DOI: 10.17521/cjpe.2017.0100
所属专题: 全球变化与生态系统; 青藏高原植物生态学:植物-土壤-微生物
秦书琪1,2,房凯1,2,王冠钦1,2,彭云峰1,张典业1,2,李飞1,2,周国英3,杨元合1,2,*()
出版日期:
2018-01-20
发布日期:
2018-03-08
通讯作者:
杨元合
基金资助:
QIN Shu-Qi1,2,FANG Kai1,2,WANG Guan-Qin1,2,PENG Yun-Feng1,ZHANG Dian-Ye1,2,LI Fei1,2,ZHOU Guo-Ying3,YANG Yuan-He1,2,*()
Online:
2018-01-20
Published:
2018-03-08
Contact:
Yuan-He YANG
Supported by:
摘要:
土壤交换性盐基离子(Ca 2+、Mg 2+、K +、Na +)在维持土壤养分与缓冲土壤酸化中起着重要作用, 了解其对氮添加的响应有助于准确评估氮沉降背景下生态系统结构与功能的动态变化。然而, 目前关于土壤交换性盐基离子对氮添加响应的相关研究主要集中在酸性土中。鉴于目前在碱性土中研究相对较少的现状, 该研究以青藏高原高寒草原为研究对象, 依托氮添加控制实验平台, 通过连续3年(2014-2016)的测定, 考察了8个不同施氮水平(0、1、2、4、8、16、24、32 g·m -2·a -1)下土壤交换性盐基离子含量变化及其可能原因。结果显示: 随着施氮量的增加, 土壤交换性盐基离子, 尤其是Mg 2+与Na +含量显著降低。并且, 盐基离子含量与植物地上生物量显著负相关(p < 0.05), 说明氮添加通过促进植物生长, 加速植物对盐基离子的吸收, 进而导致土壤中盐基离子含量降低。此外, 盐基离子含量也与土壤无机氮含量呈显著负相关(p < 0.05)关系, 说明施氮还通过提高土壤中无机氮含量进而导致更多NH4 +与土壤吸附的盐基离子交换, 同时加剧NO3 -淋溶, 带走等电荷阳离子。需要指出的是, 虽然连续施氮导致土壤pH值下降, 但该土壤目前仍处于碳酸盐缓冲阶段, 说明通常在酸性土中报道的“因缓冲土壤酸化引起的盐基离子损失机制”在碱性土中并不成立。这些结果意味着持续的氮输入会造成碱性土中盐基离子损失, 进而影响土壤缓冲能力与植被生产力, 未来草原生态系统管理中应重视这一问题。
秦书琪, 房凯, 王冠钦, 彭云峰, 张典业, 李飞, 周国英, 杨元合. 高寒草原土壤交换性盐基离子对氮添加的响应: 以紫花针茅草原为例. 植物生态学报, 2018, 42(1): 95-104. DOI: 10.17521/cjpe.2017.0100
QIN Shu-Qi, FANG Kai, WANG Guan-Qin, PENG Yun-Feng, ZHANG Dian-Ye, LI Fei, ZHOU Guo-Ying, YANG Yuan-He. Responses of exchangeable base cations to continuously increasing nitrogen addition in alpine steppe: A case study of Stipa purpurea steppe. Chinese Journal of Plant Ecology, 2018, 42(1): 95-104. DOI: 10.17521/cjpe.2017.0100
年 Year | N0 | N1 | N2 | N4 | N8 | N16 | N24 | N32 | |
---|---|---|---|---|---|---|---|---|---|
pH值 pH value | 2014 | 8.9 ± 0.10b | 9.2 ± 0.06a | 9.2 ± 0.08a | 9.1 ± 0.07ab | 9.1 ± 0.08ab | 9.1 ± 0.07ab | 9.0 ± 0.03ab | 9.1 ± 0.10ab |
2015 | 9.0 ± 0.07bc | 9.1 ± 0.06a | 9.0 ± 0.03ab | 9.0 ± 0.05ab | 8.9 ± 0.03cd | 9.0 ± 0.04ab | 8.8 ± 0.04d | 8.8 ± 0.05d | |
2016 | 8.5 ± 0.11a | 8.5 ± 0.05a | 8.5 ± 0.09a | 8.4 ± 0.07ab | 8.3 ± 0.07bc | 8.6 ± 0.02a | 8.2 ± 0.05c | 8.2 ± 0.05c | |
TIN (mg·kg-1) | 2014 | 34.3 ± 2.6cd | 37.8 ± 3.1bcd | 35.9 ± 3.7bcd | 33.1 ± 0.9d | 52.6 ± 9.1a | 46.8 ± 3.4ab | 43.5 ± 1.8abcd | 45.5 ± 1.4abc |
2015 | 9.5 ± 0.3e | 11.4 ± 1.5e | 11.8 ± 1.1e | 11.9 ± 0.7e | 22.4 ± 2.5d | 41.8 ± 2.5c | 56.7 ± 5.0b | 69.6 ± 7.1a | |
2016 | 32.0 ± 0.9d | 32.3 ± 1.5cd | 31.2 ± 2.0d | 32.9 ± 2.0cd | 37.4 ± 1.9bc | 41.4 ± 2.8ab | 43.2 ± 3.0a | 41.1 ± 2.1ab | |
AGB (g·m-2) | 2014 | 126.9 ± 10.0d | 142.2 ± 17.8d | 152.4 ± 13.9cd | 186.7 ± 13.9c | 256.6 ± 14.3ab | 241.2 ± 21.4b | 271.7 ± 26.1ab | 284.9 ± 27.6a |
2015 | 146.0 ± 11.6c | 146.8 ± 8.3c | 175.7 ± 14.7c | 180.4 ± 13.6c | 265.1 ± 23.5b | 287.5 ± 21.0b | 350.4 ± 13.3a | 373.0 ± 18.6a | |
2016 | 93.7 ± 9.3e | 117.0 ± 17.8de | 127.0 ± 19.3cde | 144.2 ± 9.3bcd | 181.2 ± 18.4ab | 161.9 ± 8.3abc | 190.2 ± 21.1a | 195.7 ± 7.1a |
表1 不同氮水平下土壤与植物基本理化性质(平均值±标准误差)
Table 1 Soil and plant properties under different nitrogen rates (mean ± SE)
年 Year | N0 | N1 | N2 | N4 | N8 | N16 | N24 | N32 | |
---|---|---|---|---|---|---|---|---|---|
pH值 pH value | 2014 | 8.9 ± 0.10b | 9.2 ± 0.06a | 9.2 ± 0.08a | 9.1 ± 0.07ab | 9.1 ± 0.08ab | 9.1 ± 0.07ab | 9.0 ± 0.03ab | 9.1 ± 0.10ab |
2015 | 9.0 ± 0.07bc | 9.1 ± 0.06a | 9.0 ± 0.03ab | 9.0 ± 0.05ab | 8.9 ± 0.03cd | 9.0 ± 0.04ab | 8.8 ± 0.04d | 8.8 ± 0.05d | |
2016 | 8.5 ± 0.11a | 8.5 ± 0.05a | 8.5 ± 0.09a | 8.4 ± 0.07ab | 8.3 ± 0.07bc | 8.6 ± 0.02a | 8.2 ± 0.05c | 8.2 ± 0.05c | |
TIN (mg·kg-1) | 2014 | 34.3 ± 2.6cd | 37.8 ± 3.1bcd | 35.9 ± 3.7bcd | 33.1 ± 0.9d | 52.6 ± 9.1a | 46.8 ± 3.4ab | 43.5 ± 1.8abcd | 45.5 ± 1.4abc |
2015 | 9.5 ± 0.3e | 11.4 ± 1.5e | 11.8 ± 1.1e | 11.9 ± 0.7e | 22.4 ± 2.5d | 41.8 ± 2.5c | 56.7 ± 5.0b | 69.6 ± 7.1a | |
2016 | 32.0 ± 0.9d | 32.3 ± 1.5cd | 31.2 ± 2.0d | 32.9 ± 2.0cd | 37.4 ± 1.9bc | 41.4 ± 2.8ab | 43.2 ± 3.0a | 41.1 ± 2.1ab | |
AGB (g·m-2) | 2014 | 126.9 ± 10.0d | 142.2 ± 17.8d | 152.4 ± 13.9cd | 186.7 ± 13.9c | 256.6 ± 14.3ab | 241.2 ± 21.4b | 271.7 ± 26.1ab | 284.9 ± 27.6a |
2015 | 146.0 ± 11.6c | 146.8 ± 8.3c | 175.7 ± 14.7c | 180.4 ± 13.6c | 265.1 ± 23.5b | 287.5 ± 21.0b | 350.4 ± 13.3a | 373.0 ± 18.6a | |
2016 | 93.7 ± 9.3e | 117.0 ± 17.8de | 127.0 ± 19.3cde | 144.2 ± 9.3bcd | 181.2 ± 18.4ab | 161.9 ± 8.3abc | 190.2 ± 21.1a | 195.7 ± 7.1a |
图1 氮添加对土壤交换性盐基离子含量的影响(平均值±标准误差)。N0-N32, 氮添加量分别为: 0、1、2、4、8、16、24、32 g·m-2·a-1。不同字母表示各施氮量下差异显著(p < 0.05)。
Fig. 1 Effects of nitrogen addition on soil exchangeable base cations (mean ± SE). N0-N32, nitrogen addition 0, 1, 2, 4, 8, 16, 24, 32 g·m-2·a-1, respectively. Different letters indicate significant differences among treatments (p < 0.05).
图2 氮添加对土壤交换性Ca2+、Mg2+、K+、Na+的影响(平均值±标准误差)。A, Ca2+。B, Mg2+。C, K+。D, Na+。N0-N32, 氮添加量分别为: 0、1、2、4、8、16、24、32 g·m-2·a-1。不同字母表示各施氮量下差异显著(p < 0.05)。
Fig. 2 Effects of nitrogen addition on soil exchangeable Ca2+, Mg2+, K+, Na+ (mean ± SE)。A, Ca2+. B, Mg2+. C, K+. D, Na+. N0-N32, nitrogen addition 0, 1, 2, 4, 8, 16, 24, 32 g·m-2·a-1, respectively. Different letters indicate significant differences among treatments (p < 0.05).
图3 2015年交换性盐基离子与地上生物量和土壤总无机氮含量的关系。A, 地上生物量(AGB)。B, 土壤总无机氮(TIN)。直线与阴影部分分别表示拟合曲线与95%置信区间。
Fig. 3 Relationships of soil exchangeable base cations with above-ground biomass and soil total inorganic nitrogen in 2015. A, above-ground biomass (AGB). B, soil total inorganic nitrogen (TIN). The black lines represent the fitted curves and shades for 95% confidence intervals.
图4 不同年份土壤交换性Mg2+与地上生物量以及土壤总无机氮含量的关系。A, 2014年AGB。B, 2014年TIN。C, 2015年AGB。D, 2015年TIN。E, 2016年AGB。F, 2016年TIN。AGB, 地上生物量, TIN, 土壤总无机氮。直线与阴影部分分别表示拟合曲线与95%置信区间。
Fig. 4 Relationships of soil exchangeable Mg2+ with above-ground biomass and soil total inorganic nitrogen in different years. A, AGB in 2014. B, TIN in 2014. C, AGB in 2015. D, TIN in 2015. E, AGB in 2016. F, TIN in 2016. AGB, above-ground biomass, TIN, soil total inorganic nitrogen. The black lines represent the fitted curves and shades for 95% confidence intervals.
图5 不同年份土壤交换性Na+与土壤总无机氮含量的关系。A, 2014年。B, 2015年。TIN, 土壤总无机氮。直线与阴影部分分别表示拟合曲线与95%置信区间。
Fig. 5 Relationships of soil exchangeable Na+ with soil total inorganic nitrogen in different years. A, 2014. B, 2015. TIN, soil total inorganic nitrogen. The black lines represent the fitted curves and shades for 95% confidence intervals.
附件I 青藏高原高寒草地表层土壤pH值的频度分布。数据来自杨元合课题组于2013-2014年间在青藏高原草地样带调查的173个样地
Appendix I Frequency distribution of pH values on the Qinghai-Xizang Plateau. Data from 173 sampling sites along a grassland transect across Qinghai-Xizang alpine grasslands during 2013-2014, which were collected by members from Dr. Yuanhe Yang’s group
附件II 氮添加对植物地上部分Mg库的影响(平均值±标准误差)。A, 2014年。B, 2015年。C, 2016年。N0-N32, 氮添加量分别为: 0、1、2、4、8、16、24、32 g·m-2·a-1。不同字母表示各施氮量下差异显著(p < 0.05)
Appendix II Effects of nitrogen addition on Mg pool in aboveground plant (mean ± SE). A, 2014. B, 2015. C, 2016. N0-N32, nitrogen addition 0, 1, 2, 4, 8, 16, 24, 32 g·m -2·a -1, respectively. Different letters indicate significant differences among treatments (p < 0.05)
附件III 2016年氮添加对表层0-10 cm土壤NO3-淋溶量的影响(平均值±标准误差)。N0-N32, 氮添加量分别为: 0、1、2、4、8、16、24、32 g·m-2·a-1。不同字母表示各施氮量下差异显著(p < 0.05)
Appendix III Effects of nitrogen addition on NO3 - leaching in top 0-10 cm soil in 2016 (mean ± SE). N0-N32, nitrogen addition 0, 1, 2, 4, 8, 16, 24, 32 g·m -2·a -1, respectively. Different letters indicate significant differences among treatments (p < 0.05)
[1] |
Blake L, Goulding KWT, Mott CJB, Johnston AE ( 1999). Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station, UK. European Journal of Soil Science, 50, 401-412.
DOI URL |
[2] |
Bodirsky BL, Popp A, Lotze-Campen H, Dietrich JP, Rolinski S, Weindl I, Schmitz C, Muller C, Bonsch M, Humpenoder F, Biewald A, Stevanovic M ( 2014). Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications, 5, 3858, DOI: 10.1038/ncomms4858.
DOI URL PMID |
[3] |
Bowman WD, Cleveland CC, Halada ?, Hre?ko J, Baron JS ( 2008). Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 1, 767-770.
DOI URL |
[4] | Brady NC, Weil RR ( 2002). The Nature and Properties of Soils. Prentice Hall, New Jersey. |
[5] | Chapin III FS, Matson PA, Vitousek PM ( 2011). Principles of Terrestrial Ecosystem Ecology. Springer, New York. |
[6] |
Chen DM, Li JJ, Lan ZC, Hu SJ, Bai YF ( 2016). Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Functional Ecology, 30, 658-669.
DOI URL |
[7] |
Cusack DF, Macy J, Mcdowell WH ( 2016). Nitrogen additions mobilize soil base cations in two tropical forests. Biogeochemistry, 128, 67-88.
DOI URL |
[8] |
DeHayes DH, Schaberg PG, Hawley GJ, Strimbeck GR ( 1999). Acid rain impacts on calcium nutrition and forest health— Alteration of membrane-associated calcium leads to membrane destabilization and foliar injury in red spruce. Bioscience, 49, 789-800.
DOI URL |
[9] |
Demchik MC, Sharpe WE ( 2000). The effect of soil nutrition, soil acidity and drought on northern red oak (Quercus rubra L.) growth and nutrition on Pennsylvania sites with high and low red oak mortality. Forest Ecology and Management, 136, 199-207.
DOI URL |
[10] |
Ding JZ, Li F, Yang GB, Chen LY, Zhang BB, Liu L, Fang K, Qin SQ, Chen YL, Peng YF, Ji CJ, He HL, Smith P, Yang YH ( 2016). The permafrost carbon inventory on the Tibetan Plateau: A new evaluation using deep sediment cores. Global Change Biology, 22, 2688-2701.
DOI URL PMID |
[11] |
Dise NB, Wright RF ( 1995). Nitrogen leaching from European forests in relation to nitrogen deposition. Forest Ecology and Management, 71, 153-161.
DOI URL |
[12] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA ( 2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI URL PMID |
[13] |
Gundersen P, Schmidt IK, Raulund-Rasmussen K ( 2006). Leaching of nitrate from temperate forests—Effects of air pollution and forest management. Environmental Reviews, 14, 1-57.
DOI URL |
[14] |
Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS ( 2010). Significant acidification in major Chinese croplands. Science, 327, 1008-1010.
DOI URL |
[15] |
H?gberg P, Fan HB, Quist M, Binkley D, Tamm CO ( 2006). Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology, 12, 489-499.
DOI URL |
[16] |
Horswill P, O’Sullivan O, Phoenix GK, Lee JA, Leake JR ( 2008). Base cation depletion, eutrophication and acidifycation of species-rich grasslands in response to long-term simulated nitrogen deposition. Environmental Pollution, 155, 336-349.
DOI URL PMID |
[17] |
Huntington TG ( 2005). Assessment of calcium status in Maine forests: Review and future projection. Canadian Journal of Forest Research, 35, 1109-1121.
DOI URL |
[18] |
Ji FT, Li N, Deng X ( 2009). Calcium contents and high calcium adaptation of plants in karst areas of China. Chinese Journal of Plant Ecology, 33, 926-935.
DOI URL |
[ 姬飞腾, 李楠, 邓馨 ( 2009). 喀斯特地区植物钙含量特征与高钙适应方式分析. 植物生态学报, 33, 926-935.]
DOI URL |
|
[19] | Jiang TH, Zhan XH, Xu YC, Zhou LX, Zong LG ( 2005). Roles of calcium in stress-tolerance of plants and its ecological significance. Chinese Journal of Applied Ecology, 16, 971-976. |
[ 蒋廷惠, 占新华, 徐阳春, 周立祥, 宗良纲 ( 2005). 钙对植物抗逆能力的影响及其生态学意义. 应用生态学报, 16, 971-976.] | |
[20] |
Kinzel H ( 1989). Calcium in the vacuoles and cell walls of plant tissue: Forms of deposition and their physiological and ecological significance. Flora, 182, 99-125.
DOI URL |
[21] |
LeBauer DS, Treseder KK ( 2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
DOI URL PMID |
[22] |
Lieb AM, Darrouzet-Nardi A, Bowman WD ( 2011). Nitrogen deposition decreases acid buffering capacity of alpine soils in the southern Rocky Mountains. Geoderma, 164, 220-224.
DOI URL |
[23] |
Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS ( 2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462.
DOI URL PMID |
[24] |
Lu XK, Mao QG, Gilliam FS, Luo YQ, Mo JM ( 2014). Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology, 20, 3790-3801.
DOI URL PMID |
[25] |
Lu XK, Mao QG, Mo JM, Gilliam FS, Zhou GY, Luo YQ, Zhang W, Huang J ( 2015). Divergent responses of soil buffering capacity to long-term N deposition in three typical tropical forests with different land-use history. Environmental Science & Technology, 49, 4072-4080.
DOI URL PMID |
[26] |
Lucas RW, Klaminder J, Futter MN, Bishop KH, Egnell G, Laudon H, H?gberg P ( 2011). A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. Forest Ecology and Management, 262, 95-104.
DOI URL |
[27] | Marschner H ( 1995). Mineral Nutrition of Higher Plants. 2nd edn. Academic Press, London. |
[28] |
Matschonat G, Matzner E ( 1996). Soil chemical properties affecting NH4 + sorption in forest soils . Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 159, 505-511.
DOI URL |
[29] | National Agricultural Technology Extension and Service Center ( 2006). Soil Analysis Technology Standard. 2nd edn. China Agriculture Press, Beijing. |
[ 全国农业技术推广服务中心 ( 2006). 土壤分析技术规范. 第2版. 中国农业出版社, 北京.] | |
[30] |
Peng YF, Li F, Zhou GY, Fang K, Zhang DY, Li CB, Yang GB, Wang GQ, Wang J, Mohammat A, Yang YH ( 2017 a). Nonlinear response of soil respiration to increasing nitrogen additions in a Tibetan alpine steppe. Environmental Research Letters, 12, 024018. DOI: 10.1088/1748-9326/? aa5ba6.
DOI URL |
[31] |
Peng YF, Li F, Zhou GY, Fang K, Zhang DY, Li CB, Yang GB, Wang GQ, Wang J, Yang YH ( 2017 b). Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe. Global Change Biology, 23, 5249-5259.
DOI URL PMID |
[32] |
Penuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA ( 2013). Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4, 2934. DOI: 10.1038/ncomms3934.
DOI URL PMID |
[33] |
Pilon-Smits EaH, Quinn CF, Tapken W, Malagoli M, Schiavon M ( 2009). Physiological functions of beneficial elements. Current Opinion in Plant Biology, 12, 267-274.
DOI URL PMID |
[34] |
Poovaiah BW, Reddy ASN ( 1993). Calcium and signal transduction in plants. Critical Reviews in Plant Sciences, 12, 185-211.
DOI URL PMID |
[35] |
Saarsalmi A, Malkonen E ( 2001). Forest fertilization research in Finland: A literature review. Scandinavian Journal of Forest Research, 16, 514-535.
DOI URL |
[36] | The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences, ( 2001). 1: 1 000 000 Vegetation Atlas of China. Science Press, Beijing. |
[ 中国科学院中国植被图编辑委员会 ( 2001).1: 1 000 000中国植被图集. 科学出版社, 北京.] | |
[37] |
Tian DS, Niu SL ( 2015). A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10, 10. DOI: 10.1088/1748-9326/10/2/024019.
DOI URL |
[38] |
Wang H, Chu TD ( 1999). The progress of study on magnesium nutrition in plants. Chinese Bulletin of Botany, 16, 245-250.
DOI URL |
[ 汪洪, 褚天铎 ( 1999). 植物镁素营养的研究进展. 植物学通报, 16, 245-250.]
DOI URL |
|
[39] |
Wang Y, Wu WH ( 2009). Molecular genetic mechanism of high efficient potassium uptake in plants. Chinese Bulletin of Botany, 44, 27-36.
DOI URL |
[ 王毅, 武维华 ( 2009). 植物钾营养高效分子遗传机制. 植物学报, 44, 27-36.]
DOI URL |
|
[40] |
Watmough SA, Dillon PJ ( 2003). Base cation and nitrogen budgets for a mixed hardwood catchment in South-Central Ontario. Ecosystems, 6, 675-693.
DOI URL |
[41] |
Xia JY, Wan SQ ( 2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428-439.
DOI URL PMID |
[42] |
Yang YH, Fang JY, Ji CJ, Ma WH, Mohammat A, Wang SF, Wang SP, Datta A, Robinson D, Smith P ( 2012 a). Widespread decreases in topsoil inorganic carbon stocks across China’s grasslands during 1980s-2000s. Global Change Biology, 18, 3672-3680.
DOI URL |
[43] |
Yang YH, Ji CJ, Ma WH, Wang SF, Wang SP, Han WX, Mohammat A, Robinson D, Smith P ( 2012 b). Significant soil acidification across northern China’s grasslands during 1980s-2000s. Global Change Biology, 18, 2292-2300.
DOI URL |
[44] | Zhang BB, Liu F, Ding JZ, Fang K, Yang GB, Liu L, Chen YL, Li F, Yang YH ( 2016). Soil inorganic carbon stock in alpine grasslands on the Qinghai-Xizang Plateau: An updated evaluation using deep cores. Chinese Journal of Plant Ecology, 40, 93-101. |
[ 张蓓蓓, 刘芳, 丁金枝, 房凯, 杨贵彪, 刘莉, 陈永亮, 李飞, 杨元合 ( 2016). 青藏高原高寒草地3米深度土壤无机碳库及分布特征. 植物生态学报, 40, 93-101.] | |
[45] |
Zhang YT, He XH, Liang H, Zhao J, Zhang YQ, Xu C, Shi XJ ( 2016). Long-term tobacco plantation induces soil acidification and soil base cation loss. Environmental Science and Pollution Research, 23, 5442-5450.
DOI URL PMID |
[46] |
Zhu JX, Wang QF, He NP, Smith MD, Elser JJ, Du JQ, Yuan GF, Yu GR, Yu Q ( 2016). Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation. Journal of Geophysical Research-?Biogeosciences, 121, 1605-1616.
DOI URL |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[3] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[4] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[5] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[6] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[7] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[8] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[9] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[10] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
[11] | 牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 2020, 44(5): 449-460. |
[12] | 付伟, 武慧, 赵爱花, 郝志鹏, 陈保冬. 陆地生态系统氮沉降的生态效应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 475-493. |
[13] | 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛. 亚热带不同树种凋落叶分解对氮添加的响应[J]. 植物生态学报, 2020, 44(3): 214-227. |
[14] | 邹安龙,李修平,倪晓凤,吉成均. 模拟氮沉降对北京东灵山辽东栎林树木生长的影响[J]. 植物生态学报, 2019, 43(9): 783-792. |
[15] | 王攀, 朱湾湾, 牛玉斌, 樊瑾, 余海龙, 赖江山, 黄菊莹. 氮添加对荒漠草原植物群落组成与微生物生物量生态化学计量特征的影响[J]. 植物生态学报, 2019, 43(5): 427-436. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19