植物生态学报 ›› 2020, Vol. 44 ›› Issue (3): 257-265.DOI: 10.17521/cjpe.2019.0340
季倩雯1,2,郑成洋1,2,3,*(),张磊4,曾发旭1,3
收稿日期:
2019-12-06
接受日期:
2020-02-01
出版日期:
2020-03-20
发布日期:
2020-04-30
通讯作者:
郑成洋
基金资助:
JI Qian-Wen1,2,ZHENG Cheng-Yang1,2,3,*(),ZHANG Lei4,ZENG Fa-Xu1,3
Received:
2019-12-06
Accepted:
2020-02-01
Online:
2020-03-20
Published:
2020-04-30
Contact:
Cheng-Yang ZHENG
Supported by:
摘要:
树木是森林生态系统的基本组成, 其生长受气象因子的影响, 基于此, 该研究通过监测樟子松(Pinus sylvestris var. mongolica)的径向生长, 研究樟子松生长日动态规律、季节动态规律及其与气象因子的关系, 探讨河北塞罕坝地区樟子松森林生态系统对气候变化的响应机制。此外, 以往研究树木生长大多数基于树轮年代学, 缺少短期树木径向生长动态的研究。该研究利用径向生长记录仪监测河北塞罕坝机械林场内樟子松连续3年(2016-2018)的树干径向动态变化。结果表明: 由于树干的水分吸收与蒸腾作用, 樟子松树干径向昼夜变化呈现季节性规律, 可划分为4个阶段: 春季萌动期、夏季生长期、秋冬交替期和冬季休眠期。塞罕坝樟子松树干径向生长开始于每年4月初; 4月初至5月中旬为水分恢复阶段; 5月中旬至7月中旬为快速生长阶段; 7月中旬至10月中旬为缓慢生长阶段; 10月中、下旬生长趋于停止, 并有树干径向收缩现象。以一天为时间尺度, 在快速生长阶段(5月初至7月中旬)樟子松径向生长主要受空气温度的影响; 缓慢生长阶段(7月中旬至10月下旬)降水量、空气温度均影响樟子松径向生长。以15天为时间尺度, 温度对樟子松径向生长的影响显著。结果显示樟子松的生长动态规律及其影响因子, 为未来樟子松生理研究提供参考时间节点, 同时在极端低温与干旱的情况下, 为半干旱地区樟子松的生长状态提供参考依据。
季倩雯, 郑成洋, 张磊, 曾发旭. 河北塞罕坝樟子松径向生长动态变化及其与气象因子的关系. 植物生态学报, 2020, 44(3): 257-265. DOI: 10.17521/cjpe.2019.0340
JI Qian-Wen, ZHENG Cheng-Yang, ZHANG Lei, ZENG Fa-Xu. Stem radial growth dynamics of Pinus sylvestris var. mongolica and their relationship with meteorological factor in Saihanba, Hebei, China. Chinese Journal of Plant Ecology, 2020, 44(3): 257-265. DOI: 10.17521/cjpe.2019.0340
图2 3月20日-5月20日河北塞罕坝樟子松径向日动态变化。
Fig. 2 Diurnal change of stem radial growth in Pinus sylvestris var. mongolica from March 20 to May 20 in Saihanba, Hebei.
图3 9月20日-11月20日河北塞罕坝樟子松径向日动态变化。
Fig. 3 The diurnal change of stem radial growth in Pinus sylvestris var. mongolica from September 20 to November 20 in Saihanba, Hebei.
图4 2016-2018年河北塞罕坝樟子松年累积径向平均变化。
Fig. 4 The yearly accumulation of radial growth in Pinus sylvestris var. mongolica during 2016-2018 in Saihanba, Hebei.
图5 河北塞罕坝4-10月以15天为间隔的樟子松径向变化。斜线箱图表示径向生长量与0有显著差异(单样本t检验, p < 0.05)。
Fig. 5 Stem radial growth of Pinus sylvestris var. mongolica at 15 d interval from April to October in Saihanba, Hebei. Diagonal box shows that stem radial variation is significantly different from zero.
图6 河北塞罕坝樟子松径向变化与气象因子的关系。
Fig. 6 Dynamic relationship between radial variation and climatic factors of Pinus sylvestris var. mongolica in Saihanba, Hebei.
阶段 Phase | 降水量 Precipitation | 土壤温度 Soil temperature | 空气温度 Air temperature | 降水量 Precipitation (15 d) | 空气温度 Air temperature (15 d) |
---|---|---|---|---|---|
生长 Growth | 0.247 | 0.363** | 0.241 | 0.755 | 0.897** |
稳定 Stabilization | 0.400** | 0.169 | 0.218** | 0.135 | 0.816 |
表1 河北塞罕坝快速生长阶段和稳定生长阶段樟子松径向变化量与气象因子的Pearson相关关系分析
Table 1 Pearson correlation analysis between the radial variation of Pinus sylvestris var. mongolica and the meteorological factors during fast growth and stable growth phases in Saihanba, Hebei
阶段 Phase | 降水量 Precipitation | 土壤温度 Soil temperature | 空气温度 Air temperature | 降水量 Precipitation (15 d) | 空气温度 Air temperature (15 d) |
---|---|---|---|---|---|
生长 Growth | 0.247 | 0.363** | 0.241 | 0.755 | 0.897** |
稳定 Stabilization | 0.400** | 0.169 | 0.218** | 0.135 | 0.816 |
[1] |
Anfodillo T, Rento S, Carraro V, Furlanetto L, Urbinati C, Carrer M (1998). Tree water relations and climatic variations at the alpine timberline: seasonal changes of sap flux and xylem water potential in Larix decidua Miller, Picea abies( L.) Karst. and Pinus cembra L. Annales des Sciences Forestières, 55, 159-172.
DOI URL |
[2] |
Baig MN, Tranquillini W (1980). The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in dessication damage at the alpine treeline. Oecologia, 47, 252-256.
DOI URL |
[3] |
Bouriaud O, Leban JM, Bert D, Deleuze C (2005). Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiology, 25, 651-660.
DOI URL |
[4] | Chan T, Hölttä T, Berninger F, Mäkinen H, Nöjd P, Mencuccini M, Nikinmaa E (2016). Separating water-potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal. Plant, Cell & Environment, 39, 233-244. |
[5] | Dai JX, Yang GL, Yang ZY (2002). Pioneer tree species for sand control and afforestation—Afforestation techniques of Pinus sylvestris var. mongolica. Forest Science and Technology, ( 10), 5-7. |
[ 戴继先, 杨国林, 杨战阳 (2002). 治沙造林先锋树种——樟子松造林技术研究. 林业实用技术, ( 10), 5-7.] | |
[6] |
Deslauriers A, Anfodillo T, Rossi S, Carraro V (2007a). Using simple causal modeling to understand how water and temperature affect daily stem radial variation in trees. Tree Physiology, 27, 1125-1136.
DOI URL |
[7] |
Deslauriers A, Morin H, Urbinati C (2003). Daily weather response of balsam fir ( Abies balsamea( L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees, 17, 477-484.
DOI URL |
[8] |
Deslauriers A, Rossi S, Anfodillo T (2007b). Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia, 25, 113-124.
DOI URL |
[9] |
Ehrenberger W, Rüger S, Fitzke R, Vollenweider P, Günthardt- Goerg MS, Kuster T, Zimmermann U, Arend M (2012). Concomitant dendrometer and leaf patch pressure probe measurements reveal the effect of microclimate and soil moisture on diurnal stem water and leaf turgor variations in young oak trees. Functional Plant Biology, 39, 297-305.
DOI URL |
[10] |
Gruber A, Baumgartner D, Zimmermann J, Oberhuber W (2009). Temporal dynamic of wood formation in Pinus cembra along the alpine treeline ecotone and the effect of climate variables. Trees, 23, 623-635.
DOI URL |
[11] |
King G, Fonti P, Nievergelt DU, Frank D (2013). Climatic drivers of hourly to yearly tree radius variations along a 6 °C natural warming gradient. Agricultural and Forest Meteorology, 168, 36-46.
DOI URL |
[12] |
Kocher P, Horna V, Leuschner C (2012). Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiology, 32, 1021-1032.
DOI URL |
[13] | Li CY, Junttila O, Ernstsen A, Heino P, Palva ET (2003). Photoperiodic control of growth, cold acclimation and dormancy development in silver birch ( Betula pendula) ecotypes. Physiologia Plantarum, 117, 206-212. |
[14] | Li T, He XY, Chen ZJ (2014). Tree-ring growth responses of Mongolian oak ( Quercus mongolica) to climate change in southern Northeast: a case study in Qianshan Mountains. Chinese Journal of Applied Ecology, 25, 1841-1848. |
[ 李腾, 何兴元, 陈振举 (2014). 东北南部蒙古栎径向生长对气候变化的响应——以千山为例. 应用生态学报, 25, 1841-1848.] | |
[15] | Li XH, Liu RP, Mao ZJ, Song Y, Liu LX, Sun T (2014). Daily stem radial variation of Pinus koraiensis and its response to meteorological parameters in Xiaoxing’an Mountain. Acta Ecologica Sinica, 34, 1635-1644. |
[ 李兴欢, 刘瑞鹏, 毛子军, 宋媛, 刘林馨, 孙涛 (2014). 小兴安岭红松日径向变化及其对气象因子的响应. 生态学报, 34, 1635-1644.] | |
[16] |
Ljung K, Bhalerao RP, Sandberg G (2002). Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. The Plant Journal, 28, 465-474.
DOI URL |
[17] |
Marek J, Miroslav B, Katarína S, Ľubica D (2011). The impact of the 2003-2008 weather variability on intra-annual stem diameter changes of beech trees at a submontane site in central slovakia. Dendrochronologia, 29, 227-235.
DOI URL |
[18] | Niu HG, Zhang F, Yu AL, Wang F, Zhang JZ, Gou XH (2018). Intra-annual stem radial growth dynamics of Picea wilsorii in response to climate in the eastern Qilian Mountains. Acta Ecologica Sinica, 38, 7412-7420. |
[ 牛豪阁, 张芬, 于爱灵, 王放, 张军周, 勾晓华 (2018). 祁连山东部青杄年内径向生长动态对气候的响应. 生态学报, 38, 7412-7420.] | |
[19] |
Partanen J, Beuker E (1999). Effects of photoperiod and thermal time on the growth rhythm of Pinus sylvestris seedlings. Scandinavian Journal of Forest Research, 14, 487-497.
DOI URL |
[20] |
Pearce R (2001). Plant freezing and damage. Annals of Botany, 87, 417-424.
DOI URL |
[21] |
Pichler P, Oberhuber W (2007). Radial growth response of coniferous forest trees in an Inner Alpine environment to heat- wave in 2003. Forest Ecology and Management, 242, 688-699.
DOI URL |
[22] |
Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006). Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytologist, 170, 301-310.
DOI URL |
[23] | Sevanto S, Hölttä T, Holbrook NM (2011). Effects of the hydraulic coupling between xylem and phloem on diurnal phloem diameter variation. Plant, Cell & Environment, 34, 690-703. |
[24] |
Sevanto S, Suni T, Pumpanen J, Gronholm T, Kolari P, Nikinmaa E, Hari P, Vesala T (2006). Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiology, 26, 749-757.
DOI URL |
[25] |
Strimbeck GR, Kjellsen TD, Schaberg PG, MurakamiPF , (2008). Dynamics of low-temperature acclimation in temperate and boreal conifer foliage in a mild winter climate. Tree Physiology, 28, 1365-1374.
DOI URL |
[26] |
Swidrak I, Gruber A, Kofler W, Oberhuber W (2011). Effects of environmental conditions on onset of xylem growth in Pinus sylvestris under drought. Tree Physiology, 31, 483-493.
DOI URL |
[27] |
Turcotte A, Morin H, Krause C, Deslauriers A, Thibeault-Martel M (2009). The timing of spring rehydration and its relation with the onset of wood formation in black spruce. Agricultural and Forest Meteorology, 149, 1403-1409.
DOI URL |
[28] | Turcotte A, Rossi S, Deslauriers A, Krause C, Morin H (2011). Dynamics of depletion and replenishment of water storage in stem and roots of black spruce measured by dendrometers. Frontiers in Plant Science, 21, 1-8. |
[29] |
Wang XC, Song LP, Zhang YD (2011). Climate-tree growth relationships of Pinus sylvestris var. mongolica in the northern Daxing’an Mountains, China. Chinese Journal of Plant Ecology, 35, 294-302.
DOI URL |
[ 王晓春, 宋来萍, 张远东 (2011). 大兴安岭北部樟子松树木生长与气候因子的关系. 植物生态学报, 35, 294-302.]
DOI URL |
|
[30] | Zhang JD, Jiang LL, Xu ZQ, Ma R (2019). Study on growth regularity of Pinus sylvestris var. mongolica in Saihanba area. Forestry and Ecological Sciences, 34, 135-140. |
[ 张建东, 姜玲玲, 许中旗, 马荣 (2019). 塞罕坝地区樟子松生长规律研究. 林业与生态科学, 34, 135-140.] | |
[31] |
Zhang LN, Jiang Y, Zhang SD, Jiao L, Wen Y (2018). Relationships between tree age and climate sensitivity of radial growth in different drought conditions of Qilian Mountains, northwestern China. Forests, 9, 135-153.
DOI URL |
[32] |
Zhang WT, Guo YY, Dong MY, Jiang Y, Yang HC, Wang MC (2012). Dynamics of stem radial growth of Picea meyeri during the growing season at the treeline of Luya Mountain, China. Chinese Journal of Plant Ecology, 36, 956-964.
DOI URL |
[ 张文涛, 郭媛媛, 董满宇, 江源, 杨浩春, 王明昌 (2012). 芦芽山林线白杄生长季径向生长动态. 植物生态学报, 36, 956-964.]
DOI URL |
|
[33] |
Zhang Y, Bergeron Y, Gao LS, Zhao XH, Wang XM, Drobyshev I (2014). Tree growth and regeneration dynamics at a mountain ecotone on Changbai Mountain, northeastern China: Which factors control species distributions? Écoscience, 21, 387-404.
DOI URL |
[34] | Zheng CY (2005). Forest Structure and Biomass of Saihanba, Hebei Province. Post-Doctorate Reports, Peking University, Beijing. |
[ 郑成洋 (2005). 河北省塞罕坝森林结构与生物量. 博士后出站报告, 北京大学, 北京.] | |
[35] |
Zhuang LW, Axmacher JC, Sang WG (2017). Different radial growth responses to climate warming by two dominant tree species at their upper altitudinal limit on Changbai Mountain. Journal of Forestry Research, 28, 795-804.
DOI URL |
[36] |
Zweifel R, Häsler R (2000). Frost-induced reversible shrinkage of bark of mature subalpine conifers. Agricultural and Forest Meteorology, 102, 213-222.
DOI URL |
[37] |
Zweifel R, Item H, Hasler R (2001). Link between diurnal stem radius changes and tree water relations. Tree Physiology, 21, 869-877.
DOI URL |
[1] | 许泽海 赵燕东. 生长季五角枫茎干水分含量序列特征及其影响因素解译[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[3] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[4] | 冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018, 42(4): 453-465. |
[5] | 邢娟, 郑成洋, 冯婵莹, 曾发旭. 河北塞罕坝樟子松人工林生长及碳储量的变化[J]. 植物生态学报, 2017, 41(8): 840-849. |
[6] | 王云霓,熊伟,王彦辉,于澎涛,曹恭祥,徐丽宏,左海军,贺亮亮. 宁夏六盘山3种针叶林降水利用效率的年际变化及其对气象因子的响应[J]. 植物生态学报, 2013, 37(10): 901-911. |
[7] | 商志远, 王建, 崔明星, 陈振举. 樟子松树轮δ 13C的年内变化特征及其对气候要素的响应[J]. 植物生态学报, 2012, 36(12): 1256-1267. |
[8] | 王晓春, 宋来萍, 张远东. 大兴安岭北部樟子松树木生长与气候因子的关系[J]. 植物生态学报, 2011, 35(3): 294-302. |
[9] | 魏雅芬, 方杰, 赵学勇, 李胜功. 科尔沁沙地樟子松人工林不同年龄针叶生理生态性状[J]. 植物生态学报, 2011, 35(12): 1271-1280. |
[10] | 邱俊, 谷加存, 姜红英, 王政权. 樟子松人工林细根寿命估计及影响因子研究[J]. 植物生态学报, 2010, 34(9): 1066-1074. |
[11] | 冯秋红, 史作民, 董莉莉, 刘世荣. 南北样带温带区栎属树种功能性状间的关系及其对气象因子的响应[J]. 植物生态学报, 2010, 34(6): 619-627. |
[12] | 郭福涛, 胡海清, 金森, 马志海, 张扬. 基于负二项和零膨胀负二项回归模型的大兴安岭地区雷击火与气象因素的关系[J]. 植物生态学报, 2010, 34(5): 571-577. |
[13] | 吴芳, 陈云明, 于占辉. 黄土高原半干旱区刺槐生长盛期树干液流动态[J]. 植物生态学报, 2010, 34(4): 469-476. |
[14] | 喻泓, 杨晓晖, 慈龙骏. 地表火对红花尔基沙地樟子松种群空间分布格局的影响[J]. 植物生态学报, 2009, 33(1): 71-80. |
[15] | 宋瑞清, 李喜梅, 祁金玉. 外生菌根菌不同接种方法对樟子松苗木生长的影响[J]. 植物生态学报, 2008, 32(6): 1378-1385. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19