植物生态学报 ›› 2012, Vol. 36 ›› Issue (12): 1256-1267.DOI: 10.3724/SP.J.1258.2012.01256
所属专题: 稳定同位素生态学
收稿日期:
2012-05-09
接受日期:
2012-09-04
出版日期:
2012-05-09
发布日期:
2012-11-28
通讯作者:
商志远
作者简介:
* E-mail: szy268@163.com
SHANG Zhi-Yuan1,*(), WANG Jian1, CUI Ming-Xing2, CHEN Zhen-Ju3
Received:
2012-05-09
Accepted:
2012-09-04
Online:
2012-05-09
Published:
2012-11-28
Contact:
SHANG Zhi-Yuan
摘要:
对大兴安岭北部两株樟子松(Pinus sylvestris var. mongolica)树轮样品的年内稳定碳同位素比率(δ 13C)进行测定, 结果表明: 樟子松树轮年内δ 13C值在不同生长阶段总体表现出每年生长季中期最高、早期次之、晚期最低的变化特征。δ 13C的年内变化趋势在幼龄期至速生期变化剧烈, 成熟期至衰老期相对平缓。从幼龄期至衰老期的整个生长阶段, 同时期年内δ 13C的变动幅度基本为晚材大于早材。幼龄期年内晚材的δ 13C一直明显高于早材, 而成熟期年内早晚材δ 13C的差别逐渐减小, 至衰老期年内晚材δ 13C已低于早材且无显著差别。树轮δ 13C的年内变化主要体现在生长季中后期, 即早晚材之间的过渡段至晚材。年内不同时段的δ 13C序列与同时段的宽度去除生长趋势序列(去趋势序列)之间的相关性随生长季节的推移而逐渐降低。当年早材宽度与前一年晚材宽度显著正相关, 当年早材δ 13C序列与前一年晚材宽度和当年早材宽度的去趋势合并序列呈现较显著的负相关性, 与前一年晚材δ 13C序列或宽度去趋势序列之间均未表现出显著的相关性。分析结果表明: 早材的形成很可能来源于前一年光合作用的产物, 在利用树轮年内不同材质宽度或δ 13C序列进行气候环境重建时需要考虑这一点。年内早材、过渡段和晚材三个时段的δ 13C分别对应于4月下旬至6月中旬土壤湿度较大、温度上升较快的时期, 6月下旬至7月中旬降水增加、温度达到最高而相对湿度降低的时期, 以及7月下旬至9月中旬降水增加、温度下降而相对湿度较大的时期。
商志远, 王建, 崔明星, 陈振举. 樟子松树轮δ 13C的年内变化特征及其对气候要素的响应. 植物生态学报, 2012, 36(12): 1256-1267. DOI: 10.3724/SP.J.1258.2012.01256
SHANG Zhi-Yuan, WANG Jian, CUI Ming-Xing, CHEN Zhen-Ju. Intra-annual variation in δ 13C from tree rings of Pinus sylvestris var. mongolica and its response to climatic factors. Chinese Journal of Plant Ecology, 2012, 36(12): 1256-1267. DOI: 10.3724/SP.J.1258.2012.01256
样本编号 Sample No. | 树龄 Tree age (a) | 分析年份 Analyzing period | 剥取方案 Stripping program |
---|---|---|---|
SZX01-08 | 231 | 1904-1908, 1924-1928, 1944-1948 | 分早材、过渡段和晚材3段 Subdivided into three segments: earlywood (EW), transitional wood (TW) and latewood (LW) for each ring |
BZ4-10-1.2 | 117 | I: 1897-1901, 902-1906, 1912-1916, 1955-1959, 1998-2002; II: 1930-1944 | I: 分早材和晚材 Subdivided into earlywood (EW) and latewood (LW) for each ring; II: 分早材、过渡段和晚材3段 Subdivided into three segments: earlywood (EW), transitional wood (TW) and latewood (LW) for each ring |
表1 树轮δ13C样品基本信息
Table 1 Basic information of the tree ring δ13C samples
样本编号 Sample No. | 树龄 Tree age (a) | 分析年份 Analyzing period | 剥取方案 Stripping program |
---|---|---|---|
SZX01-08 | 231 | 1904-1908, 1924-1928, 1944-1948 | 分早材、过渡段和晚材3段 Subdivided into three segments: earlywood (EW), transitional wood (TW) and latewood (LW) for each ring |
BZ4-10-1.2 | 117 | I: 1897-1901, 902-1906, 1912-1916, 1955-1959, 1998-2002; II: 1930-1944 | I: 分早材和晚材 Subdivided into earlywood (EW) and latewood (LW) for each ring; II: 分早材、过渡段和晚材3段 Subdivided into three segments: earlywood (EW), transitional wood (TW) and latewood (LW) for each ring |
图1 SZX01-08和BZ4-10-1.2两样本早、晚材年轮宽度原始值。虚线为六次多项式拟合趋势线。
Fig. 1 Original value of ring width of earlywood (EW) and latewood (LW) in SZX01-08 and BZ4-10-1.2 samples. Dotted lines show 6-degree polynomial fitting.
样本编号 Sample No. | 时间 Time | 材质 Material | 最大值 Max | 最小值 Min | 平均值 Mean | 标准偏差 Standard deviation |
---|---|---|---|---|---|---|
SZX01-08 | 1904-1908 | 早材 Earlywood | -24.347 | -25.239 | -24.784 | 0.371 |
过渡段 Transitional wood | -23.841 | -25.294 | -24.696 | 0.529 | ||
晚材 Latewood | -25.037 | -25.516 | -25.343 | 0.198 | ||
1924-1928 | 早材 Earlywood | -24.394 | -25.495 | -24.957 | 0.464 | |
过渡段 Transitional wood | -23.446 | -24.954 | -24.549 | 0.628 | ||
晚材 Latewood | -24.460 | -25.970 | -25.291 | 0.596 | ||
1944-1948 | 早材 Earlywood | -24.574 | -25.780 | -25.097 | 0.459 | |
过渡段 Transitional wood | -24.667 | -25.370 | -25.063 | 0.302 | ||
晚材 Latewood | -24.486 | -26.219 | -25.816 | 0.491 | ||
BZ4-10-1.2 | 1897-1906 | 早材 Earlywood | -24.176 | -26.322 | -25.276 | 0.741 |
晚材 Latewood | -23.533 | -26.972 | -24.612 | 1.032 | ||
1912-1916 | 早材 Earlywood | -25.044 | -26.224 | -25.735 | 0.453 | |
晚材 Latewood | -23.851 | -25.856 | -25.185 | 0.796 | ||
1930-1944 | 早材 Earlywood | -24.483 | -25.682 | -25.097 | 0.340 | |
过渡段 Transitional wood | -24.095 | -25.275 | -24.630 | 0.387 | ||
晚材 Latewood | -24.460 | -25.675 | -25.093 | 0.415 | ||
1955-1959 | 早材 Earlywood | -24.968 | -25.784 | -25.431 | 0.355 | |
晚材 Latewood | -25.114 | -25.749 | -25.456 | 0.243 | ||
1998-2002 | 早材 Earlywood | -25.307 | -25.904 | -25.630 | 0.268 | |
晚材 Latewood | -25.138 | -26.078 | -25.574 | 0.359 |
表2 SZX01-08和BZ4-10-1.2两样本年内δ13C序列统计结果(‰)
Table 2 Statistical results of the intra-annual δ13C sequences in SZX01-08 and BZ4-10-1.2 samples (‰)
样本编号 Sample No. | 时间 Time | 材质 Material | 最大值 Max | 最小值 Min | 平均值 Mean | 标准偏差 Standard deviation |
---|---|---|---|---|---|---|
SZX01-08 | 1904-1908 | 早材 Earlywood | -24.347 | -25.239 | -24.784 | 0.371 |
过渡段 Transitional wood | -23.841 | -25.294 | -24.696 | 0.529 | ||
晚材 Latewood | -25.037 | -25.516 | -25.343 | 0.198 | ||
1924-1928 | 早材 Earlywood | -24.394 | -25.495 | -24.957 | 0.464 | |
过渡段 Transitional wood | -23.446 | -24.954 | -24.549 | 0.628 | ||
晚材 Latewood | -24.460 | -25.970 | -25.291 | 0.596 | ||
1944-1948 | 早材 Earlywood | -24.574 | -25.780 | -25.097 | 0.459 | |
过渡段 Transitional wood | -24.667 | -25.370 | -25.063 | 0.302 | ||
晚材 Latewood | -24.486 | -26.219 | -25.816 | 0.491 | ||
BZ4-10-1.2 | 1897-1906 | 早材 Earlywood | -24.176 | -26.322 | -25.276 | 0.741 |
晚材 Latewood | -23.533 | -26.972 | -24.612 | 1.032 | ||
1912-1916 | 早材 Earlywood | -25.044 | -26.224 | -25.735 | 0.453 | |
晚材 Latewood | -23.851 | -25.856 | -25.185 | 0.796 | ||
1930-1944 | 早材 Earlywood | -24.483 | -25.682 | -25.097 | 0.340 | |
过渡段 Transitional wood | -24.095 | -25.275 | -24.630 | 0.387 | ||
晚材 Latewood | -24.460 | -25.675 | -25.093 | 0.415 | ||
1955-1959 | 早材 Earlywood | -24.968 | -25.784 | -25.431 | 0.355 | |
晚材 Latewood | -25.114 | -25.749 | -25.456 | 0.243 | ||
1998-2002 | 早材 Earlywood | -25.307 | -25.904 | -25.630 | 0.268 | |
晚材 Latewood | -25.138 | -26.078 | -25.574 | 0.359 |
图2 SZX01-08和BZ4-10-1.2两样本早材(EW)、过渡段(TW)和晚材(LW)的δ13C对比。
Fig. 2 Intercomparison of δ13C of earlywood (EW), transitional wood (TW) and latewood (LW) between SZX01-08 and BZ4-10-1.2 samples.
样本编号 Sample No. | 早材与过渡段 Earlywood vs. transitional wood | 过渡段与晚材 Transitional wood vs .latewood | 早材与晚材 Earlywood vs. latewood |
---|---|---|---|
SZX01-08 | 0.361 | 0.797** | 0.501 |
BZ4-10-1.2 | 0.178 | 0.324 | 0.613* |
表3 年内不同时段的δ13C序列之间的相关系数
Table 3 Correlation coefficients of the δ13C sequences between different intra-annual phases
样本编号 Sample No. | 早材与过渡段 Earlywood vs. transitional wood | 过渡段与晚材 Transitional wood vs .latewood | 早材与晚材 Earlywood vs. latewood |
---|---|---|---|
SZX01-08 | 0.361 | 0.797** | 0.501 |
BZ4-10-1.2 | 0.178 | 0.324 | 0.613* |
参数 Parameter | 相关系数 Correlation coefficient | 参数 Parameter | 相关系数 Correlation coefficient |
---|---|---|---|
δ13C (EW)-dRWS (EW) | -0.626* | RWS (EW)-RWS (pLW) | 0.794** |
δ13C (TW)-dRWS (TW) | -0.416 | RWS (EW)-δ13C (pLW) | -0.224 |
δ13C (LW)-dRWS (LW) | -0.245 | δ13C (EW)-dRWS (pLW) | -0.296 |
δ13C (EW)-δ13C (pLW) | 0.075 | δ13C (EW)-dRWS (pLW+EW) | -0.540* |
表4 BZ4-10-1.2样本在年内不同时段的δ13C序列和树轮宽度序列的相关系数
Table 4 Correlation coefficients between the δ13C sequences of different phases and ring width sequences for BZ4-10-1.2 sample
参数 Parameter | 相关系数 Correlation coefficient | 参数 Parameter | 相关系数 Correlation coefficient |
---|---|---|---|
δ13C (EW)-dRWS (EW) | -0.626* | RWS (EW)-RWS (pLW) | 0.794** |
δ13C (TW)-dRWS (TW) | -0.416 | RWS (EW)-δ13C (pLW) | -0.224 |
δ13C (LW)-dRWS (LW) | -0.245 | δ13C (EW)-dRWS (pLW) | -0.296 |
δ13C (EW)-δ13C (pLW) | 0.075 | δ13C (EW)-dRWS (pLW+EW) | -0.540* |
图3 BZ4-10-1.2样本在1930-1944年年内早材、过渡段和晚材δ13C序列的均值和漠河、新林两气象站1972-2007年年内3个旬段的T/RH (A)以及漠河新林两气象站1972-2007年4-9月平均日照时数(B)。T, 旬平均温度15年滑动平均值的各旬段均值; RH, 旬相对湿度15年滑动平均值的各旬段均值。3个旬段分别为: 4月下旬-6月中旬、6月下旬-7月中旬和7月下旬-9月中旬。
Fig. 3 Mean values of the intra-annual δ13C sequences (1930-1944) for earlywood (EW), transitional wood (TW) and latewood (LW) from BZ4-10-1.2 sample, and intra-annual T/RH for three ten-days of two meteorological stations (Mohe and Xinlin) during 1972-2007 (A), as well as mean sunshine hours from April to September of 1972-2007 at two meteorological stations (B). T, mean values of 15-year moving average of ten-day mean temperature; RH, mean values of 15-year moving average of ten-day relative humidity. Three ten-days are: from late April to middle June, from late June to middle July and from late July to middle September, respectively.
1 | Barbour MM, Walcroft AS, Farquhar GD ( 2002). Seasonal variation in δ 13C and δ 18O of cellulose from growth rings of Pinus radiata. Plant, Cell & Environment, 25, 1483-1499. |
2 | Brugnoli E, Hubick KT, von Caemmerer S, Wong SC, Farquhar GD ( 1988). Correlation between the carbon isotope discrimination in leaf starch and sugars of C3 plants and the ratio of intercellular and atmospheric partial pressures of carbon dioxide. Plant Physiology, 88, 1418-1424. |
3 | Damesin C, Lelarge C ( 2003). Carbon isotope composition of current-year shoots from Fagus sylvatica in relation to growth, respiration and use of reserves. Plant, Cell & Environment, 26, 207-219. |
4 | Eglin T, Maunoury-Danger F, Fresneau C, Lelarge C, Pollet B, Lapierre C, Francois C, Damesin C ( 2008). Biochemical composition is not the main factor influencing variability in carbon isotope composition of tree rings. Tree Physiology, 28, 1619-1628. |
5 | Eilmann B, Buchmann N, Siegwolf R, Saurer M, Cherubini P, Rigling A ( 2010). Fast response of Scots pine to improved water availability reflected in tree-ring width and δ 13C. Plant, Cell & Environment, 33, 1351-1360. |
6 | Francey RJ, Farquhar GD ( 1982). An explanation of 13C/ 12C variations in tree rings . Nature, 297(5861), 28-31. |
7 | Helle G, Schleser GH ( 2004). Beyond CO2-fixation by Rubisco—an interpretation of 13C/ 12C variations in tree rings from novel intra-seasonal studies on broad-leaf trees . Plant, Cell & Environment, 27, 367-380. |
8 | Hill SA, Waterhouse JS, Field EM, Switsur VR, Ap Rees T ( 1995). Rapid recycling of triose phosphates in oak stem tissue. Plant, Cell & Environment, 18, 931-936. |
9 | Hoch G, Richter A, Körner C ( 2003). Non-structural carbon compounds in temperate forest trees. Plant, Cell & Environment, 26, 1067-1081. |
10 | Jäggi M, Saurer M, Fuhrer J, Siegwolf R ( 2002) . The relationship between the stable carbon isotope composition of needle bulk material, starch, and tree rings in Picea abies. Oecologia, 131, 325-332. |
11 | Kagawa A, Sugimoto A, Maximov TC ( 2006). 13CO2 pulse- labelling of photoassimilates reveals carbon allocation within and between tree rings . Plant, Cell & Environment, 29, 1571-1584. |
12 | Kress A, Young GHF, Saurer M, Loader NJ, Siegwolf RTW, McCarroll D ( 2009). Stable isotope coherence in the earlywood and latewood of tree-line conifers. Chemical Geology, 268, 52-57. |
13 | Lacointe A, Kajji A, Daudet FA, Archer P, Frossard JS ( 1993). Mobilization of carbon reserves in young walnut trees. Acta Botanica Gallica, 140, 435-441. |
14 | Leavitt SW ( 1993). Seasonal 13C/ 12C changes in tree rings: species and site coherence, and a possible drought influence . Canadian Journal Forest Research, 23, 210-218. |
15 | Leavitt SW, Long A ( 1991). Seasonal stable-carbon isotope variability in tree rings: possible paleoenvironmental signals. Chemical Geology, 87, 59-70. |
16 | Leavitt SW, Wright WE, Long A ( 2002). Spatial expression of ENSO, drought, and summer monsoon in seasonal δ 13C of ponderosa pine tree rings in southern Arizona and New Mexico. Journal Geophysical Research, 107(D18), 4349. |
17 | Li ZH, Leavitt SW, Mora CI, Liu RM ( 2005). Influence of earlywood-latewood size and isotope differences on long-term tree-ring δ 13C trends. Chemical Geology, 216, 191-201. |
18 | Livingston NJ, Spittlehouse DL ( 1996). Carbon isotope fractionation in tree ring early and late wood in relation to intra-growing season water balance. Plant, Cell & Environ- ment, 19, 768-774. |
19 |
Loader NJ, Switsur VR, Field EM ( 1995). High-resolution stable isotope analysis of tree rings: implications of ‘microdendroclimatology’ for palaeoenvironmental research. The Holocene, 5, 457-460.
DOI URL |
20 |
McCarroll D, Jalkanen R, Hicks S, Tuovinen M, Gagen M, Pawellek F, Eckstein D, Schmitt U, Autio J, Heikkinen O ( 2003). Multiproxy dendroclimatology: a pilot study in northern Finland. The Holocene, 13, 829-838.
DOI URL |
21 | McCarroll D, Loader NJ ( 2004). Stable isotopes in tree rings. Quaternary Science Reviews, 23, 771-801. |
22 | McCarroll D, Pawellek F ( 2001). Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. The Holocene, 11, 517-526. |
23 | Michelot A, Eglin T, Dufrêne E, Lelarge-Trouverie C, Damesin C ( 2011). Comparison of seasonal variations in water-use efficiency calculated from the carbon isotope composition of tree rings and flux data in a temperate forest. Plant, Cell & Environment, 34, 230-244. |
24 | O’Leary MH ( 1981). Carbon isotope fractionation in plants. Phytochemistry, 20, 553-567. |
25 | Porté A, Loustau D ( 2001). Seasonal and interannual variations in carbon isotope discrimination in a maritime pine ( Pinus pinaster) stand assessed from the isotopic composition of cellulose in annual rings. Tree Physiology, 21, 861-868. |
26 | Robertson I, Loader NJ, McCarroll D, Carter AHC, Cheng L, Leavitt SW ( 2004). δ 13C of tree-ring lignin as an indirect measure of climate change . Water, Air, and Soil Pollution, 4, 531-544. |
27 | Schulze B, Wirth C, Linke P, Brand WA, Kuhlmann I, Horna V, Schulze ED ( 2004). Laser ablation-combustion-GC- IRMS — a new method for online analysis of intra-annual variation of δ 13C in tree rings. Tree Physiology, 24, 1193-1201. |
28 | Shang ZY ( 商志远), Wang J ( 王建), Cui MX ( 崔明星), Chen ZJ ( 陈振举), Wang ZJ ( 王志军), Liu F ( 刘丰), Qian JL ( 钱君龙 ) ( 2011). Analysis of stable carbon isotopes in different components of tree rings of Pinus sylvestris var. mongolica. Acta Ecologica Sinica (生态学报), 31, 5148-5158. (in Chinese with English abstract) |
29 | Skomarkova MV, Vaganov EA, Mund M, Knohl A, Linke P, Boerner A, Schulze ED ( 2006). Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech ( Fagus sylvatica) growing in Germany and Italy. Trees, 20, 571-586. |
30 | Smith JL, Paul EA ( 1988). Use of an in situ labeling technique for the determination of seasonal 14C distribution in Ponderosa pine. Plant and Soil, 106, 221-229. |
31 | Wang J ( 王建), Qian JL ( 钱君龙), Liang Z ( 梁中), Zhao XY ( 赵兴云), Shang ZY ( 商志远), Chen X ( 陈霞), Lu XM ( 陆小明 ) ( 2008). Sampling strategy for carbon isotope analysis of tree rings: a case study of Cryptomeria fortunei from Mt. Tianmu, China. Acta Ecologica Sinica (生态学报), 28, 6070-6078. (in Chinese with English abstract) |
32 | Wang XC ( 王晓春), Song LP ( 宋来萍), Zhang YD ( 张远东 ) ( 2011). Climate-tree growth relationships of Pinus sylvestris var. mongolica in the northern Daxing’an Mountains, China. Chinese Journal of Plant Ecology (植物生态学报), 35, 294-302. (in Chinese with English abstract) |
33 | Weigl M, Grabner M, Helle G, Schleser GH, Wimmer R ( 2008). Characteristics of radial growth and stable isotopes in a single oak tree to be used in climate studies. Science of the Total Environment, 393, 154-161. |
34 | Wilson AT, Grinsted JM ( 1977). 12C/ 13C in cellulose and lignin as palaeothermometers . Nature, 265, 133-135. |
35 | Zhao XL ( 赵兴梁), Li WY ( 李万英 ) (1963). Pinus sylvestris var. mongolica Litv (樟子松). China Agricultural Publishing House, Beijing. 9-10. (in Chinese) |
[1] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[2] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[3] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[4] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[5] | 葛体达, 王东东, 祝贞科, 魏亮, 魏晓梦, 吴金水. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 360-372. |
[6] | 季倩雯, 郑成洋, 张磊, 曾发旭. 河北塞罕坝樟子松径向生长动态变化及其与气象因子的关系[J]. 植物生态学报, 2020, 44(3): 257-265. |
[7] | 李瑞, 胡朝臣, 许士麒, 吴迪, 董玉平, 孙新超, 毛瑢, 王宪伟, 刘学炎. 大兴安岭泥炭地植物叶片碳氮磷含量及其化学计量学特征[J]. 植物生态学报, 2018, 42(12): 1154-1167. |
[8] | 宋文琦, 朱良军, 张旭, 王晓春, 张远东. 青藏高原东北部不同降水梯度下高山林线祁连圆柏径向生长与气候关系的比较[J]. 植物生态学报, 2018, 42(1): 66-77. |
[9] | 邢娟, 郑成洋, 冯婵莹, 曾发旭. 河北塞罕坝樟子松人工林生长及碳储量的变化[J]. 植物生态学报, 2017, 41(8): 840-849. |
[10] | 方欧娅, 贾恒锋, 邱红岩, 任海保. 青海省同德县乔木状甘蒙柽柳的年龄及其生长对环境的响应[J]. 植物生态学报, 2017, 41(7): 738-748. |
[11] | 常永兴, 陈振举, 张先亮, 白学平, 赵学鹏, 李俊霞, 陆旭. 气候变暖下大兴安岭落叶松径向生长对温度的响应[J]. 植物生态学报, 2017, 41(3): 279-289. |
[12] | 朱良军, 李宗善, 王晓春. 树轮木质部解剖特征及其与环境变化的关系[J]. 植物生态学报, 2017, 41(2): 238-251. |
[13] | 熊鑫, 张慧玲, 吴建平, 褚国伟, 周国逸, 张德强. 鼎湖山森林演替序列植物-土壤碳氮同位素特征[J]. 植物生态学报, 2016, 40(6): 533-542. |
[14] | 李明泽, 王斌, 范文义, 赵丹丹. 东北林区净初级生产力及大兴安岭地区林火干扰影响的模拟研究[J]. 植物生态学报, 2015, 39(4): 322-332. |
[15] | 黄科朝, 胥晓, 李霄峰, 贺俊东, 杨延霞, 郇慧慧. 小五台山青杨雌雄植株树轮生长特性及其对气候变化的响应差异[J]. 植物生态学报, 2014, 38(3): 270-280. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19