植物生态学报 ›› 2014, Vol. 38 ›› Issue (3): 270-280.DOI: 10.3724/SP.J.1258.2014.00024
黄科朝1,2, 胥晓2,*(), 李霄峰3, 贺俊东1,2, 杨延霞1,2, 郇慧慧1,2
收稿日期:
2013-10-12
接受日期:
2013-12-27
出版日期:
2014-10-12
发布日期:
2014-02-27
通讯作者:
胥晓
作者简介:
*E-mail: xuxiao_cwnu@163.com基金资助:
HUANG Ke-Chao1,2, XU Xiao2,*(), LI Xiao-Feng3, HE Jun-Dong1,2, YANG Yan-Xia1,2, HUAN Hui-Hui1,2
Received:
2013-10-12
Accepted:
2013-12-27
Online:
2014-10-12
Published:
2014-02-27
Contact:
XU Xiao
摘要:
近年来逆境导致植物雌雄幼苗的生长出现差异被许多控制实验所证实, 而有关气候变化对雌雄异株植物成树生长的潜在影响尚未引起人们广泛的关注。为进一步揭示气候变化对雌雄植株树木径向和密度生长的不同影响, 该文通过树轮生态学的研究方法, 选择小五台山天然青杨(Populus cathayana)种群为研究对象, 对青杨雌雄植株近30年(1982-2011)的树轮生长特性及其与气候的相关性进行了分析。结果显示: 1)在近30年当地气温不断升高的气候条件下, 雌株的年轮最大密度和晚材平均密度均高于雄株(p < 0.05), 但雌雄植株的径向生长无显著差异; 2)雌雄植株年轮最大密度和宽度差值年表的变化趋势具有一致性, 但在年轮最大密度差值年表的变化上雄株波动幅度大于雌株; 3)青杨雌雄植株年轮密度差值年表对温度响应的月份明显不同。雌株年轮最大密度与当年8月的月平均最高气温显著正相关, 而雄株年轮最大密度与当年1月和4月的气温负相关; 4)生长季前的气候变化对青杨雌雄植株的径向生长均有明显的限制作用。此外, 当年6月的高温对于早材生长的限制作用特别明显。上述结果表明, 雌雄异株植物在树木年轮生长方面对全球气候变暖可能具有不同的响应机制, 雌株比雄株更侧重于密度生长。
黄科朝, 胥晓, 李霄峰, 贺俊东, 杨延霞, 郇慧慧. 小五台山青杨雌雄植株树轮生长特性及其对气候变化的响应差异. 植物生态学报, 2014, 38(3): 270-280. DOI: 10.3724/SP.J.1258.2014.00024
HUANG Ke-Chao, XU Xiao, LI Xiao-Feng, HE Jun-Dong, YANG Yan-Xia, HUAN Hui-Hui. Gender-specific characteristics of tree-ring growth and differential responses to climate change in the dioecious tree Populus cathayana in Xiaowutai Mountains, China. Chinese Journal of Plant Ecology, 2014, 38(3): 270-280. DOI: 10.3724/SP.J.1258.2014.00024
性别 Gender | 年表长度 Chronology duration | 时间长度(年) Time span (a) | 采样植株数 No. of sample trees | 样本量 Sample size | 共同区间 Common interval time span | 共同区间样本数 No. of samples in common interval time span |
---|---|---|---|---|---|---|
雌株 Female tree | A.D. 1961-2011 | 51 | 20 | 20 | A.D. 1982-2011 | 20 |
雄株 Male tree | A.D. 1954-2011 | 58 | 20 | 20 | A.D. 1982-2011 | 20 |
表1 青杨雌雄植株树轮样本的描述性统计
Table 1 Descriptive statistics for tree ring samples of female and male Populus cathayana trees
性别 Gender | 年表长度 Chronology duration | 时间长度(年) Time span (a) | 采样植株数 No. of sample trees | 样本量 Sample size | 共同区间 Common interval time span | 共同区间样本数 No. of samples in common interval time span |
---|---|---|---|---|---|---|
雌株 Female tree | A.D. 1961-2011 | 51 | 20 | 20 | A.D. 1982-2011 | 20 |
雄株 Male tree | A.D. 1954-2011 | 58 | 20 | 20 | A.D. 1982-2011 | 20 |
图1 蔚县气象站1982-2011年年降水量(柱条)、年平均气温(三角折线)的逐年变化和年降水量趋势线(虚线)、年平均气温趋势线(实线)。
Fig. 1 Distribution of mean annual precipitation (bar) and air temperature (line with triangles), trend line of annual precipitation (dotted line), and trend line of annual air temperature (solid line) during the period 1982-2011 at the Yuxian Meteorological Station, China.
图2 青杨雌株和雄株在1982-2011年间年轮最大密度(MXD)、晚材平均密度(LWD)、早材平均密度(EWD)、年轮最小密度(MID)、树轮宽度(ARW)、早材宽度(EWW)、晚材宽度(LWW)的差异(平均值±标准误差)。NS, 差异不显著; *, p < 0.05。
Fig. 2 Differences in maximum ring density (MXD), latewood mean density (LWD), earlywood mean density (EWD), minimum ring density (MID), annual ring width (ARW), earlywood width (EWW), and latewood width (LWW) of female and male Populus cathayana trees during 1982-2011 (mean ± SE). NS, no significance; *, p < 0.05.
图3 青杨雌雄植株年轮最大密度和树轮宽度差值年表的比较。
Fig. 3 Comparisons of maximum ring density and annual ring width residual chronology between female and male Populus cathayana trees.
数据类型 Data type | 性别 Gender | 标准偏差 SD | 平均敏感度 MS | 一阶自相关 OR1 | 共同区间分析 Common interval analysis | |||
---|---|---|---|---|---|---|---|---|
样芯间平均 相关系数 r | 信噪比 SNR | 群体表达 信号 EPS | 第一主成分 解释方差量 PCI (%) | |||||
年轮最大密度 MXD | 雌株 Female tree | 0.041 | 0.047 | -0.118 | 0.068 | 1.381 | 0.580 | 31.0 |
雄株 Male tree | 0.055 | 0.057 | -0.053 | 0.114 | 2.443 | 0.710 | 34.8 | |
晚材平均密度 LWD | 雌株 Female tree | 0.037 | 0.040 | 0.005 | 0.031 | 0.378 | 0.607 | 22.1 |
雄株 Male tree | 0.048 | 0.053 | -0.121 | 0.062 | 1.246 | 0.555 | 16.5 | |
早材平均密度 EWD | 雌株 Female tree | 0.027 | 0.027 | -0.006 | 0.062 | 1.266 | 0.559 | 29.2 |
雄株 Male tree | 0.040 | 0.043 | -0.095 | 0.081 | 1.680 | 0.627 | 34.3 | |
年轮最小密度 MID | 雌株 Female tree | 0.025 | 0.028 | -0.129 | 0.015 | 0.296 | 0.229 | 41.6 |
雄株 Male tree | 0.038 | 0.042 | -0.146 | 0.080 | 1.648 | 0.622 | 32.2 | |
树轮宽度 ARW | 雌株 Female tree | 0.166 | 0.214 | -0.138 | 0.248 | 6.270 | 0.862 | 33.3 |
雄株 Male tree | 0.200 | 0.031 | -0.013 | 0.325 | 10.861 | 0.916 | 54.7 | |
早材宽度 EWW | 雌株 Female tree | 0.182 | 0.219 | -0.059 | 0.132 | 2.877 | 0.742 | 25.2 |
雄株 Male tree | 0.235 | 0.254 | -0.008 | 0.187 | 4.364 | 0.814 | 25.4 | |
晚材宽度 LWW | 雌株 Female tree | 0.211 | 0.264 | -0.152 | 0.198 | 4.706 | 0.825 | 48.4 |
雄株 Male tree | 0.244 | 0.275 | -0.031 | 0.244 | 6.144 | 0.860 | 53.3 |
Table 2 Statistics of tree ring residual chronologies for female and male Populus cathayana trees
数据类型 Data type | 性别 Gender | 标准偏差 SD | 平均敏感度 MS | 一阶自相关 OR1 | 共同区间分析 Common interval analysis | |||
---|---|---|---|---|---|---|---|---|
样芯间平均 相关系数 r | 信噪比 SNR | 群体表达 信号 EPS | 第一主成分 解释方差量 PCI (%) | |||||
年轮最大密度 MXD | 雌株 Female tree | 0.041 | 0.047 | -0.118 | 0.068 | 1.381 | 0.580 | 31.0 |
雄株 Male tree | 0.055 | 0.057 | -0.053 | 0.114 | 2.443 | 0.710 | 34.8 | |
晚材平均密度 LWD | 雌株 Female tree | 0.037 | 0.040 | 0.005 | 0.031 | 0.378 | 0.607 | 22.1 |
雄株 Male tree | 0.048 | 0.053 | -0.121 | 0.062 | 1.246 | 0.555 | 16.5 | |
早材平均密度 EWD | 雌株 Female tree | 0.027 | 0.027 | -0.006 | 0.062 | 1.266 | 0.559 | 29.2 |
雄株 Male tree | 0.040 | 0.043 | -0.095 | 0.081 | 1.680 | 0.627 | 34.3 | |
年轮最小密度 MID | 雌株 Female tree | 0.025 | 0.028 | -0.129 | 0.015 | 0.296 | 0.229 | 41.6 |
雄株 Male tree | 0.038 | 0.042 | -0.146 | 0.080 | 1.648 | 0.622 | 32.2 | |
树轮宽度 ARW | 雌株 Female tree | 0.166 | 0.214 | -0.138 | 0.248 | 6.270 | 0.862 | 33.3 |
雄株 Male tree | 0.200 | 0.031 | -0.013 | 0.325 | 10.861 | 0.916 | 54.7 | |
早材宽度 EWW | 雌株 Female tree | 0.182 | 0.219 | -0.059 | 0.132 | 2.877 | 0.742 | 25.2 |
雄株 Male tree | 0.235 | 0.254 | -0.008 | 0.187 | 4.364 | 0.814 | 25.4 | |
晚材宽度 LWW | 雌株 Female tree | 0.211 | 0.264 | -0.152 | 0.198 | 4.706 | 0.825 | 48.4 |
雄株 Male tree | 0.244 | 0.275 | -0.031 | 0.244 | 6.144 | 0.860 | 53.3 |
性别 Gender | 气象要素 Meteorological variables | 月份 Month | 年轮最大密度 MXD | 晚材平均密度 LWD | 早材平均密度 EWD | 年轮最小密度 MID | 树轮宽度 ARW | 早材宽度 EWW | 晚材宽度 LWW |
---|---|---|---|---|---|---|---|---|---|
雌株 Female tree | 月平均气温 Monthly mean air temperature | P-Oct. | -0.145 | -0.043 | 0.012 | 0.143 | -0.499* | -0.491* | -0.014 |
P-Nov. | -0.170 | -0.074 | -0.122 | -0.054 | -0.382* | -0.413* | -0.069 | ||
Jan. | -0.261 | -0.198 | -0.214 | -0.028 | -0.308 | -0.336* | 0.075 | ||
Feb. | -0.002 | 0.082 | -0.131 | -0.223 | 0.074 | 0.028 | 0.324* | ||
June | -0.012 | -0.064 | -0.051 | 0.181 | -0.426* | -0.400* | 0.074 | ||
月平均最高气温 Mean monthly maximum air temperature | P-Oct. | -0.143 | -0.099 | 0.091 | 0.236 | -0.488* | -0.496* | -0.055 | |
P-Nov. | -0.111 | -0.227 | -0.091 | -0.042 | -0.378 | -0.417* | -0.021 | ||
Jan. | -0.340* | -0.137 | -0.155 | 0.127 | -0.422* | -0.449* | -0.305 | ||
June | -0.051 | 0.117 | 0.015 | 0.227 | -0.374* | -0.353* | -0.089 | ||
Aug. | 0.348* | 0.073 | 0.045 | 0.005 | -0.269 | 0.374* | -0.292 | ||
月平均最低气温 Mean monthly minimum air temperature | P-Oct. | -0.053 | 0.012 | -0.054 | 0.009 | -0.349* | -0.307 | 0.083 | |
Feb. | 0.009 | 0.076 | -0.125 | -0.185 | 0.065 | 0.032 | 0.374* | ||
Mar. | 0.115 | 0.190 | 0.033 | -0.074 | 0.166 | 0.146 | 0.297* | ||
月降水量 Monthly precipitation | P-Dec. | 0.325* | 0.240 | 0.202 | 0.121 | 0.184 | 0.096 | 0.036 | |
Jan. | 0.163 | 0.241 | 0.268 | 0.026 | 0.350* | 0.324 | 0.266 | ||
Feb. | -0.063 | -0.134 | 0.010 | 0.288* | 0.151 | 0.150 | 0.240 | ||
Mar. | 0.280* | 0.276* | 0.082 | -0.090 | 0.065 | 0.006 | 0.141 | ||
雄株 Male tree | 月平均气温 Monthly mean air temperature | P-Oct. | -0.103 | -0.112 | -0.147 | -0.176 | -0.408* | -0.400* | -0.125 |
P-Nov. | -0.143 | -0.204 | -0.162 | -0.293 | -0.189 | -0.255 | 0.093 | ||
Jan. | -0.323* | -0.341* | -0.298 | -0.020 | -0.248 | -0.239 | -0.087 | ||
Apr. | -0.350* | -0.369* | -0.197 | 0.042 | -0.253 | -0.237 | -0.112 | ||
June | -0.176 | -0.174 | -0.260 | -0.116 | -0.431* | -0.340* | -0.374* | ||
月平均最高气温 Mean monthly maximum air temperature | P-Oct. | -0.116 | -0.132 | -0.176 | -0.248 | -0.461* | -0.458* | -0.145 | |
Jan. | -0.235 | -0.253 | -0.161 | 0.099 | -0.310* | -0.290 | -0.189 | ||
Apr. | -0.429* | -0.447* | -0.222 | 0.062 | -0.260 | -0.233 | -0.138 | ||
June | -0.193 | -0.184 | -0.249 | -0.117 | -0.431* | -0.339* | -0.396* | ||
Aug. | 0.266 | 0.170 | 0.062 | 0.003 | -0.235 | -0.295 | 0.076 | ||
月平均最低气温 Mean monthly minimum air temperature | P-Oct. | -0.024 | -0.009 | -0.062 | -0.008 | -0.212 | -0.201 | -0.090 | |
Jan. | -0.293* | -0.217 | -0.285* | -0.049 | -0.179 | -0.176 | -0.036 | ||
Mar. | 0.122 | 0.223 | 0.105 | -0.010 | 0.200 | 0.141 | 0.332* | ||
P-Dec. | 0.251 | 0.166 | 0.405* | 0.289 | 0.342* | 0.323* | 0.216 | ||
月降水量 Monthly precipitation | Jan. | 0.244 | 0.255 | 0.336* | -0.028 | 0.328* | 0.278 | 0.313 | |
Feb. | -0.209 | -0.157 | -0.134 | 0.088 | 0.052 | 0.118 | 0.000 | ||
Mar. | 0.194 | 0.172 | 0.029 | -0.323* | 0.078 | 0.015 | 0.287* |
表3 青杨雌雄植株树轮宽度与密度的差值年表与气候因子的相关关系
Table 3 Correlations of tree-ring width and density residual chronology with climate variables in female and male Populus cathayana trees
性别 Gender | 气象要素 Meteorological variables | 月份 Month | 年轮最大密度 MXD | 晚材平均密度 LWD | 早材平均密度 EWD | 年轮最小密度 MID | 树轮宽度 ARW | 早材宽度 EWW | 晚材宽度 LWW |
---|---|---|---|---|---|---|---|---|---|
雌株 Female tree | 月平均气温 Monthly mean air temperature | P-Oct. | -0.145 | -0.043 | 0.012 | 0.143 | -0.499* | -0.491* | -0.014 |
P-Nov. | -0.170 | -0.074 | -0.122 | -0.054 | -0.382* | -0.413* | -0.069 | ||
Jan. | -0.261 | -0.198 | -0.214 | -0.028 | -0.308 | -0.336* | 0.075 | ||
Feb. | -0.002 | 0.082 | -0.131 | -0.223 | 0.074 | 0.028 | 0.324* | ||
June | -0.012 | -0.064 | -0.051 | 0.181 | -0.426* | -0.400* | 0.074 | ||
月平均最高气温 Mean monthly maximum air temperature | P-Oct. | -0.143 | -0.099 | 0.091 | 0.236 | -0.488* | -0.496* | -0.055 | |
P-Nov. | -0.111 | -0.227 | -0.091 | -0.042 | -0.378 | -0.417* | -0.021 | ||
Jan. | -0.340* | -0.137 | -0.155 | 0.127 | -0.422* | -0.449* | -0.305 | ||
June | -0.051 | 0.117 | 0.015 | 0.227 | -0.374* | -0.353* | -0.089 | ||
Aug. | 0.348* | 0.073 | 0.045 | 0.005 | -0.269 | 0.374* | -0.292 | ||
月平均最低气温 Mean monthly minimum air temperature | P-Oct. | -0.053 | 0.012 | -0.054 | 0.009 | -0.349* | -0.307 | 0.083 | |
Feb. | 0.009 | 0.076 | -0.125 | -0.185 | 0.065 | 0.032 | 0.374* | ||
Mar. | 0.115 | 0.190 | 0.033 | -0.074 | 0.166 | 0.146 | 0.297* | ||
月降水量 Monthly precipitation | P-Dec. | 0.325* | 0.240 | 0.202 | 0.121 | 0.184 | 0.096 | 0.036 | |
Jan. | 0.163 | 0.241 | 0.268 | 0.026 | 0.350* | 0.324 | 0.266 | ||
Feb. | -0.063 | -0.134 | 0.010 | 0.288* | 0.151 | 0.150 | 0.240 | ||
Mar. | 0.280* | 0.276* | 0.082 | -0.090 | 0.065 | 0.006 | 0.141 | ||
雄株 Male tree | 月平均气温 Monthly mean air temperature | P-Oct. | -0.103 | -0.112 | -0.147 | -0.176 | -0.408* | -0.400* | -0.125 |
P-Nov. | -0.143 | -0.204 | -0.162 | -0.293 | -0.189 | -0.255 | 0.093 | ||
Jan. | -0.323* | -0.341* | -0.298 | -0.020 | -0.248 | -0.239 | -0.087 | ||
Apr. | -0.350* | -0.369* | -0.197 | 0.042 | -0.253 | -0.237 | -0.112 | ||
June | -0.176 | -0.174 | -0.260 | -0.116 | -0.431* | -0.340* | -0.374* | ||
月平均最高气温 Mean monthly maximum air temperature | P-Oct. | -0.116 | -0.132 | -0.176 | -0.248 | -0.461* | -0.458* | -0.145 | |
Jan. | -0.235 | -0.253 | -0.161 | 0.099 | -0.310* | -0.290 | -0.189 | ||
Apr. | -0.429* | -0.447* | -0.222 | 0.062 | -0.260 | -0.233 | -0.138 | ||
June | -0.193 | -0.184 | -0.249 | -0.117 | -0.431* | -0.339* | -0.396* | ||
Aug. | 0.266 | 0.170 | 0.062 | 0.003 | -0.235 | -0.295 | 0.076 | ||
月平均最低气温 Mean monthly minimum air temperature | P-Oct. | -0.024 | -0.009 | -0.062 | -0.008 | -0.212 | -0.201 | -0.090 | |
Jan. | -0.293* | -0.217 | -0.285* | -0.049 | -0.179 | -0.176 | -0.036 | ||
Mar. | 0.122 | 0.223 | 0.105 | -0.010 | 0.200 | 0.141 | 0.332* | ||
P-Dec. | 0.251 | 0.166 | 0.405* | 0.289 | 0.342* | 0.323* | 0.216 | ||
月降水量 Monthly precipitation | Jan. | 0.244 | 0.255 | 0.336* | -0.028 | 0.328* | 0.278 | 0.313 | |
Feb. | -0.209 | -0.157 | -0.134 | 0.088 | 0.052 | 0.118 | 0.000 | ||
Mar. | 0.194 | 0.172 | 0.029 | -0.323* | 0.078 | 0.015 | 0.287* |
[1] | Biondi F, Waikul K (2004). DendroClim2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences, 30, 303-311. |
[2] | Büntgen U, Frank DC, Nievergelt D, Esper J (2006). Summer temperature variations in the European Alps, AD 755-2004. Journal of Climatology, 19, 5606-5623. |
[3] |
Cedro A, Iszkuło G (2011). Do females differ from males of European Yew (Taxus baccata L.) in dendrochronological analysis? Tree-Ring Research, 67, 3-11.
DOI URL |
[4] |
Chen F, Yuan YJ, Wei WS, Wang LL, Yu SL, Zhang RB, Fan ZA, Shang HM, Zhang TW, Li Y (2011). Tree ring density-based summer temperature reconstruction for Zajsan Lake area, East Kazakhstan. International Journal of Climatology, 32, 1089-1097.
DOI URL |
[5] |
Chen FG, Chen LH, Zhao HX, Korpelainen H, Li CY (2010). Sex-specific responses and tolerances of Populus cathayana to salinity. Physiologia Plantarum, 140, 163-173.
DOI URL |
[6] |
Chen XQ, Zhang FC (2001). Spring phonological change in Beijing in the last 50 years and its response to the climate changes. Agricultural Meteorology, 22, 1-5. (in Chinese with English abstract)
DOI URL |
[ 陈效逑, 张福春 (2001). 近50年北京春季物候的变化及其对气候变化的响应. 中国农业气象, 22, 1-5.] | |
[7] |
Cipollini ML, Whigham DF (1994). Sexual dimorphism and cost of reproduction in the dioecious shrub Lindera benzoin (Lauraceae). American Journal of Botany, 81, 65-75.
DOI URL |
[8] | Cook ER, Holmes RL (1986). Users manual for program ARSTAN In: Holmes RL ed. Laboratory of Tree-Ring Research. University of Arizona, Tucson. |
[9] | Cook ER, Kairiukstis LA (1990). Methods of Dendrochronology: Applications in the Environmental Sciences. Springer, New York. 55-63. |
[10] |
Dawson TE, Bliss LC (1989). Patterns of water use and the tissue water relations in the dioecious shrub, Salix arctica: the physiological basis for habitat partitioning between the sexes. Oecologia, 79, 332-343.
DOI URL |
[11] |
Dawson TE, Ehleringer JR (1993). Gender-specific physiology, carbon isotope discrimination, and habitat distribution in boxelder, Acer negundo. Ecology, 74, 798-815.
DOI URL |
[12] |
Delph LF (1990). Sex-differential resource allocation patterns in the subdioecious shrub Hebe subalpina. Ecology, 71, 1342-1351.
DOI URL |
[13] | Duan JP, Wang LL, Li L, Chen KL (2010). Temperature variability since AD 1837 inferred from tree-ring maximum density of Abies fabri on Gongga Mountain, China. Chinese Science Bulletin, 26, 3015-3022. |
[14] | Edmonds RL (1979). Aerobiology: The Ecological Systems Approach. Van Nostrand Reinhold, New York. 41-45. |
[15] |
Fang KY, Gou XH, Chen FH, Li YJ, Zhang F, Kazmer M (2012). Tree growth and its association with climate between individual tree-ring series at three mountain ranges in north central China. Dendrochronologia, 30, 113-119.
DOI URL |
[16] |
Freeman DC, Klikoff LG, Harper KT (1976). Differential resource utilization by the sexes of dioecious plants. Science, 193, 597-599.
DOI URL |
[17] | Fritts HC (1976). Tree Ring and Climate Academic Press, New York. |
[18] |
Fukai S (1999). Phenology in rainfed lowland rice. Field Crops Research, 64, 51-60.
DOI URL |
[19] |
Gao LS, Zhang CY, Zhao XH, Gadow KV (2010). Gender-related climate response of radial growth in dioecious Fraxinus mandshurica trees. Tree-Ring Research, 66, 105-112.
DOI URL |
[20] |
Gehring JL, Monson RK (1994). Sexual differences in gas exchange and response to environmental stress in dioecious Silene latifolia (Caryophyllaceae) American Journal of Botany, 81, 166-174.
DOI URL |
[21] | Grant MC, Mitton JB (1979). Elevational gradients in adult sex ratios and sexual differentiation in vegetative growth rates of Populus tremuloides Michx. Evolution, 33, 914-918. |
[22] |
Grudd H (2008). Torneträsk tree-ring width and density AD 500-2004: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Climate Dynamics, 31, 843-857.
DOI URL |
[23] |
Hänninen H (1995). Effects of climatic change on trees from cool and temperate regions: an ecophysiological approach to modelling of bud burst phenology. Canadian Journal of Botany, 73, 183-199.
DOI URL |
[24] | Holmes RL (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69-75. |
[25] | IPCC (Intergovernmental Panel on Climate Change) (2007). Contribution of Working Group I to the fourth assessment report of the IPCC intergovernmental panel on climate change. . In: Solomon S, Qin D, Manning M, Chen Z, Mar- quis M, Averyt KB, Tignor M, Miller HL eds. Climate Change in 2007: the Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[26] | Iszkuło G, Boratyński A (2011). Initial period of sexual maturity determines the greater growth rate of male over female in the dioecious tree Juniperus communis subsp. communis. Acta Oecologica, 37, 99-102. |
[27] |
Jones MH, Macdonald SE, Henry GHR (1999). Sex- and habitat- specific responses of a high arctic willow, Salix arctica, to experimental climate change. Oikos, 87, 129-138.
DOI URL |
[28] |
Kagawa A, Sugimoto A, Maximov TC (2006). Seasonal course of translocation, storage and remobilization of 13C pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings. New Phytologist, 171, 793-804.
DOI URL |
[29] | Larcher W (1995). Physiological Plant Ecology. 3rd edn. Springer, New York. 414. |
[30] | Li CY, Ren J, Luo JX, Lu RS (2004). Sex-specific physiological and growth responses to water stress in Hippophae rhamnoides L. populations. Acta Physiologiae Plantarum, 26, 123-129. |
[31] | Li CY, Yang YQ, Junttila O, Palva ET (2005). Sexual differences in cold acclimation and freezing tolerance development in sea buckthorn ( Hippophae rhamnoides L.) ecotypes. Plant Science, 168, 1365-1370. |
[32] | Li JY, Xu X, Yang P, Wang BX, Wang ZF, Li XF (2012). Effects of aluminum stress on ecophysiological characteristics of male and female Populus cathayana seedlings. Chinese Journal of Applied Ecology, 23, 45-50. (in Chinese with English abstract) |
[ 李俊钰, 胥晓, 杨鹏, 王碧霞, 王志峰, 李霄峰 (2012). 铝胁迫对青杨雌雄幼苗生理生态特征的影响. 应用生态学报, 23, 45-50.] | |
[33] | Liu ZL, Zheng CY, Fang JY (2004). Relationship between the vegetation type and topography in Mt. Xiao Wutai, Hebei Province: a remote sensing analysis. Biodiversity Science, 12, 146-154. (in Chinese with English abstract) |
[ 刘增力, 郑成洋, 方精云 (2004). 河北小五台山主要植被类型的分布与地形的关系: 基于遥感信息的分析. 生物多样性, 12, 146-154.] | |
[34] | Lovett DJ, Lovett DL (1988). Modules of production and reproduction in a dioecious clonal shrub, Rhus typhina. Ecology, 69, 741-750. |
[35] | Ma LM, Liu Y, Zhao JF (2003). Cross-dating and its application in high resolving chronological research. Earth Science Frontiers, 10, 351-355. (in Chinese with English abstract) |
[ 马利民, 刘禹, 赵建夫 (2003). 交叉定年技术及其在高分辨率年代学中的应用. 地学前缘, 10, 351-355.] | |
[36] |
Mäkinen H, Nöjd P, Mielikäinen K (2001). Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce [Picea abies (L.) Karst.] in southern Finland. Trees, 15, 177-185.
DOI URL |
[37] |
Montesinos D, Deluis M, Verdu M, Raventós J, Garcia FP (2006). When, how and how much: gender-specific resource-use strategies in the dioecious tree Juniperus thurifera. Annals of Botany, 98, 885-889.
DOI URL PMID |
[38] | Oberhuber W, Stumboeck M, Kofler W (1998). Climate- tree-growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees, 13, 19-27. |
[39] |
Obeso JR, Santullano MS, Retuerto R (1998). Sex ratios, size distributions, and sexual dimorphism in the dioecious tree Ilex aquifolium (Aquifoliaceae). AAmerican Journal of Botany, 85, 1602-1608.
DOI URL |
[40] | Pan RZ (2008). Plant Physiology. Higher Education Press, Beijing. Beijing. 18-24. (in Chinese) |
[ 潘瑞炽 (2008). 植物生理学 高等教育出版社, 北京. 18-24.] | |
[41] |
Rovere AE, Aizen MA, Kitzberger T (2003). Growth and climatic response of male and female trees of Austrocedrus chilensis, a dioecious conifer from the temperate forests of southern South America. Ecoscience, 10, 195-203.
DOI URL |
[42] |
Rozas V, Soto LD, Olano JM (2009). Sex-specific, age-dependent sensitivity of tree-ring growth to climate in the dioecious tree Juniperus thurifera. New Phytologist, 182, 687-697.
DOI URL |
[43] | Shao XM, Fang XQ, Liu HB, Huang L (2003). Dating the 1000-year-old Qilian Juniper in Mountains along the Eastern Margin of the Qaidam Basin. Acta Geographica Sinica, 58, 90-100. (in Chinese with English abstract) |
[ 邵雪梅, 方修琦, 刘洪滨, 黄磊 (2003). 柴达木东缘山地千年祁连圆柏年轮定年分析. 地理学报, 58, 90-100.] | |
[44] | Tan ZY, Dong YM, Gao XY, Fang YR (1985). Changes of abscisic acid and gibberellin contents during the release of dormancy in winter, buds of Populus tomentosa Carr. Acta Botanica Sinica, 27, 381-386. (in Chinese with English abstract) |
[ 谭志一, 董毅敏, 高秀英, 房耀仁 (1985). 毛白杨冬芽休眠解除过程中脱落酸及赤霉素含量的变化. 植物学报, 27, 381-386.] | |
[45] |
Wang LL, Payette S, Begin Y (2000). A quantitative definition of light-rings in black spruce (Picea mariana) at the arctic treeline in northern Québec. Arctic, Antarctic, and Alpine Research, 32, 324-330.
DOI URL |
[46] | Wang LL, Shao XM, Huang L, Liang EY (2004). Tree-ring characteristics of Larix gmelinii and Pinus sylvestris var. mongolica and their response to climate in Mohe, China. Acta Phytoecologica Sinica, 29, 380-385. (in Chinese with English abstract) |
[ 王丽丽, 邵雪梅, 黄磊, 梁尔源 (2004). 黑龙江漠河兴安落叶松与樟子松树轮生长特性及其对气候的响应. 植物生态学报, 29, 380-385.] | |
[47] |
Wang XZ, Curtis PS (2001). Gender-specific responses of Populus tremuloides to atmospheric CO2 enrichment. New Phytologist, 150, 675-684.
DOI URL |
[48] |
Wilson RJS, Luckman BH (2003). Dendroclimatic reconstruction of maximum summer temperatures from upper treeline sites in Interior British Columbia, Canada. The Holocene, 13, 851-861.
DOI URL |
[49] | Wu XD (1990). Tree-Rings and Climate Change, China Meteorological Press, Beijing. (in Chinese) |
[ 吴祥定 (1990). 树木年轮与气候变化. 气象出版社, 北京.] | |
[50] | Xu X (2008). Different Ecophysiological Responses Between Males and Females of Populus cathayana Rehd. PhD dissertation, Chengdu Institute of Biology, the Chinese Academy of Sciences, Chengdu. 25-70. (in Chinese with English abstract) |
[ 胥晓 (2008). 青杨(Populus cathayana Rehd.)雌雄植株对干旱胁迫的生理生态响应差异. 博士学位论文, 中国科学院成都生物所, 成都. 25-70.] | |
[51] | Xu X, Peng GQ, Wu CC, Han QM (2010a). Global warming induces female cuttings of Populus cathayana to allocate more biomass, C and N to aboveground organs than do male cuttings. Australian Journal of Botany, 58, 519-526. |
[52] |
Xu X, Peng GQ, Wu CH, Korpelainen H, Li CY (2008a). Drought inhibits photosynthetic capacity more in females than in males of Populus cathayana. Tree Physiology, 28, 1751-1759.
DOI URL |
[53] | Xu X, Yang F, Xiao XW, Zhang S, Korpelainen H, Li CY (2008b). Sex-specific responses of Populus cathayana to drought and elevated temperatures. Plant, Cell & Environment, 31, 850-860. |
[54] |
Xu X, Zhao HX, Zhang XL, Hänninen H, Korpelainen H, Li CY (2010b). Different growth sensitivity to enhanced UV-B radiation between male and female Populus cathayana. Tree Physiology, 30, 1489-1498.
DOI URL |
[55] |
Yang P, Xu X (2012). Effects of water logging stress on the growth and physiological characteristics of male and female Populus cathayana seedlings. Chinese Journal of Plant Ecology, 36, 81-87. (in Chinese with English abstract)
DOI URL |
[ 杨鹏, 胥晓 (2012). 淹水胁迫对青杨雌雄幼苗生理特性和生长的影响. 植物生态学报, 36, 81-87.] | |
[56] | Zhang CY, Gao LS, Zhao YZ, Jia YZ, Li JX, Zhao XH (2009). Response of radial growth to neighboring competition and climate factors in Taxus cuspidata. Chinese Journal of Plant Ecology, 33, 1177-1183. (in Chinese with English abstract) |
[ 张春雨, 高露双, 赵亚洲, 贾玉珍, 李金鑫, 赵秀海 (2009). 东北红豆杉雌雄植株径向生长对邻体竞争和气候因子的响应. 植物生态学报, 33, 1177-1183.] | |
[57] | Zhang CY, Zhao XH, Gao LS, Gadow KV (2009). Gender, neighboring competition and habitat effects on the stem growth in dioecious Fraxinus mandshurica trees in a northern temperate forest. Annals of Forest Science, 66, 812. |
[58] | Zhang FC (1995). Effects of global warming on plant phonological everts in China. Acta Geographica Sinica, 50, 402-410. (in Chinese with English abstract) |
[ 张福春 (1995). 气候变化对中国木本植物物候的可能影响. 地理学报, 50, 402-410.] |
[1] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[2] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[5] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[6] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[7] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[8] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[9] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[10] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[11] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[12] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[13] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[14] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[15] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19