植物生态学报 ›› 2018, Vol. 42 ›› Issue (12): 1154-1167.DOI: 10.17521/cjpe.2018.0214
所属专题: 生态化学计量
李瑞1,胡朝臣1,许士麒1,吴迪1,董玉平1,孙新超1,毛瑢2,3,王宪伟2,*(),刘学炎1,*()
收稿日期:
2018-08-27
修回日期:
2018-12-03
出版日期:
2018-12-20
发布日期:
2019-04-04
通讯作者:
王宪伟,刘学炎 ORCID: 0000-0003-1097-151,李瑞 ORCID: 0000-0002-1793-7997
基金资助:
LI Rui1,HU Chao-Chen1,XU Shi-Qi1,WU Di1,DONG Yu-Ping1,SUN Xin-Chao1,MAO Rong2,3,WANG Xian-Wei2,*(),LIU Xue-Yan1,*()
Received:
2018-08-27
Revised:
2018-12-03
Online:
2018-12-20
Published:
2019-04-04
Contact:
WANG Xian-Wei,LIU Xue-Yan ORCID: 0000-0003-1097-151, LI Rui ORCID: 0000-0002-1793-7997
Supported by:
摘要:
叶片碳(C)、氮(N)、磷(P)含量及其化学计量特征为植物养分状况和元素限制性提供依据。为了解不同生活型植物叶片C、N、P化学计量特征的变化,该研究测定、分析了大兴安岭地区18个泥炭地常见的3种草本植物——白毛羊胡子草(Eriophorum vaginatum)、玉簪薹草(Carex globularis)、小叶章(Deyeuxia angustifolia), 5种落叶灌木——柴桦(Betula fruticosa)、越桔柳(Salix myrtilloides)、细叶沼柳(Salix rosmarinifolia)、笃斯越桔(Vaccinium uliginosum)、越桔(Vaccinium vitis-idaea)和3种常绿灌木——杜香(Ledum palustre)、地桂(Chamaedaphne calyculata)、头花杜鹃(Rhododendron capitatum)的叶片C、N、P含量。结果表明: (1)落叶和常绿灌木叶片C、N、P含量总体高于草本植物而C:N、C:P、N:P低于草本植物, 说明不同生活型植物具有不同的养分利用策略,灌木叶片C、N、P储存高于草本植物而N、P利用效率低于草本植物; (2)小叶章和头花杜鹃叶片N:P小于10, 同时其N含量小于全球植物叶片平均N含量, 相比其他植物来说更易受N限制; (3)采样地点解释了叶片C、N、P指标变异的12.8%-40.8%, 植物种类对叶片C、N、P指标变异的解释量占9.3%-25.5%; (4)草本植物C、N、P指标的地点间变异系数高于落叶和常绿灌木, 草本植物C、N、P指标对地点因素变化的响应较灌木敏感; (5)草本植物N含量种间变异系数高于落叶和常绿灌木, 落叶灌木P含量种间变异系数高于草本植物和常绿灌木, 草本植物和落叶灌木N、P吸收的种间生理分化较常绿灌木高。
李瑞, 胡朝臣, 许士麒, 吴迪, 董玉平, 孙新超, 毛瑢, 王宪伟, 刘学炎. 大兴安岭泥炭地植物叶片碳氮磷含量及其化学计量学特征. 植物生态学报, 2018, 42(12): 1154-1167. DOI: 10.17521/cjpe.2018.0214
LI Rui, HU Chao-Chen, XU Shi-Qi, WU Di, DONG Yu-Ping, SUN Xin-Chao, MAO Rong, WANG Xian-Wei, LIU Xue-Yan. Leaf C, N, and P concentrations and their stoichiometry in peatland plants of Da Hinggan Ling, China. Chinese Journal of Plant Ecology, 2018, 42(12): 1154-1167. DOI: 10.17521/cjpe.2018.0214
地点 Site | 年平均气温MAT (℃) | 年降水量 MAP (mm) | 海拔 Elevation (m) | 调查植物种(重复数) Plant species studied (replicates) |
---|---|---|---|---|
阿里河 Alihe | -5.57 | 481 | 490 | A(2), C(3), D(3), E(3) |
阿木尔 Amuer | -4.48 | 459 | 533 | A(3), C(2), D(3), E(2), G(3), H(1), I(3) |
大林河 Dalinhe | -4.20 | 443 | 466 | A(3), D(3), E(3), G(3), I(3), J(3) |
富克山 Fukeshan | -4.21 | 444 | 468 | A(3), D(3), E(2), G(1), H(1), I(3), K(1) |
根河 Genhe | -5.22 | 464 | 839 | A(3), C(3), D(3), E(4), I(2), K(3) |
呼源 Huyuan | -4.48 | 501 | 665 | A(3), B(1), D(3), E(1), G(2), I(3), K(2) |
呼中 Huzhong | -4.06 | 479 | 534 | A(3), D(3), G(3), I(3), J(1) |
金河 Jinhe | -5.41 | 477 | 862 | A(3), C(2), D(3), G(1) |
林海 Linhai | -5.51 | 520 | 571 | A(3), C(3), D(3), F(2), G(3), I(1), K(3) |
满归 Mangui | -4.78 | 464 | 620 | A(3), D(3), E(2), G(3), J(3), K(3) |
南瓮河 Nanwenghe | -2.71 | 498 | 485 | A(3), B(3), C(3), D(3), E(3), F(3), G(3) |
盘古 Pangu | -3.62 | 477 | 406 | A(3), D(3), E(3), G(1), H(2), I(3), J(3) |
十二站 Shi’erzhan | -2.40 | 495 | 394 | A(3), C(2), D(3), E(3), G(2), J(1) |
塔河 Tahe | -3.56 | 487 | 440 | A(3), C(2), D(3), E(3), F(1) |
图强 Tuqiang | -4.29 | 452 | 477 | A(3), D(3), E(1), F(2), G(1), I(3), J(2), K(2) |
新林 Xinlin | -3.63 | 498 | 526 | A(3), D(3), E(3), G(3), I(3), J(3), K(2) |
伊图里河 Ih Tol Gol | -5.13 | 475 | 822 | A(3), C(2), D(3), G(2) |
壮林 Zhuanglin | -4.48 | 459 | 528 | A(3), D(3), G(3), I(3), J(2), K(1) |
表1 大兴安岭地区泥炭地研究点的气候和采集植物种信息
Table 1 Information on climate and plant species studied in the peatland sites in the Da Hinggan Ling
地点 Site | 年平均气温MAT (℃) | 年降水量 MAP (mm) | 海拔 Elevation (m) | 调查植物种(重复数) Plant species studied (replicates) |
---|---|---|---|---|
阿里河 Alihe | -5.57 | 481 | 490 | A(2), C(3), D(3), E(3) |
阿木尔 Amuer | -4.48 | 459 | 533 | A(3), C(2), D(3), E(2), G(3), H(1), I(3) |
大林河 Dalinhe | -4.20 | 443 | 466 | A(3), D(3), E(3), G(3), I(3), J(3) |
富克山 Fukeshan | -4.21 | 444 | 468 | A(3), D(3), E(2), G(1), H(1), I(3), K(1) |
根河 Genhe | -5.22 | 464 | 839 | A(3), C(3), D(3), E(4), I(2), K(3) |
呼源 Huyuan | -4.48 | 501 | 665 | A(3), B(1), D(3), E(1), G(2), I(3), K(2) |
呼中 Huzhong | -4.06 | 479 | 534 | A(3), D(3), G(3), I(3), J(1) |
金河 Jinhe | -5.41 | 477 | 862 | A(3), C(2), D(3), G(1) |
林海 Linhai | -5.51 | 520 | 571 | A(3), C(3), D(3), F(2), G(3), I(1), K(3) |
满归 Mangui | -4.78 | 464 | 620 | A(3), D(3), E(2), G(3), J(3), K(3) |
南瓮河 Nanwenghe | -2.71 | 498 | 485 | A(3), B(3), C(3), D(3), E(3), F(3), G(3) |
盘古 Pangu | -3.62 | 477 | 406 | A(3), D(3), E(3), G(1), H(2), I(3), J(3) |
十二站 Shi’erzhan | -2.40 | 495 | 394 | A(3), C(2), D(3), E(3), G(2), J(1) |
塔河 Tahe | -3.56 | 487 | 440 | A(3), C(2), D(3), E(3), F(1) |
图强 Tuqiang | -4.29 | 452 | 477 | A(3), D(3), E(1), F(2), G(1), I(3), J(2), K(2) |
新林 Xinlin | -3.63 | 498 | 526 | A(3), D(3), E(3), G(3), I(3), J(3), K(2) |
伊图里河 Ih Tol Gol | -5.13 | 475 | 822 | A(3), C(2), D(3), G(2) |
壮林 Zhuanglin | -4.48 | 459 | 528 | A(3), D(3), G(3), I(3), J(2), K(1) |
C (%) | N (%) | P (%) | C:N | C:P | |
---|---|---|---|---|---|
C (%) | 1 | ||||
N (%) | 0.294** | 1 | |||
P (%) | 0.069 | 0.287** | 1 | ||
C:N | -0.002 | -0.886** | -0.258** | 1 | |
C:P | 0.005 | -0.292** | -0.854** | 0.318** | 1 |
N:P | -0.007 | 0.238** | -0.750** | -0.242** | 0.812** |
表2 大兴安岭泥炭地植物叶片C、N、P指标之间的相关性
Table 2 The correlations among leaf C, N, and P variables in peatland plants of Da Hinggan Ling
C (%) | N (%) | P (%) | C:N | C:P | |
---|---|---|---|---|---|
C (%) | 1 | ||||
N (%) | 0.294** | 1 | |||
P (%) | 0.069 | 0.287** | 1 | ||
C:N | -0.002 | -0.886** | -0.258** | 1 | |
C:P | 0.005 | -0.292** | -0.854** | 0.318** | 1 |
N:P | -0.007 | 0.238** | -0.750** | -0.242** | 0.812** |
图2 大兴安岭泥炭地植物叶片C、N、P含量(A、B、C)及其计量值(D、E、F)。黑色的短横线分别为每个植物种C、N、P指标的平均值。深灰、灰色和浅灰的箱子分别为草本、落叶灌木和常绿灌木植物, 箱子高度为25%-75%数值分布, 箱子中的横线为平均值, 箱须为标准偏差, 箱须上方不同的大写字母和下方不同的小写字母分别表示生活型之间和生活型内部物种之间的差异显著(p < 0.05)。Bf, 柴桦; Cc, 地桂; Cg, 玉簪薹草; Da, 小叶章; Ev, 白毛羊胡子草; Lp, 杜香; Rc, 头花杜鹃; Sm, 越桔柳; Sr, 细叶沼柳; Vu, 笃斯越桔; Vv, 越桔。
Fig. 2 Leaf C, N, and P concentrations (A, B, C) and their stoichiometric ratios (D, E, F) in peatland plants of the Da Hinggan Ling. The black and short horizontal lines are the average values for leaf C, N, and P variables for each species. Boxes in dark grey, grey, and light grey mark graminoids, deciduous shrub, and evergreen shrub plants, respectively. The box encompasses the 25th to 75th percentiles; lines in boxes mark the mean values, and whiskers are the standard deviation value. Different capital letters above boxes and lowercase letters below boxes mark significant differences among growth forms and species (p < 0.05). Bf, Betula fruticosa; Cc, Chamaedaphne calyculata; Cg, Carex globularis; Da, Deyeuxia angustifolia; Ev, Eriophorum vaginatum; Lp, Ledum palustre; Rc, Rhododendron capitatum; Sm, Salix myrtilloides; Sr, Salix rosmarinifolia; Vu, Vaccinium uliginosum; Vv, Vaccinium vitis-idaea.
变异 来源 Source | C | N | P | C:N | C:P | N:P | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MS | SS (%) | F | MS | SS (%) | F | MS | SS (%) | F | MS | SS (%) | F | MS | SS (%) | F | MS | SS (%) | F | |
D | 84.3 | 38.7 | 24.016* | 1.7 | 40.8 | 29.415* | 0.04 | 25.8 | 13.031* | 378.2 | 38.3 | 23.732* | 74 004.0 | 23.9 | 9.548* | 67.2 | 12.8 | 5.883* |
S | 17.9 | 14.0 | 5.094* | 0.2 | 9.7 | 4.131* | 0.01 | 16.9 | 5.022* | 53.4 | 9.3 | 3.353* | 29 120.8 | 16.0 | 3.757* | 78.5 | 25.5 | 6.872* |
D × S | 5.5 | 20.6 | 1.580* | 0.1 | 26.4 | 2.349* | 0.01 | 26.2 | 1.699* | 31.3 | 25.7 | 1.967* | 8 315.6 | 21.0 | 1.073 | 18.4 | 27.5 | 1.614* |
表3 采样地点(D)和植物种类(S)对大兴安岭泥炭地植物叶片C、N、P含量和计量值影响的一般线性模型(GLM)结果
Table 3 Summary of General Linear Model (GLM) statistics, showing the effects of sampling site (D) and plant species (S) on leaf C, N, and P concentrations and stoichiometry in peatland plants of Da Hinggan Ling
变异 来源 Source | C | N | P | C:N | C:P | N:P | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MS | SS (%) | F | MS | SS (%) | F | MS | SS (%) | F | MS | SS (%) | F | MS | SS (%) | F | MS | SS (%) | F | |
D | 84.3 | 38.7 | 24.016* | 1.7 | 40.8 | 29.415* | 0.04 | 25.8 | 13.031* | 378.2 | 38.3 | 23.732* | 74 004.0 | 23.9 | 9.548* | 67.2 | 12.8 | 5.883* |
S | 17.9 | 14.0 | 5.094* | 0.2 | 9.7 | 4.131* | 0.01 | 16.9 | 5.022* | 53.4 | 9.3 | 3.353* | 29 120.8 | 16.0 | 3.757* | 78.5 | 25.5 | 6.872* |
D × S | 5.5 | 20.6 | 1.580* | 0.1 | 26.4 | 2.349* | 0.01 | 26.2 | 1.699* | 31.3 | 25.7 | 1.967* | 8 315.6 | 21.0 | 1.073 | 18.4 | 27.5 | 1.614* |
图3 大兴安岭泥炭地植物叶片C、N、P含量(A、B、C)及其计量值(D、E、F)的地点间变异系数(KCV)。黑、灰、浅灰色直线分别为草本、落叶灌木和常绿灌木植物KCV的平均值, 植物名称缩写下面的数字为出现的地点数。Bf, 柴桦; Cc, 地桂; Cg, 玉簪薹草; Da, 小叶章; Ev, 白毛羊胡子草; Lp, 杜香; Rc, 头花杜鹃; Sm, 越桔柳; Sr, 细叶沼柳; Vu, 笃斯越桔; Vv, 越桔。
Fig. 3 Inter-site coefficient of variation (KCV) in leaf C, N, and P concentrations (A, B, C) and their stoichiometric ratios (D, E, F) in peatland plants of Da Hinggan Ling. Lines in black, grey, and light grey mark the mean KCV values of graminoids, deciduous shrubs and evergreen shrubs, respectively. The number below each species indicates the number of occurring locations. Bf, Betula fruticosa; Cc, Chamaedaphne calyculata; Cg, Carex globularis; Da, Deyeuxia angustifolia; Ev, Eriophorum vaginatum; Lp, Ledum palustre; Rc, Rhododendron capitatum; Sm, Salix myrtilloides; Sr, Salix rosmarinifolia; Vu, Vaccinium uliginosum; Vv, Vaccinium vitis-idaea.
图4 大兴安岭泥炭地植物叶片C、N、P含量(A、B、C)及其计量值(D、E、F)的种间变异系数(ZCV)。黑、灰、浅灰色直线分别为草本、落叶灌木和常绿灌木植物ZCV的平均值, 地点名称后的数字分别为该地点草本、落叶灌木和常绿灌木植物种数。
Fig. 4 Inter-species coefficient of variation (ZCV) in leaf C, N, and P concentrations (A, B, C) and their stoichiometric ratios (D, E, F) in peatland plants of Da Hinggan Ling. Lines in black, grey, and light grey mark mean ZCV values for graminoids, decidous shrubs and evergreen shrubs, respectively. The numbers after site names indicate the number of species for graminoids, decidous and evergreen shrubs, respectively.
研究区域 Study region | C (%) | N (%) | P (%) | C:N | C:P | N:P | 数据来源 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | n | Mean | SD | n | Mean | SD | n | Mean | SD | n | Mean | SD | n | Mean | SD | n | Data source | |
泥炭地 Peatlands | 42.2 | 2.9 | 275 | 1.9 | 0.4 | 276 | 0.18 | 0.07 | 263 | 23.6 | 6.2 | 275 | 269 | 110 | 262 | 11.6 | 4.6 | 263 | 本研究 This Study |
森林 Forests | 48.0 | 5.3 | 102 | 1.8 | 0.5 | 102 | 0.20 | 0.12 | 102 | 29.1 | 9.5 | 102 | 314 | 152 | 102 | 11.5 | 5.0 | 102 | |
荒漠 Deserts | 1.1 | 0.8 | 276 | 0.10 | 0.08 | 276 | 11.5 | 5.1 | 276 | ||||||||||
草原 Grasslands | 43.8 | 3.0 | 213 | 2.8 | 0.9 | 213 | 0.19 | 0.84 | 525 | 17.9 | 5.7 | 213 | 15.3 | 5.2 | 525 | He et al., | |||
中国 China | 2.0 | 0.8 | 554 | 0.15 | 0.10 | 745 | 16.3 | 9.3 | 547 | ||||||||||
全球 Globe | 46.2 | 7.2 | 76 | 2.0 | 0.9 | 1 251 | 0.18 | 0.11 | 923 | 23.8 | 17.3 | 62 | 301 | 237 | 43 | 13.8 | 9.5 | 894 |
表4 大兴安岭泥炭地植物叶片C、N、P含量及其计量值与其他研究结果的比较
Table 4 Comparisons of leaf C, N, and P concentrations and their stoichiometry between plants of the Da Hinggan Ling peatlands and those in other studies
研究区域 Study region | C (%) | N (%) | P (%) | C:N | C:P | N:P | 数据来源 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | n | Mean | SD | n | Mean | SD | n | Mean | SD | n | Mean | SD | n | Mean | SD | n | Data source | |
泥炭地 Peatlands | 42.2 | 2.9 | 275 | 1.9 | 0.4 | 276 | 0.18 | 0.07 | 263 | 23.6 | 6.2 | 275 | 269 | 110 | 262 | 11.6 | 4.6 | 263 | 本研究 This Study |
森林 Forests | 48.0 | 5.3 | 102 | 1.8 | 0.5 | 102 | 0.20 | 0.12 | 102 | 29.1 | 9.5 | 102 | 314 | 152 | 102 | 11.5 | 5.0 | 102 | |
荒漠 Deserts | 1.1 | 0.8 | 276 | 0.10 | 0.08 | 276 | 11.5 | 5.1 | 276 | ||||||||||
草原 Grasslands | 43.8 | 3.0 | 213 | 2.8 | 0.9 | 213 | 0.19 | 0.84 | 525 | 17.9 | 5.7 | 213 | 15.3 | 5.2 | 525 | He et al., | |||
中国 China | 2.0 | 0.8 | 554 | 0.15 | 0.10 | 745 | 16.3 | 9.3 | 547 | ||||||||||
全球 Globe | 46.2 | 7.2 | 76 | 2.0 | 0.9 | 1 251 | 0.18 | 0.11 | 923 | 23.8 | 17.3 | 62 | 301 | 237 | 43 | 13.8 | 9.5 | 894 |
生活型 Growth form | 植物种 Species | 菌根类型 Mycorrhizal type | 植株高度 Plant height (cm) | 叶形 Leaf shape | 参考文献 Reference |
---|---|---|---|---|---|
草本植物 Graminoids | 白毛羊胡子草 Eriophorum vaginatum | 无菌根 Non-mycorrhizae | 40-80 | 线形 Linear leaf | |
玉簪薹草 Carex globularis | 无菌根 Non-mycorrhizae | 30-60 | 线形 Linear leaf | ||
小叶章 Deyeuxia angustifolia | 丛枝菌根 Arbuscular mycorrhizae | 30-100 | 线形 Linear leaf | ||
落叶灌木 Deciduous shrubs | 柴桦 Betula fruticosa | 外生菌根 Ecto-mycorrhizae | 50-150 | 卵形 Ovate leaf | |
越桔柳 Salix myrtilloides | 外生菌根 Ecto-mycorrhizae | 30-80 | 椭圆形 Oblong leaf | ||
细叶沼柳 Salix rosmarinifolia | 外生菌根 Ecto-mycorrhizae | 50-100 | 披针形 Lanceolate leaf | ||
笃斯越桔 Vaccinium uliginosum | 杜鹃花科菌根 Ericoid mycorrhizae | 50-80 | 倒卵形 Obovate leaf | ||
越桔 Vaccinium vitis-idaea | 杜鹃花科菌根 Ericoid mycorrhizae | 10-30 | 倒卵形 Obovate leaf | ||
常绿灌木 Evergreen shrubs | 杜香 Ledum palustre | 杜鹃花科菌根 Ericoid mycorrhizae | 40-50 | 线形 Linear leaf | |
地桂 Chamaedaphne calyculata | 杜鹃花科菌根 Ericoid mycorrhizae | 30-150 | 椭圆形 Oblong leaf | ||
头花杜鹃 Rhododendron capitatum | 杜鹃花科菌根 Ericoid mycorrhizae | 40-100 | 椭圆形 Oblong leaf |
表5 大兴安岭泥炭地植物菌根类型、叶形和植物高度概况
Table 5 Plant mycorrhizal types, leaf shapes and plant height in the Da Hinggan Ling peatlands
生活型 Growth form | 植物种 Species | 菌根类型 Mycorrhizal type | 植株高度 Plant height (cm) | 叶形 Leaf shape | 参考文献 Reference |
---|---|---|---|---|---|
草本植物 Graminoids | 白毛羊胡子草 Eriophorum vaginatum | 无菌根 Non-mycorrhizae | 40-80 | 线形 Linear leaf | |
玉簪薹草 Carex globularis | 无菌根 Non-mycorrhizae | 30-60 | 线形 Linear leaf | ||
小叶章 Deyeuxia angustifolia | 丛枝菌根 Arbuscular mycorrhizae | 30-100 | 线形 Linear leaf | ||
落叶灌木 Deciduous shrubs | 柴桦 Betula fruticosa | 外生菌根 Ecto-mycorrhizae | 50-150 | 卵形 Ovate leaf | |
越桔柳 Salix myrtilloides | 外生菌根 Ecto-mycorrhizae | 30-80 | 椭圆形 Oblong leaf | ||
细叶沼柳 Salix rosmarinifolia | 外生菌根 Ecto-mycorrhizae | 50-100 | 披针形 Lanceolate leaf | ||
笃斯越桔 Vaccinium uliginosum | 杜鹃花科菌根 Ericoid mycorrhizae | 50-80 | 倒卵形 Obovate leaf | ||
越桔 Vaccinium vitis-idaea | 杜鹃花科菌根 Ericoid mycorrhizae | 10-30 | 倒卵形 Obovate leaf | ||
常绿灌木 Evergreen shrubs | 杜香 Ledum palustre | 杜鹃花科菌根 Ericoid mycorrhizae | 40-50 | 线形 Linear leaf | |
地桂 Chamaedaphne calyculata | 杜鹃花科菌根 Ericoid mycorrhizae | 30-150 | 椭圆形 Oblong leaf | ||
头花杜鹃 Rhododendron capitatum | 杜鹃花科菌根 Ericoid mycorrhizae | 40-100 | 椭圆形 Oblong leaf |
图5 大兴安岭泥炭地植物叶片N、P含量与N:P阈值。虚线分别表示N:P阈值为10, 14, 16和20。星星表示全球植物叶片N含量平均值(1.9%)和P含量平均值(0.12%)(Yan et al., 2017)。
Fig. 5 Leaf N and P concentrations and N:P threshold in peatland plants of Da Hinggan Ling. Dash lines represent the N:P ratios of 10, 14, 16 and 20, respectively. Star-shaped symbol represents the global mean leaf N concentration (1.9%) and P concentration (0.12%) (Yan et al., 2017). Bf, Betula fruticosa; Cc, Chamaedaphne calyculata; Cg, Carex globularis; Da, Deyeuxia angustifolia; Ev, Eriophorum vaginatum; Lp, Ledum palustre; Rc, Rhododendron capitatum; Sm, Salix myrtilloides; Sr, Salix rosmarinifolia; Vu, Vaccinium uliginosum; Vv, Vaccinium vitis-idaea.
[1] |
Aerts R ( 1995). The advantages of being evergreen. Trends in Ecology & Evolution, 10, 402-407.
DOI URL PMID |
[2] |
Aerts R, Chapin III FS ( 2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67.
DOI URL |
[3] | Aerts R, Wallen B, Malmer N ( 1992). Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. Journal of Ecology, 80, 131-140. |
[4] |
?gren GI ( 2004). The C:N:P stoichiometry of autotrophs—?Theory and observations. Ecology Letters, 7, 185-191.
DOI URL |
[5] |
?gren GI, Wetterstedt J?M, Billberger MFK ( 2012). Nutrient limitation on terrestrial plant growth—Modeling the interaction between nitrogen and phosphorus. New Phytologist, 194, 953-960.
DOI URL PMID |
[6] |
Bai KD, Jiang DB, Wan XC ( 2013). Photosynthesis-nitrogen relationship in evergreen and deciduous tree species at different altitudes on Mao’er Mountain, Guangxi. Acta Ecologica Sinica, 33, 4930-4938.
DOI URL |
[ 白坤栋, 蒋得斌, 万贤崇 ( 2013). 广西猫儿山不同海拔常绿树种和落叶树种光合速率与氮的关系. 生态学报, 33, 4930-4938.]
DOI URL |
|
[7] |
Bradshaw C, Kautsky U, Kumblad L ( 2012). Ecological stoichiometry and multi-element transfer in a coastal ecosystem. Ecosystems, 15, 591-603.
DOI URL |
[8] |
Bragazza L, Parisod J, Buttler A, Bardgett RD ( 2013). Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands. Nature Climate Change, 3, 273-277.
DOI URL |
[9] |
Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hájek M, Grosvernier P, Hájek T, Hajkova P, Hansen I, Iacumin P, Gerdol R ( 2004). Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytologist, 163, 609-616.
DOI URL |
[10] |
Chapin III FS, Shaver GR, Kedrowski RA ( 1986). Environmental controls over carbon, nitrogen and phosphorus fractions in Eriophorum vaginatum in Alaskan tussock tundra. Journal of Ecology, 74, 167-195.
DOI URL |
[11] | Chen HM, Song CC, Shi FX, Zhang XH, Mao R ( 2017). Effects of alder expansion on plant community composition and biomass in the peatland in the Da’xingan Mountain. Chinese Journal of Applied & Environmental Biology, 23, 778-784. |
[ 陈慧敏, 宋长春, 石福习, 张新厚, 毛瑢 ( 2017). 辽东桤木扩张对大兴安岭泥炭地植物群落组成和生物量的影响. 应用与环境生物学报, 23, 778-784.] | |
[12] |
Du XM, Zhou ZQ, Zhang Y, Zhou L ( 2002). Discussion about rules of vegetation’s succession in north of Great Xingan mountains. Territory & Natural Resources Study, ( 2), 67-68.
DOI URL |
[ 杜晓明, 周志强, 张悦, 周琳 ( 2002). 大兴安岭北部植被演替规律探讨. 国土与自然资源研究, ( 2), 67-68.]
DOI URL |
|
[13] |
Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH ( 1996). Organism size, life history, and N:P stoichiometry. BioScience, 46, 674-684.
DOI URL |
[14] |
Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW ( 2000a ). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580.
DOI |
[15] |
Elser JJ, Stemer RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ ( 2000b ). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540-550.
DOI URL |
[16] |
Finger RA, Turetsky MR, Kielland K, Ruess RW, Mack MC, Euskirchen ES ( 2016). Effects of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland. Journal of Ecology, 104, 1542-1554.
DOI URL |
[17] |
Fisher JB, Malhi Y, Torres IC, Metcalfe DB, van de Weg MJ, Meir P, Silva-Espejo JE, Huasco WH ( 2013). Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia, 172, 889-902.
DOI URL |
[18] | Guo DX, Wang SL, Lu GW, Dai JB, Li EY ( 1981). Division of permafrost regions in Daxiao Hinggan Ling northeast China. Journal of Glaciology & Geocryology, 3(3), 1-9. |
[ 郭东信, 王绍令, 鲁国威, 戴竞波, 李恩英 ( 1981). 东北大小兴安岭多年冻土分区. 冰川冻土, 3(3), 1-9.] | |
[19] |
Güsewell S ( 2004). N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164, 243-266.
DOI URL |
[20] |
Güsewell S, Koerselman W ( 2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspective in Ecology, Evolution & Systematics, 5, 37-61.
DOI URL |
[21] | Hall EK, Maixner F, Franklin O, Daims H, Richter A, Battin T ( 2010). Linking microbial and ecosystem ecology using ecological stoichiometry: A synthesis of conceptual and empirical approaches. Ecosystems, 14, 261-273. |
[22] |
Han WX, Fang JY, Guo DL, Zhang Y ( 2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI URL PMID |
[23] |
Han WX, Fang JY, Reich PB, Woodward FI, Wang ZH ( 2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796.
DOI URL PMID |
[24] | Han WX, Wu Y, Tang LY, Chen YH, Li LP, He JS, Fang JY ( 2009). Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in Beijing and its periphery. Acta Scientiarum Naturalium Universitatis Pekinensis (Natural Science Edition), 45, 855-860. |
[ 韩文轩, 吴漪, 汤璐瑛, 陈雅涵, 李利平, 贺金生, 方精云 ( 2009). 北京及周边地区植物叶的碳氮磷元素计量特征. 北京大学学报(自然科学版), 45, 855-860.] | |
[25] |
He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z ( 2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122.
DOI URL PMID |
[26] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY ( 2008). Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland Biomes. Oecologia, 155, 301-310.
DOI URL |
[27] |
Hessen DO, ?gren GI, Anderson TR, Elser JJ, de Ruiter PC ( 2004). Carbon sequestration in ecosystems: The role of stoichiometry. Ecology, 85, 1179-1192.
DOI URL |
[28] |
Hobbie JE, Hobbie EA ( 2006). δ 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in arctic tundra. Ecology, 87, 816-822.
DOI URL PMID |
[29] |
Hu CC, Liu XY, Lei YB, Tan YH, Zhang P, Dong YP, Liu CQ ( 2016). Foliar nitrogen and phosphorus stoichiometry of alien invasive plants and co-occurring natives in Xishuangbanna. Chinese Journal of Plant Ecology, 40, 1145-1153.
DOI URL |
[ 胡朝臣, 刘学炎, 类延宝, 谭运洪, 张鹏, 董玉平, 刘丛强 ( 2016). 西双版纳外来入侵植物及其共存种叶片氮、磷化学计量特征. 植物生态学报, 40, 1145-1153.]
DOI URL |
|
[30] | Hu CC, Lei YB, Tan YH, Sun XC, Xu H, Liu CQ, Liu XY ( 2018). Plant nitrogen and phosphorus utilization under invasive pressure in a montane ecosystem of tropical China. Journal of Ecology , 107. DOI: 10.1111/1365-2745. 13008. |
[31] |
Huang JJ, Wang XH ( 2003). Leaf nutrient and structural characteristics of 32 evergreen broad-leaved species. Journal of East China Normal University (Natural Science Edition), ( 1), 92-97.
DOI URL |
[ 黄建军, 王希华 ( 2003). 浙江天童32种常绿阔叶树叶片的营养及结构特征. 华东师范大学学报(自然科学版), ( 1), 92-97.]
DOI URL |
|
[32] |
Jonasson S ( 1989). Implications of leaf longevity, leaf nutrient re-absorption and translocation for the resource economy of five evergreen plant species. Oikos, 56, 121-131.
DOI URL |
[33] |
Kerkhoff AJ, Enquist BJ ( 2006). Ecosystem allometry: The scaling of nutrient stocks and primary productivity across plant communities. Ecology Letters, 9, 419-427.
DOI URL PMID |
[34] |
Kudo G ( 1995). Leaf traits and shoot performance of an evergreen shrub,Ledum palustre spp. decumbens, in accordance with latitudinal change. Canadian Journal of Botany, 73, 1451-1456.
DOI URL |
[35] |
Koerselman W, Meuleman AF ( 1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
DOI URL |
[36] |
Liu XY, Koba K, Koyama LA, Hobbie SE, Weiss MS, Inagaki Y, Shaver GR, Giblin AE, Hobara S, Nadelhoffer KJ, Sommerkorn M, Rastetter EB, Kling GW, Laundre JA, Yano Y, Makabe A, Yano M, Liu CQ ( 2018). Nitrate is an important nitrogen source for arctic tundra plants. Proceedings of the National Academy of Sciences of the United States of America, 115, 3398-3403.
DOI URL |
[37] |
Mao R, Zhang XH, Song CC, Wang XW, Finnegan PM ( 2018). Plant functional group controls litter decomposition rate and its temperature sensitivity: An incubation experiment on litters from a boreal peatland in northeast China. Science of the Total Environment, 626, 678-683.
DOI URL |
[38] |
Michelsen A, Quarmby C, Sleep D, Jonasson S ( 1998). Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots . Oecologia, 115, 406-418.
DOI URL |
[39] |
Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE ( 2010). CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 107, 19368-19373.
DOI URL |
[40] | Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L ( 2011). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50. |
[41] |
Ren SJ, Yu GR, Jiang CM, Fang HJ, Sun XM ( 2012). Stoichiometric characteristics of leaf carbon, nitrogen, and phosphorus of 102 dominant species in forest ecosystems along the north-south transect of east China. Chinese Journal of Applied Ecology, 23, 581-586.
DOI URL |
[ 任书杰, 于贵瑞, 姜春明, 方华军, 孙晓敏 ( 2012). 中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征. 应用生态学报, 23, 581-586.]
DOI URL |
|
[42] |
Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD ( 1999). Generality of leaf trait relationships: A test across six biomes. Ecology, 80, 1955-1969.
DOI URL |
[43] |
Reich PB, Oleksyn J ( 2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI URL PMID |
[44] |
Shaver GR, Bret-Harte MS, Jones MH, Johnstone J, Gough L, Laundre J, Chapin III FS ( 2001). Species composition interacts with fertilizer to control longterm change in tundra productivity. Ecology, 82, 3163-3181.
DOI URL |
[45] |
Small E ( 1972). Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. Canadian Journal of Botany, 50, 2227-2233.
DOI URL |
[46] |
Song CC, Wang XW, Miao YP, Wang JY, Mao R, Song YY ( 2014). Effects of permafrost thaw on carbon emissions under aerobic and anaerobic environments in the Great Hing’an Mountains, China. Science of the Total Environment, 487, 604-610.
DOI URL PMID |
[47] | Sterner RW, Elser JJ ( 2002).Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[48] |
Tang ZY, Xu WT, Zhou GY, Bai YF, Li JX, Tang XL, Chen DM, Liu Q, Ma WH, Xiong GM, He HL, He NP, Guo YP, Guo Q, Zhu JL, Han WX, Hu HF, Fang JY, Xie ZQ ( 2018). Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 115, 4033-4038.
DOI URL PMID |
[49] |
Thompson K, Parkinson JA, Band SR, Spencer RE ( 1997). A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist, 136, 679-689.
DOI URL |
[50] | Tian D, Yan ZB, Niklas KJ, Han WX, Kattge J, Reich PB, Luo YK, Chen YH, Tang ZY, Hu HF, Wright IJ, Schmid B, Fang JY ( 2017). Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science Review, 5, 728-739. |
[51] |
Vitousek P ( 1982). Nutrient cycling and nutrient use efficiency. The American Naturalist, 119, 553-572.
DOI URL |
[52] |
Wang M, Moore TR, Talbot J, Riley JL ( 2015). The stoichiometry of carbon and nutrients in peat formation. Global Biogeochemical Cycles, 29, 113-121.
DOI URL |
[53] |
Wieder WR, Cleveland CC, Smith WK, Todd-Brown K ( 2015). Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience, 8, 441-447.
DOI URL |
[54] | Wu ZY, Hong DY ( 2010). Flora of China. Science Press, Beijing. |
[ 吴征镒, 洪德元 ( 2010). 中国植物志. 科学出版社, 北京.] | |
[55] | Xu WD ( 1986). The relation between the zonal distribution of types vegetation and the climate in northeast China. Acta Phytoecologica et Geobotanica Sinica, 10, 254-263. |
[ 徐文铎 ( 1986). 中国东北主要植被类型的分布与气候的关系. 植物生态学与地植物学学报, 10, 254-263.] | |
[56] |
Xu XL, Wanek W, Zhou CP, Richter A, Song MH, Cao GM, Ouyang H, Kuzyakov Y ( 2014). Nutrient limitation of alpine plants: Implications from leaf N:P stoichiometry and leaf δ 15N. Journal of Plant Nutrition and Soil Science, 177, 378-387.
DOI URL |
[57] |
Yan ZB, Tian D, Han WX, Tang ZY, Fang JY ( 2017). An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants. Annals of Botany, 120, 1-6.
DOI URL PMID |
[58] |
Yang X, Chi XL, Ji CJ, Liu HY, Ma WH, Mohhammat A, Shi ZY, Wang XP, Yu SL, Yue M, Tang ZY ( 2015). Variations of leaf N, P concentrations in shrubland biomes across northern China: Phylogeny, climate and soil. Biogeosciences, 12, 18973-18998.
DOI URL |
[59] |
Yu LM, Wang CK, Wang XC ( 2011). Allocation of nonstructural carbohydrates for three temperate tree species in northeast China. Chinese Journal of Plant Ecology, 35, 1245-1255.
DOI |
[ 于丽敏, 王传宽, 王兴昌 ( 2011). 三种温带树种非结构性碳水化合物的分配. 植物生态学报, 35, 1245-1255.]
DOI |
|
[60] |
Zeng J, Bu ZJ, Wang M, Ma JZ, Zhao HY, Li HK, Wang SZ ( 2013). Effects of nitrogen deposition on peatland: A review. Chinese Journal of Ecology, 32, 473-481.
DOI URL |
[ 曾竞, 卜兆君, 王猛, 马进泽, 赵红艳, 李鸿凯, 王升忠 ( 2013). 氮沉降对泥炭地影响的研究进展. 生态学杂志, 32, 473-481.]
DOI URL |
|
[61] |
Zhang HY, Wu HG, Yu Q, Wang ZW, Wei CZ, Long M, Kattge J, Smith M, Han XG ( 2013). Sampling date, leaf age and root size: Implications for the study of plant C:N:P stoichiometry. PLOS ONE, 8, e60360. DOI: 10.1371/ journal.pone.0060360?.
DOI URL PMID |
[62] | Zhang LX, Bai YF, Han XG ( 2004). Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Botanica Sinica, 46, 259-270. |
[63] |
Zhang JH, Zhao N, Liu CC, Yang H, Li ML, Yu GR, Wilcox K, Yu Q, He NP ( 2018). C:N:P stoichiometry in China’s forests: From organs to ecosystems. Functional Ecology, 32, 50-60.
DOI URL |
[64] |
Zhang K, Chen YL, Gao YH, Hui R, He MZ ( 2014). Stoichiometry characteristics of leaf nitrogen and phosphorus of different plant functional groups in Alashan desert region. Journal of Desert Research, 34, 1261-1267.
DOI URL |
[ 张珂, 陈永乐, 高艳红, 回嵘, 何明珠 ( 2014). 阿拉善荒漠典型植物功能群氮、磷化学计量特征. 中国沙漠, 34, 1261-1267.]
DOI URL |
|
[65] |
Zhang SB, Zhang JK, Slik JWF, Gao KF ( 2011). Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment. Global Ecology & Biogeography, 21, 809-818.
DOI URL |
[66] |
Zhang WY, Fan JW, Zhong HP, Hu ZM, Song LL, Wang N ( 2010). The nitrogen: phosphorus stoichiometry of different plant functional groups for dominant species of typical steppes in China. Acta Agrestia Sinica, 18, 503-509.
DOI URL |
[ 张文彦, 樊江文, 钟华平, 胡中民, 宋璐璐, 王宁 ( 2010). 中国典型草原优势植物功能群氮磷化学计量学特征研究. 草业学报, 18, 503-509.]
DOI URL |
|
[67] |
Zhao, XF, Yang JS, Yao RJ ( 2010). Characteristics of soil salinization in mudflat of north Jiangsu province based on canonical correspondence analysis. Acta Pedologica Sinica, 47, 422-428.
DOI URL |
[ 赵秀芳, 杨劲松, 姚荣江 ( 2010). 基于典范对应分析的苏北滩涂土壤春季盐渍化特征研究. 土壤学报, 47, 422-428.]
DOI URL |
|
[68] | Zhou YL ( 1997). Vegetation Geography of Northeastern China. Science Press, Beijing. |
[ 周以良 ( 1997). 中国东北植被地理. 科学出版社, 北京.] |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[3] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[4] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[5] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[6] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[7] | 冼应男, 张瑛, 李宝珍, 罗沛, 肖润林, 吴金水. 绿狐尾藻光合色素组成及氮磷化学计量学特征对外源铵的响应[J]. 植物生态学报, 2022, 46(4): 451-460. |
[8] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[9] | 刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262-1272. |
[10] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[11] | 敬洪霞,孙宁骁,Muhammad UMAIR,刘春江,杜红梅. 滇南喀斯特地区不同季节土壤和灌木叶片化学计量特征及对水分添加的响应[J]. 植物生态学报, 2020, 44(1): 56-69. |
[12] | 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657. |
[13] | 杨文高, 字洪标, 陈科宇, 阿的鲁骥, 胡雷, 王鑫, 王根绪, 王长庭. 青海森林生态系统中灌木层和土壤生态化学计量特征[J]. 植物生态学报, 2019, 43(4): 352-364. |
[14] | 汤丹丹, 吴毅, 刘文耀, 胡涛, 黄俊彪, 张婷婷. 云南哀牢山两种常见半寄生植物的生态化学计量特征及其与寄主的关系[J]. 植物生态学报, 2019, 43(3): 245-257. |
[15] | 常永兴, 陈振举, 张先亮, 白学平, 赵学鹏, 李俊霞, 陆旭. 气候变暖下大兴安岭落叶松径向生长对温度的响应[J]. 植物生态学报, 2017, 41(3): 279-289. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19